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DIFFERENTIAL OPERATORS OF DIRAC TYPES ON
COMPLEX AND QUATERNION MANIFOLDS

FUN KR ERHER LR £ KEIT (Yasuyuki Nagatomo)
Graduate School of Mathematics, Kyushu University

1. INTRODUCTION

We refer to [4] for this section.

Let R? be a Euclidean space of dimension 2. We denote by C, the associ-
ated Clifford algebra. It is well known that C, is isomorphic to the field of
quaternions H as an algebra and has Z?-grading:

C, = Cy®Cy.
This corresponds to the decomposition H = C & C. To be more precise, let
e1, e2 be the standard basis of R?. We set

' a + bese; = a++v—1b, aey + bes = a+ v/ —1b,

where @ and b are real numbers. Then we obtain the desired identification
C? = C and C} = C. The Euclidean structure with the orientation also in-
duces the complex structure on R? which is the same as the complex structure
given by C3 = C.

Next, we consider the Dirac operator D : ['(Cy) — I'(Cz), where T'(C3) is
the space of Cp-valued functions. The Dirac operator D is expressed as:

9 .
Df = Zei 'e‘i(f)a
i=1

where - denotes the Clifford multiplication and e;(f) is the derivative along
e;. If we introduce coordinates on R? by (z,y) = ze; + yey, then D can be

written as: o) of
Df=€1'-3;+62'6—y.

By definition, the Dirac operator respects the Z2-grading:

, D:T(CY) » T(C}), D:T(C3)— T(C)).

Let f = u(z,y)1 + v(z,y)ezer be a C3-valued function. Then we have
Df = ugey + vge + uyes — vyer = (ug — vy) €1 + (Vs +uy) €2

When we adopt the identification C3 = C} = C, we obtain

where
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In brief, the Dirac operator is the Cauchy-Riemann operator. Note that the
whole setting is preserved by the action of Spin(2).

Let R* be a Euclidean space of dimension 4. We denote by C, the associated
Clifford algebra. It is well known that Cy is isomorphic to H(2) the 2 x 2
matrix algebra over quaternions. If we denote by ey, - - , e4 the standard basis
of R%, then the identification is realised as:

L[ o L[0!
“a=lo -1 27 o
N N
“7 -k 0) %7\ o

Note that H is not a commutative field. The scalar product on H? is provided
with multiplication by quaternions on the right and the quaternion matrix
acts on H? from the left. Consequently,

o(1) = (5) = ()=()=(4)
o(1) = (2= (2 «()-C)- ()

Hence we obtain a Z?-grading of H as a module of Cy:

HngG)@HCi) = V@V

The Dirac operator D is defined in a similar way and respects the Z2-grading:
D:T(V;) 5 T(Vi), D:T(Vi)— (V).

We introduce coordinates on R* by (zq, 71, T2, T3) = Z?:o z;e;+1 and identify
R* with H as (I0,$1,$2,1‘3) X 3o+ 11t + T9] + 23k = q.
Let f = ug + u1% + usj + usk be a Vp-valued function. (f may be regarded

as C) f.) Then we have

pr = (55) = Lo (:) (3
-(C){(8) ()~ (&) -+(%))

0
ga__f ’
q
where, of course,

00,0 0,0
0§ Oxy O Yoz, T " ozs

We should also mention that the whole setting is preserved by the action of
Spin(4).
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2. GENERALISATION

2.1. Another interpretation. Although the Dirac operator can be defined
on any dimensional Euclidean space, Dirac operators in the previous section
can be re-interpreted from a different viewpoint.

In the 2-dimensional case, this is obvious. Let J denote the complex struc-
ture of R%:

Jey=¢ey, Jey=—€
Consider the complexification (R2)C 22 C? of R?. Then J can be extended as
the complex linear transformation of C2. Since J? = —1, C? is decomposed

into the eigenspaces of J:
C?= Cpa0) @ Co,1y,
where

Cao = {Z € C?Jz= \/—lz} , Con= {z € C?Jz= ~\/—1z},
in other words,
1

1
5 ('U. -V -"'].JU) € C(l,o), 5 (U =+ vV “1JU) S C(O,l),

where u € R%. We can easily show that (R2, J) is isomorphic to C(; gy as a
complex vector space. The tangent space T;R? at a point z € R? is naturally
identified with the vector space R2.

Let C?" be the dual space. According to the decomposition of C?, we have
C?¥ =Cdz® Cdz, dz=dz+-1dy, dz = dz — v—1dy.
Then, for a function f, we have a differential df:
of of
df = — —
if 52 dz + BEd—Z_’
TR 5 1/ 8y & 1[0 9
=== Vv1=], ==z(=—+v-1=).
92 2 (3:{: E}y)’ 5z~ 2 (8x+ 16y)
Taking the complex conjugate of C2, we define a Hermitian inner product h
on C? as
h(z, w) = g(z, )
where g(u,v) is the bi-linear extension of the inner product on R2. Then
C1,00LCo,1). Let m: C? — Cdz be the orthogonal projection. We can define
a differential operator wod. For a function f, we write explicitly m odf down:
of . 9f
modf = %dE =5
and so

2nodf = Df. |
This consistency is based on the group isomorphism Spin(2) = U(1). The
group U(1) can be considered as the unit complex numbers:

U(1)={z€Cl|z|=1}.

17



18

OPERATORS OF DIRAC TYPES

Next, we concern the 4-dimensional case. We follow S.Salamon’s descrip-
tion [9]. When we regard R* as H, H has a natural “quaternion”-Hermitian
inner product hy:

hu(p,q) =qp, q=1zo— iz — jzo — kzs.

The set of unit quaternions has a group structure induced from multiplication
of H, which is denoted by Sp(1):

sp(1) = {a e H|lgl =1}.

If we identify H with C? using the identification i 2 /—1, then hy is decom-
posed into a Hermitian inner product and a complex volume form:

ha(p,q) =gp = (u+ jv)(z + jw) = (T~ jv)(z + juw)

wcnranssien-mr=((2) () (). ()

The group Sp(1) preserves hy and so, preserves a Hermitian inner product
h and a complex volume form w. This observation yields the isomorphism
Sp(1) = SU(2).

Since unit quaternions act on H from the both sides and the left action
commutes with the right action, Sp(1) xSp(1) acts on H. This action preserves
the inner product and the volume form on R* and so, we obtain a group
homomorphism p : Sp(1) x Sp(1)-— SO(4). Since p(1,1) = p(-1,-1) = 14,
Ker p = Z2. In this way, we have an identification: '

Sp(1) x Sp(1)/Z* = SO(4), or Sp(1) x Sp(1) = Spin(4).

To define differential operators from the quaternionic viewpoint, we re-
call the representation theory of Sp(1) = SU(2). Let C? be the standard
representation of SU(2). Then the k-th symmmetric tensor product S*C?
(dim S*C? = k + 1) is an irreducible representation of SU(2) and each finite
dimensional irreducible representation is one of them. In particular, we need
an irreducible decomposition of C? ® C? = A2C? @ S?C2. Then A2C?2 = Cw
and the classification of irreducible representation yields that

Cle C?=Co S*C2

We denote two copies of the standard representaion of Sp(1) by H and E.
The tensor product H®cE (for short, H®E) is of complex dimension 4. Here
we identify H and E with C? using i & +/—1. Since ij = —ji, j is an anti-
linear (or conjugate-linear) transformation. We refer to j as the quaternion
structure which is preserved by Sp(1). Then ¢ = j ® j acts on H® E and
Sp(1) x Sp(1) also preserves o. By definition, 0% = j2® j2 = 1 and o is
still an anti-linear transformation and so, o is called the real structure. The
invariant subset (H®E)® under o of H®E is a real vector space of dimension
4, and Sp(1) x Sp(1) acts on (H ® E)®. Hence we recover R* & (H ® E)R.
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Let f be an H-valued function. Then gf

and so,

= f, is also an H-valued function
i
fao

j}l € HerR'*HQHQE= (Co S°H) ®F

fzg
We define the orthogonal projections m; by
M (C@SZH) QE—->CQE=2E, m=: (C@Szlﬂl) QE - S’HRE.

We use 7, to define the differential operator 7y o d : I'(H) — I'(E).

To compute explicitly, we use the standard basis hy, hy of H which is a
unitary basis and satisfies hy = jh;. We also take the standard basis e; and
e, of E. Then the identification R* & H ® E is realised by:

(zo, T1, Tz, T3) Zxo(ha ® €1 — hy ® €3) + 71V —1(hs ® €1 + h1 @ €3)
+ 22(h1 @ €1 + hy ® €3) + 23V —1(h1 @ €1 — hy @ €3)
Since
To + Ty + jT2 + kx3 = (To + i71) + j(T2 — iT3),
we put
Z2=12¢+T1, W=y 1T3.
If f = uh; + vhy € T(H), where u and v are C-valued functions, then
df =(ugoh1 + Vgoh2) ® (ho ® €1 — by ® €3)
+ (tg, by + Vg hg) ® V=1(ho ® €1+ h1 Q €3)
+ (Ug, by + Vg ho) ® (b1 ® €1+ by ® €3)
+ (tugshy + vg3h2) @ V—1(h1 @ €1 — hy ® €3)
— (Ugp€1 + Uzge) + V=1 (ug,€1 — Vg, €2)

m
+ (Ug,€2 — Vy€1) — V—1 (Ugg€ + Vzge1)
= (Ugo + V=1Ug, — U5y — V=Tuz,) €1
+ (’umJ -V =1vg + Uz, — \/—luzs) €es.

We set
9 ) ) 8
= a5 —V—ig—, Z = A -1,
% = 50 19 %= 5, TV 15,
8 ) ) 8
%= te TV om T o,V om
Then

m o df =(3zu — Ayv)e; + (0,v + Ogu)es = (8zu — Oyv) + §(0,v + Ozu)
0
=85u + j0,v + j (Opu + jOuv) = (g + jOg) (u + jv) = a_qf'
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We obtain
modf =Df.
We also have a differential operator D : ['(H) — ['(S?H ® E):
D= T2 © d,

which is called the twistor operator [1].

2.2. Higher dimensional analogue. From the viewpoint of complex num-
ber field, it is now clear that we have a generalisation of the differential
operator 27 o d = D on R2. We may replace C & R? by C" or the structure
group U(1) by U(n). Let (z,---,2,) be the standard coordinates of C".
Then, for a C-valued function f, we define a system of differential operators:

= 0 0
Of = —=—f ... . — ).
f ( 621 f ) ) a—zn f )
In an invariant way, we regard C* as R?" with a complex structure J. The
complex structure J can be extended to a complex linear transformation on

the complexified vector space C** = R?" ®g C. As before, we obtain the
eigenspaces of J:

C(l,o) = {v e C*

Jv = \/——lv} , Cony = {v eC™|Jv= ——\/:—lv}

and an isomorphism C" = C(;5). Let C™ be the dual space of C*. Since the
dual space has also a natural complex structure, we obtain in a similar way

et = {pec™|1p=v=Ts}, €O ={pec™|1s=-v=Tp}

When we use coordinates 21, , 2, on C", the basis of C:?) (resp. C@:V)
consists of

dzy,- -+ ,dz, (resp.dzy,---,dz,).
Then the differential of f is expressed as:

—~ of = Of
df = Zl gz—,;dZi + Zl B—idz,

We can also define the orthogonal projection 7 : C** — C®Y. It can be
shown that

0f =modf
Although 20 = D is an elliptic operator in the case n = 1, higher dimensional
analogue 8 is not an elliptic operator when n > 2. But we have an elliptic
complex. The complex vector space generated by dz;, A --- A dz;, (resp.

dZi, \--- AdZ;, ) is denoted by AP° (resp. A™?). We can consider a k-form ¢
of bidegree (p, q):

¢ = E ¢’i1,"~,’5p;.'i1“',jqdzi1 Ao A dZip A dfjl A A dzjq,
ptg=k
0Si1<<ipSn
05j1<<jgSn
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where @, ... i, ;. j, is a function on C**. Since
d¢i1,“- fpad1edg = azi¢i1,“',’ip,j1"-,jq dzi -+ 87‘- (}5,‘1,... jipsd1 v dzj,

we have a differential of ¢:
d¢ = Z(Zazicbih...,ipdl...,jqdz,- A dZ,'l A< A dz,-P A dz,-l A A dqu
=1

n
+ Z 6Ej¢i11"'1ip7jl"'yjqd§j A dz,;l A A dZ,;p A dE,-, JANRERIAN dijq)

=1

Hence, we can also define
86 = 00y, ipjr g N2y A+ Ndziy AdZiy A+ - A dZ;,.

Note that

n
a¢i1,...,ip,jl...,jq = E azquil,...’ip,jl...,jquj,

j=1

which is already defined. Consequently, we obtain a generalisation of a differ-
ential 0 for a function to a differential for a k-form which is denoted by the
same symbol 0. By definition, 08 = 0. We use 0 to get an elliptic complex:

0— Qpa B qpatt 2, B ey,

where
QP9 = D(AP9)

In the case of the field of quaternions, H* = R*" can be taken as a gen-
eralisation in an obvious sense [8]. The group Sp(1) x Sp(1) is replaced by
Sp(l) x Sp(n). We also denote by E the standard representation of Sp(n)
(E C2“ =~ H"). Therefore

R~ (HQE)R.
Now we define a differential operator D : I'(H) — I'(E) as
D:T(H) 4THQHRE) =T ((Co S*H) ®E) = I'(E)
[9]. We have another differential operator D : I'(H) — I'(S’H ® E) as
D:TH) YTHQHQE) =T ((Co $°H) ®E) -2 I'(S’HQE).
Using the Clebsch-Gordan formula, we obtain

H® SPH = SP'H @ SPHH.

81
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Combined with an algebraic homomorphism : EQAE — EQ(QIE) — AIFIE,
we have two extensions of differential operators D and D:

D:T(S’"H® AE) ST (SPH® AE @ HQ E)

I ((SPHR H) ® (ME®E)) ™5 T (SP'H® AT'E)
D:T(SPH® AE) ST (SPH® AMEQ@ HQ E)

~T ((SPH @ H) ® (AE ® E)) ™5 T (SPHH @ AT'E)

Here D is called a quaternion-Dirac operator and D is called a twistor oper-
ator.

We also obtain an elliptic complex:
0 2C®R"™) HTHRE) D I(SPHR A’E) D - - -
D T(S"H® AE) B - B T(S™H ® ATE) — 0.

3. GENERALISATION II

We have already found linear differential operators. Here we consider a
non-linear problem which relates to our differential operators.

‘For our purpose, we replace a vector valued function or form by a matirix
valued function or form such that

A = Aldl'l + -4 Andar:n on Rn,
where
A; € C(r) := {r x r matrices over C}.
We introduce a new differentiation V:

0

- 8.’1,‘,'

which acts on C"-valued function. Although d*> = 0 which means that 8;0; =
9;0;, we have V2 # 0. In fact,

[V;‘, VJ] = ViVj — V,-V,- = 8,-Aj - 63Az + [A,',AJ']

V=d+A, V,=0,+A4; 0

In this way, we obtain a curvature 2-form or a gauge field F' which associates
to A which is called the connection form or the gauge potential:

F= ZFijdxi A d.’Dj, Fij = G,AJ - 6]'14,; + [A,', A]]
1Y)
Note that F' is a non-linear function of a given A. Finally, we can extend

the operator V to the covariant exterior differentiation d¥ which acts on
C"-valued k-forms. For a C"-valued k-form

Gi ... i dzt A+ - Ads™ e TN @ CT) = QF(CT),
»tHtk
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we define
¥ (i, ud™ Ao Adz™) = (V.. ) Adz™ A= Adz'

= (Z v,-¢,-1,..,,,-kd:c,-) Adz? A -+ Adz € QFFH(CT).
i=1 .

Then it is easily shown that
d¥d¥s = Fs fors € [(C7) = Q%C"), (dVd'¥ =F)
When f is a function, then we have
dVdY fs = fdVd's,
and so, F' can be regarded as
F € Q% (End(C")).
3.1. C-case. We begin with a vector space C" as a base space. For a given

gauge potential A = "7 | (A, dz + Az, dz;) and a C" (a fibre) -valued (p, g)-
form ¢ € QP9(C") := T (AP? ® C"), we have

dV¢ € QPHL(CT) @ QPITEH(CT),
and so, we can define in an obvious way,
8v¢ = md"¢ € PPTIUCT), B ¢ =md’$ € QPITH(C).
Consider a differential equation

(+) 3 s =0,
for a C-valued function s. If such an s exists, then
579 s=0,

which means
F%2¢ = 0.
Note that

F € Q% (End(C")) = Q?° (End(C")) @ Q"' (End(C)) @ Q%% (End(C")).
Indeed, the condition
F%? =0

is the integrability condition for the equation (*) [1]. If F*? = 0 is satisfied,
then we can find locally enough solutions for (x), which provide a basis of
C" at each point of C". In other words, there exist locally defined sq,--- , s,
which satisfy (*) and span the vector space C, at each point z € C". Hence
C? can be thought as varying holomorphically with 2. In this way, we ob-
tain a holomorphic vector bundle. Then the frame s;,--- ,s, is called the
holomorphic gauge.

As a consequence, a connection form A satisfying F*? = 0 gives a holo-
morphic vector bundle. Since

F‘i(;’z = -giAij - -a—jAEg + [A'iﬂ A'zj] ’

83
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the equation F%% = 0 is a non-linear equation of the first order and we can
find the Cauchy-Riemann operator as the linearisation:

3'B=0, for Be Q% (End(C")).

Using again 3°9° = FO = 0, we have an elliptic complex:

=V

- 5Y .
0 — Q% (End(C")) 2 %! (End(C")) 2 -+ L5 Q%" (End(C")) — o.

3.2. H-case. Let R*" = (H®E)® be the vector space acted by Sp(l) -
Sp(n) = Sp(1) x Sp(n)/Z?. Although Q! = I'(H ® E) is irreducible, A2 =
A?*(H ® E) can be decomposed into irreducible components:

(3.2.1) A2 = (S’H ® A’E) @ (N’H ® S°E).
We define the orthogonal projection 7 as:
7: A2 5 SPH® A’E.

We consider a connection form A and its curvature 2-form F € Q%(EndC").
Then the equation

() ToF =0

is a non-linear differential equation of the first order for A. By analogy with
the C-case, we call a vector bundle with such a connection form (7 o F' = 0)
quaternion-holomorphic vector bundle (for example, see [5]).

For brevity, we focus our attention on the case n = 1. Then the decompo-
sition (3.2.1) reduces to:

A= AL A,
where a basis of each space is
dzo A dzi + dzy A dzs dxo A dzy — dzo A dz3
/\+ . d.’l?o A d.’.Ug - d.'IIl A d.’L‘3 At d.’L'() A dIL'z + d.’Il A dxg
dIEo A d.'IJ3 -+ d.’l?l N d$2, dl'o AN d$3 - dﬂ?l A d(l}z.

Then the equation (**) is written down as:
Ft=0

which is called the anti-self-dual equation [1].
A linearisation of the equation (*x) is the composition:

Q! (End(C7)) =T (End(C") ® HR E) <5 0? (End(C"))
5T (End(C") ® S’H® A’E),

and so, we obtain the twistor operator DV = mod" coupled to the connection
A. We also have

DYDY =DV =70d'V =m0 F =0
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for a quaternionic holomorphic vector bundle. Consequently, there exists an
elliptic complex:

0 — T (End(C7)) %5 T (H® E ® End(C7)) 25 T (S?H ® A’E ® End(C"))
DV DY 2n 2n T
... > T (S*™H® A*E ® End(C")) — 0.

In particular, in the 4-dimensional case, our elliptic complex is reduced to:

0 — T (End(C")) <5 Q! (End(CT)) 25 QF (End(CT)) — 0,
which is called the Atiyah-Hitchin-Singer complex [1].

4. GENERALISATION III

For the first generalisation, after the identification Spin(2) = U(1) and
Spin(4) 2 Sp(1) x Sp(1), the groups U(1) and Sp(1) x Sp(1) are replaced by
U(n) and Sp(1) x Sp(n), respectively. We obtained differential operators of
Dirac types according to the structure groups.

In the second process of a generalisation, we replace a function by a C'-
valued function or a matrix valued function. As a consequence, we had a
vector bundle, a connection form and a curvature form. Then we found
non-linear differential equations which relate to the “Dirac equations” via
linearisation.

Here we concern a manifold with a structure group U(n) or Sp(1) x Sp(n)
and a vector bundle with a connection.

The manifold with a structure group U(n) is called a Kahler manifold.
The typical example is the complex projective line CP* = S2.

The tangent space of a Kihler manifold has a complex structure and can
be regarded as a complex vector space with a Hermitian inner product. The
parallel transport makes sense, because a Kahler manifold is also a Riemann
manifold. Then, the complex structure and the Hermitian metric are pre-
served by the parallel transport.

Since our construction in the previous sections is purely local in nature, the
Cauchy-Riemann operator 0 and a holomorphic vector bundle can be defined
on a Kahler manifold.

We pay an attention on a complex line bundle L over a compact Kéhler
manifold M and the resulting elliptic complex:

=V

10— Q¥ (M; L) 5—°v> Q% (M; L) o, E;;‘, Q%" (M;L) - 0.
Then we can consider the cohomology |
HY(M;L):= Ker'gqv/lmgqv_l
of the elliptic complex. .

Theorem 4.1. (Kodaira vanishing theorem) (for example, see [2]) If the
holomorphic line bundle L is negative in some sense, then we have

HI(M;L)=0 for ¢g<n-1

85
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Finally, a manifold with a structure group Sp(1) - Sp(n) concerns us. (As
seen previously, the group Sp(1) x Sp(n) does not act on R* effectively, but
Sp(1) - Sp(n) really acts effectively.) Such a manifold is called a quaternion-
Kahler manifold [8]. The typical example of a quaternion-Kihler manifold
is the quaternion projective line HP! & §4,

Let V be a quaternion-holomorphic vector bundle over a compact quater-
nion Kahler manifold M. (Note that we do not suppose that V is a line
bundle). A related elliptic complex is

av DY 2 2
0T (M;V) - T(M;HQE®V) — T (M;S’HRA’EQ V)

—-D—v>---KI‘(M;S”H®/\”]E®V)2V—)~-E;F(M;S%H@/\?"E(gv)
- 0. ,

We again consider the cohomology of the elliptic complex:
HY(M;V) :=KerDV/ImD".

Theorem 4.2. ([3](4-dimensional case), [6] and [7]) If a quaternion-Kdhler
manifold has a positive scalar curvature, then we have

HY(M;V)=0 for g2n+1.
If a quaternion-Kdhler manifold has a negative scalar curvature, then we have
HY(M;V)=0 for 1SqSn+1.
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