DIFFERENTIAL OPERATORS OF DIRAC TYPES ON COMPLEX AND QUATERNION MANIFOLDS

九州大学大学院数理学研究院 長友康行 (Yasuyuki Nagatomo) Graduate School of Mathematics, Kyushu University

1. INTRODUCTION

We refer to [4] for this section.

Let \mathbb{R}^2 be a Euclidean space of dimension 2. We denote by C_2 the associated Clifford algebra. It is well known that C_2 is isomorphic to the field of quaternions \mathbb{H} as an algebra and has \mathbb{Z}^2 -grading:

$$C_2 \cong C_2^0 \oplus C_2^1$$
.

This corresponds to the decomposition $\mathbb{H} \cong \mathbb{C} \oplus \mathbb{C}$. To be more precise, let e_1 , e_2 be the standard basis of \mathbb{R}^2 . We set

$$a + be_2e_1 \cong a + \sqrt{-1}b$$
, $ae_1 + be_2 \cong a + \sqrt{-1}b$,

where a and b are real numbers. Then we obtain the desired identification $C_2^0 \cong \mathbb{C}$ and $C_2^1 \cong \mathbb{C}$. The Euclidean structure with the orientation also induces the complex structure on \mathbb{R}^2 which is the same as the complex structure given by $C_2^1 \cong \mathbb{C}$.

Next, we consider the Dirac operator $D:\Gamma(C_2)\to\Gamma(C_2)$, where $\Gamma(C_2)$ is the space of C_2 -valued functions. The Dirac operator D is expressed as:

$$Df = \sum_{i=1}^{2} e_i \cdot e_i(f),$$

where \cdot denotes the Clifford multiplication and $e_i(f)$ is the derivative along e_i . If we introduce coordinates on \mathbb{R}^2 by $(x, y) \cong xe_1 + ye_2$, then D can be written as:

$$Df = e_1 \cdot \frac{\partial f}{\partial x} + e_2 \cdot \frac{\partial f}{\partial y}.$$

By definition, the Dirac operator respects the \mathbb{Z}^2 -grading:

$$D: \Gamma(C_2^0) \to \Gamma(C_2^1), \quad D: \Gamma(C_2^1) \to \Gamma(C_2^0).$$

Let $f = u(x,y)1 + v(x,y)e_2e_1$ be a C_2^0 -valued function. Then we have

$$Df = u_x e_1 + v_x e_2 + u_y e_2 - v_y e_1 = (u_x - v_y) e_1 + (v_x + u_y) e_2$$

When we adopt the identification $\mathbb{C}_2^0 \cong \mathbb{C}_2^1 \cong \mathbb{C}$, we obtain

$$Df = \frac{\partial}{\partial \overline{z}}(u + \sqrt{-1}v) = 2\frac{\partial f}{\partial \overline{z}},$$

where

$$\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + \sqrt{-1} \frac{\partial}{\partial y} \right).$$

In brief, the Dirac operator is the Cauchy-Riemann operator. Note that the whole setting is preserved by the action of Spin(2).

Let \mathbb{R}^4 be a Euclidean space of dimension 4. We denote by C_4 the associated Clifford algebra. It is well known that C_4 is isomorphic to $\mathbb{H}(2)$ the 2×2 matrix algebra over quaternions. If we denote by e_1, \dots, e_4 the standard basis of \mathbb{R}^4 , then the identification is realised as:

$$e_1 \mapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad e_2 \mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $e_3 \mapsto \begin{pmatrix} 0 & k \\ -k & 0 \end{pmatrix}, \quad e_4 \mapsto \begin{pmatrix} 0 & -j \\ j & 0 \end{pmatrix}$

Note that \mathbb{H} is not a commutative field. The scalar product on \mathbb{H}^2 is provided with multiplication by quaternions on the *right* and the quaternion matrix acts on \mathbb{H}^2 from the *left*. Consequently,

$$e_{1}\begin{pmatrix}1\\i\end{pmatrix} = \begin{pmatrix}1\\-i\end{pmatrix}, \quad e_{2}\begin{pmatrix}1\\i\end{pmatrix} = \begin{pmatrix}i\\1\end{pmatrix} = \begin{pmatrix}1\\-i\end{pmatrix}i$$

$$e_{3}\begin{pmatrix}1\\i\end{pmatrix} = \begin{pmatrix}j\\-k\end{pmatrix} = \begin{pmatrix}1\\-i\end{pmatrix}j, \quad e_{4}\begin{pmatrix}1\\i\end{pmatrix} = \begin{pmatrix}k\\j\end{pmatrix} = \begin{pmatrix}1\\-i\end{pmatrix}k$$

Hence we obtain a \mathbb{Z}^2 -grading of \mathbb{H} as a module of C_4 :

$$\mathbb{H}^2 \cong \mathbb{H} \begin{pmatrix} 1 \\ i \end{pmatrix} \oplus \mathbb{H} \begin{pmatrix} 1 \\ -i \end{pmatrix} =: V_0 \oplus V_1.$$

The Dirac operator D is defined in a similar way and respects the \mathbb{Z}^2 -grading:

$$D: \Gamma(V_0) \to \Gamma(V_1), \quad D: \Gamma(V_1) \to \Gamma(V_0).$$

We introduce coordinates on \mathbb{R}^4 by $(x_0, x_1, x_2, x_3) \cong \sum_{i=0}^3 x_i e_{i+1}$ and identify \mathbb{R}^4 with \mathbb{H} as $(x_0, x_1, x_2, x_3) \cong x_0 + x_1 i + x_2 j + x_3 k = q$.

Let $f = u_0 + u_1 i + u_2 j + u_3 k$ be a V_0 -valued function. (f may be regarded as $\binom{1}{i} f$.) Then we have

$$\begin{split} Df &= \sum_{i=0}^{3} e_{i+1} \cdot \left(\frac{\partial f}{\partial x_{i}}\right) \cong \sum_{i=0}^{3} e_{i+1} \cdot \binom{1}{i} \left(\frac{\partial f}{\partial x_{i}}\right) \\ &= \binom{1}{-i} \left\{ \left(\frac{\partial f}{\partial x_{0}}\right) + i \left(\frac{\partial f}{\partial x_{1}}\right) + j \left(\frac{\partial f}{\partial x_{2}}\right) + k \left(\frac{\partial f}{\partial x_{3}}\right) \right\} \\ &\cong \frac{\partial}{\partial \overline{q}} f, \end{split}$$

where, of course,

$$\frac{\partial}{\partial \overline{q}} = \frac{\partial}{\partial x_0} + i \frac{\partial}{\partial x_1} + j \frac{\partial}{\partial x_2} + k \frac{\partial}{\partial x_3}.$$

We should also mention that the whole setting is preserved by the action of Spin(4).

2. Generalisation

2.1. Another interpretation. Although the Dirac operator can be defined on any dimensional Euclidean space, Dirac operators in the previous section can be re-interpreted from a different viewpoint.

In the 2-dimensional case, this is obvious. Let J denote the complex structure of \mathbb{R}^2 :

$$Je_1 = e_2, \quad Je_2 = -e_1$$

Consider the complexification $(\mathbb{R}^2)^{\mathbb{C}} \cong \mathbb{C}^2$ of \mathbb{R}^2 . Then J can be extended as the complex linear transformation of \mathbb{C}^2 . Since $J^2 = -1$, \mathbb{C}^2 is decomposed into the eigenspaces of J:

$$\mathbb{C}^2 = \mathbb{C}_{(1,0)} \oplus \mathbb{C}_{(0,1)},$$

where

$$\mathbb{C}_{(1,0)} = \left\{ z \in \mathbb{C}^2 | Jz = \sqrt{-1}z \right\}, \quad \mathbb{C}_{(0,1)} = \left\{ z \in \mathbb{C}^2 | Jz = -\sqrt{-1}z \right\},$$

in other words.

$$\frac{1}{2}\left(u-\sqrt{-1}Ju\right)\in\mathbb{C}_{(1,0)},\quad \frac{1}{2}\left(u+\sqrt{-1}Ju\right)\in\mathbb{C}_{(0,1)},$$

where $u \in \mathbb{R}^2$. We can easily show that (\mathbb{R}^2, J) is isomorphic to $\mathbb{C}_{(1,0)}$ as a complex vector space. The tangent space $T_x\mathbb{R}^2$ at a point $x \in \mathbb{R}^2$ is naturally identified with the vector space \mathbb{R}^2 .

Let \mathbb{C}^{2^*} be the dual space. According to the decomposition of \mathbb{C}^2 , we have

$$\mathbb{C}^{2^*} = \mathbb{C}dz \oplus \mathbb{C}d\overline{z}, \quad dz = dx + \sqrt{-1}dy, \ d\overline{z} = dx - \sqrt{-1}dy.$$

Then, for a function f, we have a differential df:

$$df = \frac{\partial f}{\partial z}dz + \frac{\partial f}{\partial \overline{z}}d\overline{z},$$

where

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - \sqrt{-1} \frac{\partial}{\partial y} \right), \quad \frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + \sqrt{-1} \frac{\partial}{\partial y} \right).$$

Taking the complex conjugate of \mathbb{C}^2 , we define a Hermitian inner product h on \mathbb{C}^2 as

$$h(z,w) = g(z,\overline{w})$$

where g(u, v) is the bi-linear extension of the inner product on \mathbb{R}^2 . Then $\mathbb{C}_{(1,0)} \perp \mathbb{C}_{(0,1)}$. Let $\pi : \mathbb{C}^2 \to \mathbb{C} d\overline{z}$ be the orthogonal projection. We can define a differential operator $\pi \circ d$. For a function f, we write explicitly $\pi \circ df$ down:

$$\pi \circ df = \frac{\partial f}{\partial \overline{z}} d\overline{z} \cong \frac{\partial f}{\partial \overline{z}}$$

and so

$$2\pi \circ df = Df.$$

This consistency is based on the group isomorphism $Spin(2) \cong U(1)$. The group U(1) can be considered as the unit complex numbers:

$$\mathrm{U}(1) = \left\{ z \in \mathbb{C} \,\middle|\, |z| = 1 \right\}.$$

Next, we concern the 4-dimensional case. We follow S.Salamon's description [9]. When we regard \mathbb{R}^4 as \mathbb{H} , \mathbb{H} has a natural "quaternion"-Hermitian inner product $h_{\mathbb{H}}$:

$$h_{\mathbb{H}}(p,q) = \overline{q}p, \quad \overline{q} = x_0 - ix_1 - jx_2 - kx_3.$$

The set of unit quaternions has a group structure induced from multiplication of \mathbb{H} , which is denoted by Sp(1):

$$\operatorname{Sp}(1) = \left\{ q \in \mathbb{H} \,\middle|\, |q| = 1 \right\}.$$

If we identify \mathbb{H} with \mathbb{C}^2 using the identification $i \cong \sqrt{-1}$, then $h_{\mathbb{H}}$ is decomposed into a Hermitian inner product and a complex volume form:

$$h_{\mathbb{H}}(p,q) = \overline{q}p = \overline{(u+jv)}(z+jw) = (\overline{u}-jv)(z+jw)$$
$$= (z\overline{u}+w\overline{v})+j(wu-zv) = h\left(\begin{pmatrix} z\\w\end{pmatrix},\begin{pmatrix} u\\v\end{pmatrix}\right)+\omega\left(\begin{pmatrix} z\\w\end{pmatrix},\begin{pmatrix} u\\v\end{pmatrix}\right)j.$$

The group $\mathrm{Sp}(1)$ preserves $h_{\mathbb{H}}$ and so, preserves a Hermitian inner product h and a complex volume form ω . This observation yields the isomorphism $\mathrm{Sp}(1) \cong \mathrm{SU}(2)$.

Since unit quaternions act on \mathbb{H} from the both sides and the left action commutes with the right action, $\operatorname{Sp}(1)\times\operatorname{Sp}(1)$ acts on \mathbb{H} . This action preserves the inner product and the volume form on \mathbb{R}^4 and so, we obtain a group homomorphism $\rho:\operatorname{Sp}(1)\times\operatorname{Sp}(1)\to\operatorname{SO}(4)$. Since $\rho(1,1)=\rho(-1,-1)=\operatorname{Id}$, $\operatorname{Ker}\rho\cong\mathbb{Z}^2$. In this way, we have an identification:

$$\operatorname{Sp}(1) \times \operatorname{Sp}(1)/\mathbb{Z}^2 \cong \operatorname{SO}(4), \quad \operatorname{or} \quad \operatorname{Sp}(1) \times \operatorname{Sp}(1) \cong \operatorname{Spin}(4).$$

To define differential operators from the quaternionic viewpoint, we recall the representation theory of $\mathrm{Sp}(1)\cong\mathrm{SU}(2)$. Let \mathbb{C}^2 be the standard representation of $\mathrm{SU}(2)$. Then the k-th symmetric tensor product $S^k\mathbb{C}^2$ (dim $S^k\mathbb{C}^2=k+1$) is an irreducible representation of $\mathrm{SU}(2)$ and each finite dimensional irreducible representation is one of them. In particular, we need an irreducible decomposition of $\mathbb{C}^2\otimes\mathbb{C}^2\cong\wedge^2\mathbb{C}^2\oplus S^2\mathbb{C}^2$. Then $\wedge^2\mathbb{C}^2=\mathbb{C}\omega$ and the classification of irreducible representation yields that

$$\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C} \oplus S^2 \mathbb{C}^2.$$

We denote two copies of the standard representation of $\operatorname{Sp}(1)$ by $\mathbb H$ and $\mathbb E$. The tensor product $\mathbb H \otimes_{\mathbb C} \mathbb E$ (for short, $\mathbb H \otimes \mathbb E$) is of complex dimension 4. Here we identify $\mathbb H$ and $\mathbb E$ with $\mathbb C^2$ using $i \cong \sqrt{-1}$. Since ij = -ji, j is an antilinear (or conjugate-linear) transformation. We refer to j as the quaternion structure which is preserved by $\operatorname{Sp}(1)$. Then $\sigma = j \otimes j$ acts on $\mathbb H \otimes \mathbb E$ and $\operatorname{Sp}(1) \times \operatorname{Sp}(1)$ also preserves σ . By definition, $\sigma^2 = j^2 \otimes j^2 = 1$ and σ is still an anti-linear transformation and so, σ is called the real structure. The invariant subset $(\mathbb H \otimes \mathbb E)^{\mathbb R}$ under σ of $\mathbb H \otimes \mathbb E$ is a real vector space of dimension 4, and $\operatorname{Sp}(1) \times \operatorname{Sp}(1)$ acts on $(\mathbb H \otimes \mathbb E)^{\mathbb R}$. Hence we recover $\mathbb R^4 \cong (\mathbb H \otimes \mathbb E)^{\mathbb R}$.

Let f be an \mathbb{H} -valued function. Then $\frac{\partial f}{\partial x_i} = f_{x_i}$ is also an \mathbb{H} -valued function and so,

$$\begin{pmatrix} f_{x_0} \\ f_{x_1} \\ f_{x_2} \\ f_{x_3} \end{pmatrix} \in \mathbb{H} \otimes_{\mathbb{R}} \mathbb{R}^4 \cong \mathbb{H} \otimes \mathbb{H} \otimes \mathbb{E} \cong (\mathbb{C} \oplus S^2 \mathbb{H}) \otimes \mathbb{E}$$

We define the orthogonal projections π_i by

$$\pi_1: (\mathbb{C} \oplus S^2\mathbb{H}) \otimes \mathbb{E} \to \mathbb{C} \otimes \mathbb{E} \cong \mathbb{E}, \quad \pi_2: (\mathbb{C} \oplus S^2\mathbb{H}) \otimes \mathbb{E} \to S^2\mathbb{H} \otimes \mathbb{E}.$$

We use π_1 to define the differential operator $\pi_1 \circ d : \Gamma(\mathbb{H}) \to \Gamma(\mathbb{E})$.

To compute explicitly, we use the standard basis h_1 , h_2 of \mathbb{H} which is a unitary basis and satisfies $h_2 = jh_1$. We also take the standard basis e_1 and e_2 of \mathbb{E} . Then the identification $\mathbb{R}^4 \cong \mathbb{H} \otimes \mathbb{E}$ is realised by:

$$(x_0, x_1, x_2, x_3) \cong x_0(h_2 \otimes e_1 - h_1 \otimes e_2) + x_1 \sqrt{-1}(h_2 \otimes e_1 + h_1 \otimes e_2) + x_2(h_1 \otimes e_1 + h_2 \otimes e_2) + x_3 \sqrt{-1}(h_1 \otimes e_1 - h_2 \otimes e_2)$$

Since

$$x_0 + ix_1 + jx_2 + kx_3 = (x_0 + ix_1) + j(x_2 - ix_3),$$

we put

$$z = x_0 + x_1, \quad w = x_2 - ix_3.$$

If $f = uh_1 + vh_2 \in \Gamma(\mathbb{H})$, where u and v are C-valued functions, then

$$df = (u_{x_0}h_1 + v_{x_0}h_2) \otimes (h_2 \otimes e_1 - h_1 \otimes e_2)$$

$$+ (u_{x_1}h_1 + v_{x_1}h_2) \otimes \sqrt{-1}(h_2 \otimes e_1 + h_1 \otimes e_2)$$

$$+ (u_{x_2}h_1 + v_{x_2}h_2) \otimes (h_1 \otimes e_1 + h_2 \otimes e_2)$$

$$+ (u_{x_3}h_1 + v_{x_3}h_2) \otimes \sqrt{-1}(h_1 \otimes e_1 - h_2 \otimes e_2)$$

$$\xrightarrow{\pi_1} (u_{x_0}e_1 + v_{x_0}e_2) + \sqrt{-1}(u_{x_1}e_1 - v_{x_1}e_2)$$

$$+ (u_{x_2}e_2 - v_{x_2}e_1) - \sqrt{-1}(u_{x_3}e_2 + v_{x_3}e_1)$$

$$= (u_{x_0} + \sqrt{-1}u_{x_1} - v_{x_2} - \sqrt{-1}v_{x_3}) e_1$$

$$+ (v_{x_0} - \sqrt{-1}v_{x_1} + u_{x_2} - \sqrt{-1}u_{x_3}) e_2.$$

We set

$$\begin{split} \partial_z &= \frac{\partial}{\partial x_0} - \sqrt{-1} \frac{\partial}{\partial x_1}, \quad \partial_{\overline{z}} &= \frac{\partial}{\partial x_0} + \sqrt{-1} \frac{\partial}{\partial x_1}, \\ \partial_w &= \frac{\partial}{\partial x_2} + \sqrt{-1} \frac{\partial}{\partial x_3}, \quad \partial_{\overline{w}} &= \frac{\partial}{\partial x_2} - \sqrt{-1} \frac{\partial}{\partial x_3}. \end{split}$$

Then

$$\pi_1 \circ df = (\partial_{\overline{z}}u - \partial_w v)e_1 + (\partial_z v + \partial_{\overline{w}}u)e_2 \cong (\partial_{\overline{z}}u - \partial_w v) + j(\partial_z v + \partial_{\overline{w}}u)e_2 = \partial_{\overline{z}}u + j\partial_z v + j(\partial_{\overline{w}}u + j\partial_w v) = (\partial_{\overline{z}} + j\partial_{\overline{w}})(u + jv) = \frac{\partial}{\partial \overline{a}}f.$$

We obtain

$$\pi_1 \circ df = Df$$
.

We also have a differential operator $\mathcal{D}: \Gamma(\mathbb{H}) \to \Gamma(S^2\mathbb{H} \otimes \mathbb{E})$:

$$\mathcal{D}=\pi_2\circ d,$$

which is called the twistor operator [1].

2.2. Higher dimensional analogue. From the viewpoint of complex number field, it is now clear that we have a generalisation of the differential operator $2\pi \circ d = D$ on \mathbb{R}^2 . We may replace $\mathbb{C} \cong \mathbb{R}^2$ by \mathbb{C}^n or the structure group U(1) by U(n). Let (z_1, \dots, z_n) be the standard coordinates of \mathbb{C}^n . Then, for a \mathbb{C} -valued function f, we define a system of differential operators:

$$\overline{\partial}f = \left(\frac{\partial}{\partial \overline{z}_1}f, \cdots, \frac{\partial}{\partial \overline{z}_n}f\right).$$

In an invariant way, we regard \mathbb{C}^n as \mathbb{R}^{2n} with a complex structure J. The complex structure J can be extended to a complex linear transformation on the complexified vector space $\mathbb{C}^{2n} \cong \mathbb{R}^{2n} \otimes_{\mathbb{R}} \mathbb{C}$. As before, we obtain the eigenspaces of J:

$$\mathbb{C}_{(1,0)} = \left\{ v \in \mathbb{C}^{2n} \middle| Jv = \sqrt{-1}v \right\}, \quad \mathbb{C}_{(0,1)} = \left\{ v \in \mathbb{C}^{2n} \middle| Jv = -\sqrt{-1}v \right\}$$

and an isomorphism $\mathbb{C}^n \cong \mathbb{C}_{(1,0)}$. Let \mathbb{C}^{n^*} be the dual space of \mathbb{C}^n . Since the dual space has also a natural complex structure, we obtain in a similar way

$$\mathbb{C}^{(1,0)} = \left\{ \phi \in \mathbb{C}^{2n^*} \middle| J\phi = \sqrt{-1}\phi \right\}, \quad \mathbb{C}^{(0,1)} = \left\{ \phi \in \mathbb{C}^{2n^*} \middle| J\phi = -\sqrt{-1}\phi \right\}$$

When we use coordinates z_1, \dots, z_n on \mathbb{C}^n , the basis of $\mathbb{C}^{(1,0)}$ (resp. $\mathbb{C}^{(0,1)}$) consists of

$$dz_1, \cdots, dz_n \quad (\text{resp. } d\overline{z}_1, \cdots, d\overline{z}_n).$$

Then the differential of f is expressed as:

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial z_{i}} dz_{i} + \sum_{i=1}^{n} \frac{\partial f}{\partial \overline{z}_{i}} d\overline{z}_{i}.$$

We can also define the orthogonal projection $\pi: \mathbb{C}^{2n} \to \mathbb{C}^{(0,1)}$. It can be shown that

$$\overline{\partial}f = \pi \circ df$$

Although $2\overline{\partial} = D$ is an elliptic operator in the case n = 1, higher dimensional analogue $\overline{\partial}$ is not an elliptic operator when $n \geq 2$. But we have an elliptic complex. The complex vector space generated by $dz_{i_1} \wedge \cdots \wedge dz_{i_p}$ (resp. $d\overline{z}_{i_1} \wedge \cdots \wedge d\overline{z}_{i_q}$) is denoted by $\bigwedge^{p,0}$ (resp. $\bigwedge^{0,q}$). We can consider a k-form ϕ of bidegree (p,q):

$$\phi = \sum_{\substack{p+q=k\\0 \leq i_1 < \dots < i_p \leq n\\0 \leq j_1 < \dots < j_q \leq n}} \phi_{i_1,\dots,i_p,j_1\dots,j_q} dz_{i_1} \wedge \dots \wedge dz_{i_p} \wedge d\overline{z}_{j_1} \wedge \dots \wedge d\overline{z}_{j_q},$$

where $\phi_{i_1,\cdots,i_p,j_1\cdots,j_q}$ is a function on \mathbb{C}^{2n} . Since

$$d\phi_{i_1,\cdots,i_p,j_1,\cdots,j_q} = \partial_{z_i}\phi_{i_1,\cdots,i_p,j_1,\cdots,j_q}dz_i + \partial_{\overline{z}_i}\phi_{i_1,\cdots,i_p,j_1,\cdots,j_q}d\overline{z}_j,$$

we have a differential of ϕ :

$$d\phi = \sum \left(\sum_{i=1}^{n} \partial_{z_{i}} \phi_{i_{1}, \dots, i_{p}, j_{1} \dots, j_{q}} dz_{i} \wedge dz_{i_{1}} \wedge \dots \wedge dz_{i_{p}} \wedge d\overline{z}_{i_{1}} \wedge \dots \wedge d\overline{z}_{j_{q}} \right.$$

$$\left. + \sum_{j=1}^{n} \partial_{\overline{z}_{j}} \phi_{i_{1}, \dots, i_{p}, j_{1} \dots, j_{q}} d\overline{z}_{j} \wedge dz_{i_{1}} \wedge \dots \wedge dz_{i_{p}} \wedge d\overline{z}_{i_{1}} \wedge \dots \wedge d\overline{z}_{j_{q}} \right)$$

Hence, we can also define

$$\overline{\partial}\phi = \sum \overline{\partial}\phi_{i_1,\cdots,i_p,j_1\cdots,j_q} \wedge dz_{i_1} \wedge \cdots \wedge dz_{i_p} \wedge d\overline{z}_{i_1} \wedge \cdots \wedge d\overline{z}_{j_q}.$$

Note that

$$\overline{\partial} \phi_{i_1,\cdots,i_p,j_1\cdots,j_q} = \sum_{j=1}^n \partial_{\overline{z}_j} \phi_{i_1,\cdots,i_p,j_1\cdots,j_q} d\overline{z}_j,$$

which is already defined. Consequently, we obtain a generalisation of a differential $\overline{\partial}$ for a function to a differential for a k-form which is denoted by the same symbol $\overline{\partial}$. By definition, $\overline{\partial} \circ \overline{\partial} = 0$. We use $\overline{\partial}$ to get an elliptic complex:

$$0 \to \Omega^{p,q} \xrightarrow{\overline{\partial}} \Omega^{p,q+1} \xrightarrow{\overline{\partial}} \cdots \xrightarrow{\overline{\partial}} \Omega^{p,n} \to 0,$$

where

$$\Omega^{p,q} = \Gamma(\wedge^{p,q})$$

In the case of the field of quaternions, $\mathbb{H}^n \cong \mathbb{R}^{4n}$ can be taken as a generalisation in an obvious sense [8]. The group $\operatorname{Sp}(1) \times \operatorname{Sp}(1)$ is replaced by $\operatorname{Sp}(1) \times \operatorname{Sp}(n)$. We also denote by \mathbb{E} the standard representation of $\operatorname{Sp}(n)$ ($\mathbb{E} \cong \mathbb{C}^{2n} \cong \mathbb{H}^n$). Therefore

$$\mathbb{R}^{4n} \cong (\mathbb{H} \otimes \mathbb{E})^{\mathbb{R}}$$
.

Now we define a differential operator $D: \Gamma(\mathbb{H}) \to \Gamma(\mathbb{E})$ as

$$D: \Gamma(\mathbb{H}) \xrightarrow{d} \Gamma(\mathbb{H} \otimes \mathbb{H} \otimes \mathbb{E}) \cong \Gamma\left((\mathbb{C} \oplus S^2\mathbb{H}) \otimes \mathbb{E}\right) \xrightarrow{\pi_1} \Gamma(\mathbb{E})$$

[9]. We have another differential operator $\mathcal{D}: \Gamma(\mathbb{H}) \to \Gamma(S^2\mathbb{H} \otimes \mathbb{E})$ as

$$\mathcal{D}: \Gamma(\mathbb{H}) \xrightarrow{d} \Gamma(\mathbb{H} \otimes \mathbb{H} \otimes \mathbb{E}) \cong \Gamma\left((\mathbb{C} \oplus S^2\mathbb{H}) \otimes \mathbb{E}\right) \xrightarrow{\pi_2} \Gamma(S^2\mathbb{H} \otimes \mathbb{E}).$$

Using the Clebsch-Gordan formula, we obtain

$$\mathbb{H} \otimes S^p \mathbb{H} \cong S^{p-1} \mathbb{H} \oplus S^{p+1} \mathbb{H}.$$

Combined with an algebraic homomorphism : $\mathbb{E} \otimes \wedge^q \mathbb{E} \to \mathbb{E} \otimes (\otimes^q \mathbb{E}) \to \wedge^{q+1} \mathbb{E}$, we have two extensions of differential operators D and D:

$$D: \Gamma(S^{p}\mathbb{H} \otimes \wedge^{q}\mathbb{E}) \xrightarrow{d} \Gamma\left(S^{p}\mathbb{H} \otimes \wedge^{q}\mathbb{E} \otimes \mathbb{H} \otimes \mathbb{E}\right)$$

$$\cong \Gamma\left(\left(S^{p}\mathbb{H} \otimes \mathbb{H}\right) \otimes \left(\wedge^{q}\mathbb{E} \otimes \mathbb{E}\right)\right) \xrightarrow{\pi_{1}} \Gamma\left(S^{p-1}\mathbb{H} \otimes \wedge^{q+1}\mathbb{E}\right)$$

$$\mathcal{D}: \Gamma(S^{p}\mathbb{H} \otimes \wedge^{q}\mathbb{E}) \xrightarrow{d} \Gamma\left(S^{p}\mathbb{H} \otimes \wedge^{q}\mathbb{E} \otimes \mathbb{H} \otimes \mathbb{E}\right)$$

$$\cong \Gamma\left(\left(S^{p}\mathbb{H} \otimes \mathbb{H}\right) \otimes \left(\wedge^{q}\mathbb{E} \otimes \mathbb{E}\right)\right) \xrightarrow{\pi_{2}} \Gamma\left(S^{p+1}\mathbb{H} \otimes \wedge^{q+1}\mathbb{E}\right)$$

Here D is called a quaternion-Dirac operator and $\mathcal D$ is called a twistor operator.

We also obtain an elliptic complex:

$$0 \to C^{\infty}(\mathbb{R}^{4n}) \xrightarrow{d} \Gamma(\mathbb{H} \otimes \mathbb{E}) \xrightarrow{\mathcal{D}} \Gamma(S^{2}\mathbb{H} \otimes \wedge^{2}\mathbb{E}) \xrightarrow{\mathcal{D}} \cdots$$
$$\xrightarrow{\mathcal{D}} \Gamma(S^{p}\mathbb{H} \otimes \wedge^{p}\mathbb{E}) \xrightarrow{\mathcal{D}} \cdots \xrightarrow{\mathcal{D}} \Gamma(S^{2n}\mathbb{H} \otimes \wedge^{2n}\mathbb{E}) \to 0.$$

3. Generalisation II

We have already found *linear* differential operators. Here we consider a *non-linear* problem which relates to our differential operators.

For our purpose, we replace a vector valued function or form by a matirix valued function or form such that

$$A = A_1 dx_1 + \dots + A_n dx_n \quad \text{on } \mathbb{R}^n,$$

where

$$A_i \in \mathbb{C}(r) := \{r \times r \text{ matrices over } \mathbb{C}\}.$$

We introduce a new differentiation ∇ :

$$\nabla = d + A, \quad \nabla_i = \partial_i + A_i, \quad \partial_i = \frac{\partial}{\partial x_i}$$

which acts on \mathbb{C}^r -valued function. Although $d^2 = 0$ which means that $\partial_i \partial_j = \partial_j \partial_i$, we have $\nabla^2 \neq 0$. In fact,

$$[\nabla_i, \nabla_j] = \nabla_i \nabla_j - \nabla_j \nabla_i = \partial_i A_j - \partial_j A_i + [A_i, A_j]$$

In this way, we obtain a curvature 2-form or a gauge field F which associates to A which is called the connection form or the gauge potential:

$$F = \sum_{i,j} F_{ij} dx_i \wedge dx_j, \quad F_{ij} = \partial_i A_j - \partial_j A_i + [A_i, A_j].$$

Note that F is a non-linear function of a given A. Finally, we can extend the operator ∇ to the covariant exterior differentiation d^{∇} which acts on \mathbb{C}^r -valued k-forms. For a \mathbb{C}^r -valued k-form

$$\phi_{i_1,\dots,i_k}dx^{i_1}\wedge\dots\wedge dx^{i_k}\in\Gamma(\wedge^k\otimes\mathbb{C}^r)=\Omega^k(\mathbb{C}^r),$$

we define

$$d^{\nabla}\left(\phi_{i_{1},\cdots,i_{k}}dx^{i_{1}}\wedge\cdots\wedge dx^{i_{k}}\right) = (\nabla\phi_{i_{1},\cdots,i_{k}})\wedge dx^{i_{1}}\wedge\cdots\wedge dx^{i_{k}}$$
$$= \left(\sum_{i=1}^{n}\nabla_{i}\phi_{i_{1},\cdots,i_{k}}dx_{i}\right)\wedge dx^{i_{1}}\wedge\cdots\wedge dx^{i_{k}}\in\Omega^{k+1}(\mathbb{C}^{r}).$$

Then it is easily shown that

$$d^{\nabla}d^{\nabla}s = Fs \quad \text{for } s \in \Gamma(\mathbb{C}^r) = \Omega^0(\mathbb{C}^r), \quad (d^{\nabla}d^{\nabla} = F)$$

When f is a function, then we have

$$d^{\nabla}d^{\nabla}fs = fd^{\nabla}d^{\nabla}s,$$

and so, F can be regarded as

$$F \in \Omega^2 \left(\operatorname{End}(\mathbb{C}^r) \right)$$
.

3.1. \mathbb{C} -case. We begin with a vector space \mathbb{C}^n as a base space. For a given gauge potential $A = \sum_{i=1}^n (A_{z_i} dz_i + A_{\overline{z}_i} d\overline{z}_i)$ and a \mathbb{C}^r (a fibre) -valued (p,q)-form $\phi \in \Omega^{p,q}(\mathbb{C}^r) := \Gamma(\wedge^{p,q} \otimes \mathbb{C}^r)$, we have

$$d^{\nabla}\phi\in\Omega^{p+1,q}(\mathbb{C}^r)\oplus\Omega^{p,q+1}(\mathbb{C}^r),$$

and so, we can define in an obvious way,

$$\partial^{\nabla} \phi = \pi_1 d^{\nabla} \phi \in \Omega^{p+1,q}(\mathbb{C}^r), \quad \overline{\partial}^{\nabla} \phi = \pi_2 d^{\nabla} \phi \in \Omega^{p,q+1}(\mathbb{C}^r).$$

Consider a differential equation

$$(*) \overline{\partial}^{\nabla} s = 0,$$

for a \mathbb{C}^r -valued function s. If such an s exists, then

$$\overline{\partial}^{\nabla} \overline{\partial}^{\nabla} s = 0,$$

which means

$$F^{0,2}s=0.$$

Note that

$$F\in\Omega^2\left(\mathrm{End}(\mathbb{C}^r)\right)\cong\Omega^{2,0}\left(\mathrm{End}(\mathbb{C}^r)\right)\oplus\Omega^{1,1}\left(\mathrm{End}(\mathbb{C}^r)\right)\oplus\Omega^{0,2}\left(\mathrm{End}(\mathbb{C}^r)\right).$$

Indeed, the condition

$$F^{0,2} = 0$$

is the integrability condition for the equation (*) [1]. If $F^{0,2}=0$ is satisfied, then we can find locally enough solutions for (*), which provide a basis of \mathbb{C}^r at each point of \mathbb{C}^n . In other words, there exist locally defined s_1, \dots, s_r which satisfy (*) and span the vector space \mathbb{C}^r_z at each point $z \in \mathbb{C}^n$. Hence \mathbb{C}^r_z can be thought as varying holomorphically with z. In this way, we obtain a holomorphic vector bundle. Then the frame s_1, \dots, s_r is called the holomorphic gauge.

As a consequence, a connection form A satisfying $F^{0,2}=0$ gives a holomorphic vector bundle. Since

$$F_{ij}^{0,2} = \overline{\partial}_i A_{\overline{z}_j} - \overline{\partial}_j A_{\overline{z}_i} + \left[A_{\overline{z}_i}, A_{\overline{z}_j} \right],$$

the equation $F^{0,2} = 0$ is a non-linear equation of the first order and we can find the Cauchy-Riemann operator as the linearisation:

$$\overline{\partial}^{\nabla} B = 0$$
, for $B \in \Omega^{0,1} \left(\operatorname{End}(\mathbb{C}^r) \right)$.

Using again $\overline{\partial}^{\nabla} \overline{\partial}^{\nabla} = F^{0,2} = 0$, we have an elliptic complex:

$$0 \to \Omega^{0,0}\left(\operatorname{End}(\mathbb{C}^r)\right) \xrightarrow{\overline{\partial}^{\nabla}} \Omega^{0,1}\left(\operatorname{End}(\mathbb{C}^r)\right) \xrightarrow{\overline{\partial}^{\nabla}} \cdots \xrightarrow{\overline{\partial}^{\nabla}} \Omega^{0,n}\left(\operatorname{End}(\mathbb{C}^r)\right) \to 0.$$

3.2. \mathbb{H} -case. Let $\mathbb{R}^{4n} \cong (\mathbb{H} \otimes \mathbb{E})^{\mathbb{R}}$ be the vector space acted by $\mathrm{Sp}(1) \cdot \mathrm{Sp}(n) = \mathrm{Sp}(1) \times \mathrm{Sp}(n)/\mathbb{Z}^2$. Although $\Omega^1 = \Gamma(\mathbb{H} \otimes \mathbb{E})$ is irreducible, $\wedge^2 = \wedge^2(\mathbb{H} \otimes \mathbb{E})$ can be decomposed into irreducible components:

$$(3.2.1) \qquad \qquad \wedge^2 = (S^2 \mathbb{H} \otimes \wedge^2 E) \oplus (\wedge^2 \mathbb{H} \otimes S^2 \mathbb{E}).$$

We define the orthogonal projection π as:

$$\pi: \wedge^2 \to S^2 \mathbb{H} \otimes \wedge^2 \mathbb{E}.$$

We consider a connection form A and its curvature 2-form $F \in \Omega^2(\text{End}\mathbb{C}^r)$. Then the equation

$$(**) \qquad \qquad \pi \circ F = 0$$

is a non-linear differential equation of the first order for A. By analogy with the \mathbb{C} -case, we call a vector bundle with such a connection form $(\pi \circ F = 0)$ quaternion-holomorphic vector bundle (for example, see [5]).

For brevity, we focus our attention on the case n=1. Then the decomposition (3.2.1) reduces to:

$$\wedge^2 = \wedge_+ \oplus \wedge_-,$$

where a basis of each space is

$$\wedge_{+}: egin{cases} dx_{0} \wedge dx_{1} + dx_{2} \wedge dx_{3} \ dx_{0} \wedge dx_{2} - dx_{1} \wedge dx_{3} \ dx_{0} \wedge dx_{3} + dx_{1} \wedge dx_{2}, \end{cases} \wedge_{-}: egin{cases} dx_{0} \wedge dx_{1} - dx_{2} \wedge dx_{3} \ dx_{0} \wedge dx_{2} + dx_{1} \wedge dx_{3} \ dx_{0} \wedge dx_{3} - dx_{1} \wedge dx_{2}. \end{cases}$$

Then the equation (**) is written down as:

$$F^{+} = 0$$

which is called the anti-self-dual equation [1].

A linearisation of the equation (**) is the composition:

$$\Omega^{1}\left(\operatorname{End}(\mathbb{C}^{r})\right) = \Gamma\left(\operatorname{End}(\mathbb{C}^{r}) \otimes \mathbb{H} \otimes \mathbb{E}\right) \xrightarrow{d^{\nabla}} \Omega^{2}\left(\operatorname{End}(\mathbb{C}^{r})\right)$$
$$\xrightarrow{\pi} \Gamma\left(\operatorname{End}(\mathbb{C}^{r}) \otimes S^{2}\mathbb{H} \otimes \wedge^{2}\mathbb{E}\right),$$

and so, we obtain the twistor operator $\mathcal{D}^{\nabla} = \pi \circ d^{\nabla}$ coupled to the connection A. We also have

$$\mathcal{D}^{\nabla}\mathcal{D}^{\nabla} = \mathcal{D}^{\nabla}\nabla = \pi \circ d^{\nabla}\nabla = \pi \circ F = 0$$

for a quaternionic holomorphic vector bundle. Consequently, there exists an elliptic complex:

$$0 \to \Gamma\left(\operatorname{End}(\mathbb{C}^r)\right) \xrightarrow{d^{\nabla}} \Gamma\left(\mathbb{H} \otimes \mathbb{E} \otimes \operatorname{End}(\mathbb{C}^r)\right) \xrightarrow{\mathcal{D}^{\nabla}} \Gamma\left(S^2\mathbb{H} \otimes \wedge^2\mathbb{E} \otimes \operatorname{End}(\mathbb{C}^r)\right)$$
$$\xrightarrow{\mathcal{D}^{\nabla}} \cdots \xrightarrow{\mathcal{D}^{\nabla}} \Gamma\left(S^{2n}\mathbb{H} \otimes \wedge^{2n}\mathbb{E} \otimes \operatorname{End}(\mathbb{C}^r)\right) \to 0.$$

In particular, in the 4-dimensional case, our elliptic complex is reduced to:

$$0 \to \Gamma\left(\mathrm{End}(\mathbb{C}^r)\right) \xrightarrow{d^{\nabla}} \Omega^1\left(\mathrm{End}(\mathbb{C}^r)\right) \xrightarrow{\mathcal{D}^{\nabla}} \Omega^+\left(\mathrm{End}(\mathbb{C}^r)\right) \to 0,$$

which is called the Atiyah-Hitchin-Singer complex [1].

4. GENERALISATION III

For the first generalisation, after the identification $Spin(2) \cong U(1)$ and $Spin(4) \cong Sp(1) \times Sp(1)$, the groups U(1) and $Sp(1) \times Sp(1)$ are replaced by U(n) and $Sp(1) \times Sp(n)$, respectively. We obtained differential operators of Dirac types according to the structure groups.

In the second process of a generalisation, we replace a function by a \mathbb{C}^r -valued function or a matrix valued function. As a consequence, we had a vector bundle, a connection form and a curvature form. Then we found non-linear differential equations which relate to the "Dirac equations" via linearisation.

Here we concern a manifold with a structure group U(n) or $Sp(1) \times Sp(n)$ and a vector bundle with a connection.

The manifold with a structure group U(n) is called a Kähler manifold. The typical example is the complex projective line $\mathbb{C}P^1 \cong S^2$.

The tangent space of a Kähler manifold has a complex structure and can be regarded as a complex vector space with a Hermitian inner product. The parallel transport makes sense, because a Kähler manifold is also a Riemann manifold. Then, the complex structure and the Hermitian metric are preserved by the parallel transport.

Since our construction in the previous sections is purely local in nature, the Cauchy-Riemann operator $\overline{\partial}$ and a holomorphic vector bundle can be defined on a Kähler manifold.

We pay an attention on a complex line bundle L over a compact Kähler manifold M and the resulting elliptic complex:

$$0 \to \Omega^{0,0}(M;L) \xrightarrow{\overline{\partial_0^{\nabla}}} \Omega^{0,1}(M;L) \xrightarrow{\overline{\partial_1^{\nabla}}} \cdots \xrightarrow{\overline{\partial_{n-1}^{\nabla}}} \Omega^{0,n}(M;L) \to 0.$$

Then we can consider the cohomology

$$H^q(M;\underline{L}) := \operatorname{Ker} \overline{\partial}_q^{\nabla} / \operatorname{Im} \overline{\partial}_{q-1}^{\nabla}$$

of the elliptic complex.

Theorem 4.1. (Kodaira vanishing theorem) (for example, see [2]) If the holomorphic line bundle L is negative in some sense, then we have

$$H^q(M;L) = 0$$
 for $q \leq n-1$

Finally, a manifold with a structure group $\operatorname{Sp}(1) \cdot \operatorname{Sp}(n)$ concerns us. (As seen previously, the group $\operatorname{Sp}(1) \times \operatorname{Sp}(n)$ does not act on \mathbb{R}^4 effectively, but $\operatorname{Sp}(1) \cdot \operatorname{Sp}(n)$ really acts effectively.) Such a manifold is called a quaternion-Kähler manifold [8]. The typical example of a quaternion-Kähler manifold is the quaternion projective line $\operatorname{\mathbb{H}} P^1 \cong S^4$.

Let V be a quaternion-holomorphic vector bundle over a compact quaternion Kähler manifold M. (Note that we do not suppose that V is a line bundle). A related elliptic complex is

$$0 \to \Gamma(M; V) \xrightarrow{d^{\nabla}} \Gamma(M; \mathbb{H} \otimes \mathbb{E} \otimes V) \xrightarrow{\mathcal{D}^{\nabla}} \Gamma(M; S^{2}\mathbb{H} \otimes \wedge^{2}\mathbb{E} \otimes V)$$
$$\xrightarrow{\mathcal{D}^{\nabla}} \cdots \xrightarrow{\mathcal{D}^{\nabla}} \Gamma(M; S^{p}\mathbb{H} \otimes \wedge^{p}\mathbb{E} \otimes V) \xrightarrow{\mathcal{D}^{\nabla}} \cdots \xrightarrow{\mathcal{D}^{\nabla}} \Gamma(M; S^{2n}\mathbb{H} \otimes \wedge^{2n}\mathbb{E} \otimes V)$$
$$\to 0.$$

We again consider the cohomology of the elliptic complex:

$$H^q(M; V) := \operatorname{Ker} \mathcal{D}^{\nabla} / \operatorname{Im} \mathcal{D}^{\nabla}.$$

Theorem 4.2. ([3](4-dimensional case), [6] and [7]) If a quaternion-Kähler manifold has a positive scalar curvature, then we have

$$H^q(M; V) = 0$$
 for $q \ge n + 1$.

If a quaternion-Kähler manifold has a negative scalar curvature, then we have

$$H^q(M;V)=0 \quad \textit{for} \quad 1 \leqq q \leqq n+1.$$

REFERENCES

- [1] M.F.Atiyah, N.J.Hitchin and I.M.Singer, Self-duality in four-dimensional Riemannian geometry, Proc.Roy.Soc.London Ser.A 362 (1978), 425–461
- [2] P.Griffiths and J.Harris, "Principles of algebraic geometry" Wiley & Sons, New York (1978)
- [3] N.J.Hitchin, Linear field equations on self-dual spaces, Proc.R.Soc.A. **370** (1980), 173–191
- [4] B.Lawson & L.Michelsohn, "Spin geometry", Princeton University Press, Princeton (1989)
- [5] M.Mamone Capria and S.M.Salamon, Yang-Mills fields on quaternionic spaces, Nonlinearity 1 (1988), 517–530
- [6] Y.Nagatomo, Vanishing theorem for cohomology groups of c₂-self-dual bundles on quaternionic Kähler Manifolds, Differential Geom. Appl. 5 (1995), 79–95
- [7] Y.Nagatomo and T.Nitta, Vanishing theorem for quaternionic complexes, Bull.London Math.Soc. 29 (1997), 359–366
- [8] S.M.Salamon, Quaternionic Kähler Manifolds, Invent.Math. 67 (1982), 143–171
- [9] S.M.Salamon, Differential geometry of quaternionic manifolds, Ann. SC. Ec. Norm. Sup. 19 (1986), 31–55

Graduate School of Mathematics, Kyushu University, Ropponmatsu, Fukuoka 810-8560, JAPAN

E-mail address: nagatomo@math.kyushu-u.ac.jp