Graphical Solution of = f(x, y).
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The problem of this paper is to investigate the integral curves
defined by differential equations of the simplest form

in which f(x, y) is a rational function of x and .

Equations of this form occur frequently in applied mathematics,
and were first treated by Profs. Briot and Bouquet'. Subsequently
Prof. Poincaré® gave a complete and elegant treatment. Both, how-
ever, being based upon the theory of analytic functions of complex
variables, are a little complicated.

I have tried to consider the problem from the standpoint of real
variables, and, by the help of the ideas of these professors, especially
Prof. Poincaré’s idea of consecutive point, to obtain a method of treat-
ment. In principle the endeavour is to shew the outline of integral
curves by the use of slope and concavity, just as is done in tracing
curves defined by equations between x» and y.

1. General Theory of % = f(x,).

By the famous theorem of Cauchy-Lipschitz it is known that, if
J{(#,») is continuous and —gi is limited in the neighbourhood of a point

%, ¥, there exists one integral of the differential equation

(1) Y =),

which passes through the point o, Yor

1 7.d PEcole Polytech. 36, 133-198 (1856).
2 Sur les courbes définies par les équation differentielle (J. Liouville 1881, 1882 and
1885).
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In particular, when f(x,y) is a rational function (1) may be

written in the form (
&y _ P(x7)
(2) dx - Q(x,]’) »

where P(x,y) and Q(x,y) are polynomials of x and p, which have no
common factor; and we shall treat hereafter the differential equations
of this form.

In equation (2), the existence-theorem applies at any point where
O(x,y) does not’ vanish. Though at a point x,, 3, f(#, ») vanishes, if
P(x,, ,) &= 0, considering y as the independent variable, the differential

equation
dz _ Oz, p)

&y P(xy)

satisfies the Cauchy-Lipschitz’s condition at x, 7,; and the existence
of a single integral curve through the point is assured. Thus passing
through any point where P(x,7), O(x,7) do not vanish at the same
time there is one integral curve of (2).

The points where P(x,7) and Q(#,7) do not vanish at the same
time are called ordinary points; and the exceptional points are called
singular points of the diffevential equation (2). The singular points are
given by the simultaneous equations

(3) Plx,y) =0, Qx,y)=o0

and there is a finite number of such points in the plane.
Denoting the integral curve which passes through an ordinary
point by C(a,3,), it may be expressed analytically by

(4) C(XO’J/()) H { r = ?(Z, xo,y“)'
Yy = 9'(t N ,1‘0']’0)

where ¢ and ¢ are one-valued functions which are continuous with the

derivatives ¢/, ¢/ and satisfy the equation

h!
i =I.9)

in a certain interval (73, 7;) of # and the initial conditions
¢(t; 20 30) = 20, ¢4 %o 30) = 2o

7, being a fixed value in (73, 75).



Graphical Solution, elc. 153

The functions ¢, ¢ are continuous not only of # but also of the para-
meters' z, 7, in any domain (¢, &, 7) which contains 2=4, § =z, =y,
and does not contain any singular point, provided that for any set of
values ¢,§,% in D the functions ¢(z;§, %), ¢(¢; €, 9) do not represent any
singular point. This means that the integral curve moves continuously
with the initial point q, 7. _ .
From the continuity of ¢/ and ¢/ it follows that the integral
curve C(x,, p,) is rectifiable. If we take the arc length s measured from
%, 7, on a direction as parameter, the equations to the curve will be-
come
e Cwpy): 2=¢(s; 2 30), y=¢(s; 2070) $=5=s
of which we have S
LS 9), (P @i =

and 5‘7(0 3 xO)_J/O) = Xy ¢(O s %o o) = Yo

As an integral curve can not stop at any ordinary point, it may
be exténded on both sides so long as it does not arrive at a singular
point. The curve so extended as possible on both sides is called a
‘complete characteristic. Of characteristics the following properties are
reckoned : '

1) They can not have any singular point in the interior, and
their endpoints, if they exist, are singular;

2) They can not have any branch-point in the interior;

3) No two characteristics can have a point in common, which
is not an endpoint of both ;

4) The segment between any two interior points of a character-
istic has a finite length. '

That form of characteristic which is constructed through an ordi-
nary point by possible extension on one side of the point is called
a semi-chavacteristic.  Assuming a direction, two semi-characteristics
through an ordinary point are distinguished as progressive and regressive.

Of ‘a semi-characteristic the following four forms are to be con-
sidered :

i) The continuation may finally arrive at a singular point and
stop at that point;

ii) It may return again to the point of starting. In this case the
curve is closed and is called a cyclic characteristic.

1 E. Picard, Traite d’analyse, II, p. 333- (1905).

N
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iii) It may go to an infinite distance;

iv) The semi-characteristic may have no second endpoint, how-
ever we may continue the extension, the curve itself remaining in a
finite domain. This form will be considered later. _'

2. Slope and Concavity defined by a Differential
Equation.

In tracing a curve defined by an equation between x and y, the
general principle is due to the investigation of 1) the existence of the

curve, 2) %% i.e. the slope of the curve, 3) a7 ie. the concavity

dx?

of the curve, 4) the nature of multiple points and 5) the forms of in-
definitely distant branches. This consideration is directly applied also
to the discussion of curves defined by a differential equation.

In the first place we shall consider the slope of characteristics
defined by )

@y _ Pxy)

2 = = = f(x, 9).
€) & = Oy T

Divide the points of the entire plane into five aggregates, accord-
ing as the value of f(z,y) is I positive, II negative, III zero, IV infi-
nite or V indeterminate, then

at points of I the line-elements are increasing,

T | . ,» decreasing,
’ 3y ”» 111 " » vy " parallel to the x-axis,
’1 3 13 v i) ’ e » " vy ’ y—axis

and the points of V are singular points of the differential equation.
Aggregates I and II consist of points in one or more domains, III and
IV of points on curves and isolated points and V of a finite number
of points.
Next to find the concavity of the characteristics from the equa-
tion (2), deduce the second derivative ;
dy _ L+ PO B - Q)= PQ)/

- 4 _©
(5) & W*‘@/‘f(xd/) = 19%

and, denoting the expression on the right of (5) by F(x,y), we have

(S)a d—x‘f = F(x,y),



Graphical Solution, etc. ) 155

where the function F(x,7) is evidently rational of z and y.

Again divide the points in the plane into aggregates, according
as the value of F(x,y) at x,7 is VI positive, VII negative or VIII
zero. Then

at points of VI the characteristics are concave upwards,
w oo VIL " ” " downwards
and w . . VI " have contact of higher

order than the first, with tangent lines at those points. For example,
a point of VIII may be an inflexional point of the characteristic through
that point.

By the above two steps the entire plane will have been divided
into the following aggregates of points :

a) Four kinds of domains where

) f>, F>o,il) f>0, F<o,ii) f<oF<o,iv) f<o0, F<o;

b) Three kinds of curves where

. v) (6) f(x,y) =0 or Pxy) =o0,
vi) (7) fxy) == or QOxy) =o,
vii) (8) F(zy)=o0 or QP/+POP/~0Q/)-PQ/ =o0;

c) viil) Finite number of singular points where P and @ vanish
at the same time.

When the configuration of slope and concavity is known, we may
trace the outline of characteristics excluded the neighbourhoods of the
singular points.

In tracing the characteristics it is important to know how the curve
(8) cuts.the characteristics. Denoting by x,5, a point on (8), at that

/

point the slope of this curve is (— F’G) while that of the char-
Fy’ X1

acteristic is f(x;, ,). Hence if

/ ’
(9) Lr—= Zjﬁl () = — {______—“E -;-yl,:y f}xl,y1
is positive the characteristic, in passing through the point (x,, 3,) from
the left to the right, cuts F=o0 from the upper side to the lower; if
it is negative, from the lower to the upper, and, finally, if it is zero,
the curve (8) and the characteristic have the same line-elements at
the point (#,, 3,).
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3. Direction Angles and Characteristic Angles.

Before going into the consideration of characteristics in the neigh-
bourhood of a singular point, certain preliminary conceptions should
be introduced. . .

Regular curve. By a regular (open) curve is meant an unclosed
Jordan curve which has a tangent line everywhere, that moves conti-
nuously with the point on the curve.

The analytical expression of a regular curve is

(10) x=00, y=¥9) L=t=T

in which @(f), ¥(#) aud their derivatives @'(¢), ¥'(¢) are continuous
and satisfy the conditions

(@'Y +H{T@)y} >0 L=t=T,
and {(0(5‘1)‘ @(l‘:)}z'i'{ g)‘(m_ q]‘(l‘z)}z >0

for any two different values #, 4, in (7}, 75).

Directed line. A directed line is a straight linc which has a fixed
positive sense, Of a directed line two sides are distinguished, namely
the right and the left sides.

Let there be two directed lines L, and L. Assuming the positive
sense for measuring the angle counterclockwise, the angle between the
two lines may be determined up to a multiple of 27. This ambiguity
is removed when multiples of 27 are left out of account; and then
the measure is expressed by a value between o and 2z, The angle
between Z, and L lies in (o, 7) when L is directed leftwards; other-
wise, the angle lies in (7, 27).

The angle between the positive #-axis and a directed line L is
called the direction angle of the line L. . '

The conception of senses, sides and direction angles is also’ made
use of in connection with regular curves and line-elements.

To apply these to the line-elements defined by a differential equa-
tion of the form (2), take an ordinary point A4 (%,,), and for the
direction angle' at that point assign a fixed one, say «,, of the angles
which satisfy

cos o = g Q(f%y]’ﬂ) ., sina = "P(ﬂv’od/o)
V{P(xo»yo)}z'*‘ {O(x0, 70) V* W/(P(xo, y0)>z+ {Q(xo,_yo)}2

in which for ¢ one of the values 1 or —1 is to be given at will. To
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define the direction angle at an arbitrary ordinary point M(xy, 3,), as-
sume a curve yy connecting M, and A4, which does not contain any
singular point of the differential equation. Then the angle a defined by

([l) porr wCOS O = RN Q (x'yL, sin o = o\ET) F(x,y)
VPO VPIFO

varies continuously with the point M (#, y) on the curvelrl, starting
from the initial value «,. The final angle ¢; at 34 is defined as the
complete divection angle at M. :

If instead of yy another curve y, which connects the same points
M, M is taken, the corresponding complete direction angle at A4 will
be determined. But since cos ay;=cos a,, sin ¢;=sin a, the two complete
direction angles «y, @, differ at most by a multiple of 2n. Thus the
complete angle a at a point M (x,y) depends not only upon the co-
ordinates x,y but also upon the curve which combines the point with
the initial point A4,

To make the direction angle a one-valued function of the co-
ordinates we have only to leave any integral multiple of 27 out of
consideration. This measure of the direction angle is called the simple
divection angle.

Generally if two ordinary points NV, V;, of which the complete
angle at /V; is given, be connected by two curves 7/, 7", two corres-
ponding direction angles at /; are given immediately., The difference of
these angles is an integral multiple of 27; and is the change of the

complete direction angle when
oA _~7  the line-element makes a com-
/ - N, plete revolution moving along

the closed curve y formed by
/ the two curves ¢/, 7" (Fig. 1).
It is clear that the difference
depends upon the form of the
closed curve y and the sense

of revolution but not upon the

Fig. 1. starting point. Assuming the

sense of revolution counter-

clockwise, the change of the complete direction angle, which arises

from a complete revolution along y is called the characteristic angle of
the closed curve y. 1t is an integral multiple of 2z.
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Suppose within and on a closed curve 7 there is no singular point,
then the complete direction angle « defined by (11) is one-valued and
continuous within and on the closed curve y. The characteristic angle
of the cycle is therefore zero. Thus we have:

Theoven 1. If the characteristic angle of a closed curve is not zevo,
in the interior of the curve there exists at least one singular point.

As the characteristic angle of a cyclic characteristic is not zero,
being 27, it follows:

Cor. In the interior of a cyclic characteristic, there exists at least
one singular point.

Let 7,7, be any two closed curves which contain only one singu-
lar point S in the interior, then it is easily shewn that the character-
istic angles of 7, and 7, are equal. Hence the characteristic angle of
such a closed curve is proper to the point S, and is called the c/ar-
acteristic angle of the singular point S.

Without difficulty we may further conclude that the characteristic
angle of any closed curve is the sum of the characteristic angles be-
longing to the singular points within the closed curve.

4, Consecutive and Contact Points.

Iet two regular curves 7; and 7, intersect at only two points A4,
M,, then the two segments of the curves intercepted between the points,
will form a closed curve which divides the entire plane into two parts,
interior and exterior domains.

The form of the intersection of the curves is of two types: Type
I, in which all the four extensions of the segments of r, 7, at the ends
M, M, lie in one and the same domain, exterior (Fig. 2) or interior
(Fig. 3), Type II in which the two extensions of the segments at 3
lie in one domain while those at the second endpoint A4 lie in the
other domain (Fig. 4).

In a plane where directed line-elements are defined by (11), con-
sider a regular directed curve

7y o x=00), y=¥0 h=:t=1,
which passes none of the singular points of the differential equation

a4y Plry)

e Qx,p)

1 J. Liouville, p. 409 (1881),
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M, s Mg M.

Fig. 3. Fig. 4.

Fig. 2.

Take a point M (#) on the curve 7 and let C'(7) be the progressive
semi-characteristic through the point 47 This may be expressed by

C): »=X(s,8), y=Y(s,0) s=o,

where s is the arc length measured from M/ on the positive direction
and the functions X, V satisfy the relations ’

X+ Yy =1,
X(0,%) = @(%), Yo, = P().

When 7 and C(#) touch each other at A the curve y is said to
have a contact at the point M. In particular the point M is called a
contact point of the first kind when y is cut by C(7) at 4, and of the
second kind when, in the neighbourhood of M, C(#) lies on one side of 7.

When these two curves have other common points besides 47, if
in a neighbourhood of A7, y and C(t) have no other common point, on
the curve C(¢) there will be the first point V which is common to 7.
The point WV is called the consecutive point of M with regard to the
curve y. When, instead of the progressive semi-characteristic, the re-
gressive semi-characteristic Cy(#) through M/ is considered, the first point
on Cy(#) which is common with y is called the preceeding point of M.

Suppose that a point 4/ on the curve y has the consecutive point
WV and the two curves ¥ and C'(#) do not touch at 4/ and AV, then the
two segments of the curves will have an intersection of the type I or
II.  Accordingly the point AV is called the consecutive point of the
first or second kind.
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We can now prove:
Theorem 2. If a point M on a regular curve v which docs not

contain any singular point of a differential equation gy— = f(x,») lave
x

the consecutive point N of the first kind, then on the segment of v be-
tween M, N there exists at least one contact point.

Proof. Iet ds be the directed line-element de-
fined by

cosu = Q sin ¢ = ——L
VvV P+ (P

VPG
To make y a directed curve assign a positive sense.
Suppose at M ds is directed leftwards of ¥, then as
NV is the consecutive point of the first kind, at that
point ds is directed rightwards of y. Denote by 8
the simple measure of the angle between the curve
y and the line-element &s on 7, then

o< Oy <mat Mand n < 0y <27 at .

Fig. 5. As the angle 6 varies continuously from @, to Oy

when &s moves along 7, it must take the value o or

7 at a certain point & of the segment y,y. K& is a point of contact
of the curve 7.

5. Applications of the Theory of Contact Points.

There are numerous applications of the theory of contact points
to the differential equation (2).

Theovem 3. Any algebraic curve which is not a chavacteristic of a
differential equation (2) can not have indefinitely many contact points.

Proof. Let y, be the curve defined by an irreducible algebraic
equation A(x, y)==0. The contact points of this curve are then given
by the simultaneous equations

Ad=o0, %4 p2d _,
dx oy

As these two equations are algebraic there is a finite number of solu-
tions. Specially if A(x,y) is of the m™ degree and f(#,y) is of the »
degree, the curve 7, may have at most »{(m—1)+n} contact points.

Theorem 4. If a semi-characteristic of (2) has indefinitely many
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common points with an algebraic curve whick is not a characteristic, it
1s a spiral. ’ '

Proof. Let € be a semi-characteristic which has indefinitely many
points in common with an algebraic curve y,. As y, may have a
finite number of branch points and singular points of the differential
equation, we may determine such a segment yyg, that has 1) indefi-
nitely many points, say {M}, belonging to C, of which A is a limiting
point ; 2) no branch point, no singular point and no contact point in
the interior.

Take a point A4 of {M}, then on the arc Taznv there is neces-
sarily a consecutive or preceeding point of M. To fix the idea,
suppose that there is a consecutive point of M|, call it A4, then since
TMLN contains no contact point, by theorem 2, 34, is a consecutive
point of the second kind. We know also that the arc 7 besides

M, M, contains no other point belonging
to {M}. It is also clear that the point
/ M. has a consecutive point of the second
kind with regard to the curve yyg, call it
N M. My lies in Tayn. Similarly M has
a consecutive point A4, on the arc Tagw;
and so on.

M. Thus proceeding we obtain an infinite
sequence of points My, M, ... M, My, ...
converging to XV, of which each is the
consecutive point of the second kind of the
just preceeding. Thus it is shewn that

M the characteristic C is really a spiral.

K 7 As each segment Cu; ., of the

Fig. 6. characteristic C lies on the same sides of

: the preceeding segments Caz; a5, (F=T1,
2,...2—1), the arc Ca; M,y will converge to the point V or to a
curve Cy through V.

In the first case the point V is a singular point, for each cycle
2, which consists of the segments Ca; 24, and T M, contains NV
and the characteristic angle of 4; is 27 (§ 3).

In the second case the limiting curve C, is a closed one. For,
as the consecutive point of A7 is My, and lim M, = lim My, = IV,
the curve (3, which is the limiting position B?wam Mijl,_):tarting from
the point N must return to that point. In the neighbourhood of a
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Fig. 7. Fig. 8.

segment of (7, which does not contain any singular point, the curves

CM; My, converge uniformly and therefore the line-element of €7 at

any ordinary point satisfies the differential equation. This shews that

Cy is an integral curve. We shall call the curve (3, following Prof.

Poincaré, a limiting cycle. When ( does not pass through any sin-

gular point, it is a cyclic characteristic, but when it passes through

singular points it may consist of a finite number of loops and a finite

number of characteristics connecting two of the singular points as shewn
in the figure.!

v We have thus established :

Theovem 5. Any semi-charac-

teristic of spiral form converges to

a lmiting cycle or o a singular

point.

Cw \ Theovem 6. Any semi-charac-
tevistic whick has an infinite num-
ber of extreme values of x or y, or
indefinitely many inflexional points
is a spwal.

Proof. That a semi-character-
istic ¢ has an infinite number of

extreme values of y means that the two curves C and P(x,y)=0 have

Fig. 9.

1 See p. 180.
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indefinitely many points in common. Hence, by theorem 4, Cis a spiral.
The other cases are proved similarly.

We can now determine the form of the semi-characteristic (iv)
introduced in § 1.

Theorem 7. A semi-characteristic whick does not go to an infinite
distance or to any singular point is a spiral converging to a limiting cycle.

Proof. Had the semi-characteristic a limited arc-length, it must
converge to a limiting point which is necessarily a singular point. As
this case is rejected the curve must have an infinite arc-length. Hence
it follows that the characteristic has an infinite number of extreme
values of x or y; and thus it must be a spiral converging to a limit-
ing cycle.

6. Possible Directions at Singular Points.

The first question which arises in the discussion of characteristics
near a singular point .S is whether there will be a characteristic which
passes through the point S and has a definite direction at that point.

As the first step we investigate the directions along which there
may exist an integral curve. Such directions are called possible direc-
tions at the singular point S.

For the purpose transform the origin to the singular point, then

we have
‘ @ BAxy)
12 2 _ Ak y)
(12) dx Olx. 3)

where Z and (; are polynomials which satisfy
Po,0) =0, (io,0)=o0.

Or, arranging the terms of A, ¢; according to the degree of x,y, itis
written in the form

(13) (Z’J/~ Hm(x:y)""Hmﬁ-l(x)J/)'F...

dr K, @ 2)+ Ko (%,7) + ...

where A (#,7) and K (x,y) are homogeneous integral expressions of
A" degree of x and y.

Now suppose that there exists a characteristic which passes through
the origin and has a determinate slope « at that point, then we have

& ) o P(z,7)
L g = 10 (x,7)

Using this relation we may find the possible directions.

(14) limyeyo % =
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Case m > n. Wirite (13) in the form

_ X1, u)+ 2 H s (1, #) + )
K (1, 2)+ 2K, (1, 0)+ ...

SN

where # = y;; then, by making x converge to zero, by (14) we have

a K(1,0) =0
if @ is finite.
Next, suppose that there exists a characteristic which has the slope
o at the origin. Then, writing (13) in the form
dv _ K (v, 1)+y K, (v, D+ ... x

’ V=,

@y P H0 1) Y Heao, 1)+ 00 B

and making y converge to zero, we obtain
K,(0,1) =o.
Thus, when s > #, the possible slopes are
1) a=o0, 2) roots of K,(1,a)=0 and 3) a=c when K,(0, I)=0.
Case » = n. Again put % = #, then

ﬂ — H;::(I) u)+me+1(I) u)+“'
dx K (1, )+ 2K, (1, 20) + ...

whence, by making x converge to zero, we obtain

a K,(1,0) = H,(1,0)
if a is finite.

If the differential equation has any characteristic which touches
the yp-axis at origin, as in case m > », we have

K 0, 1) = o.

When m=n, the possible slopes at origin are 1) roots of
a K, (1, @)~ H,(1,0)=0, 2) a=w when K,(0, 1)=o0.

Finally, the case # <7 may be reduced to the case m> n con-

sidering the equation 4 _ —Q—‘ '

dy P,
In short the possible directions of the equation (13) are the roots of
(13) sin @ K(cos 0, sin ) — cos 8 H[cos 8, sin ) = o,

where s is the lowest degree of the polynomials A2 and Q.
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7. Criterions for Existence of Characteristics which have a
Definite Possible Direction at a Singular Point.

We have shewn that a characteristic which has a determinate
direction at a.singular point .S may exist only in a possible direction.
We inquire conversely whether there will really exist a characteristic
in a given possible direction. i

To solve this question let ASH be an angle which contains a
possible direction o and does not contain any other possible direction.
[The case where all directions are possible is treated later].

Consider a sector damain D, bounded by the sides SA, SB of the
angle and a circle described with the point S as center and radius
R, and suppose that R is chosen so small that in D no singular point
is contained and on the side SA4 no contact point lies.

Let M be a point on §A4 and let

B C(M) be the semi-characteristic through

M directed leftwards of SA. Then C(M)

has another intersection with the bound-

M, ary of D. For if C(M) lay entirely

in the interior of ), it would be a

spiral converging to a limiting cycle

(theorem 7). Consequently, by theorem

1, in the interior of [ there must exist

Fig. 1o. a singular point. But this is contrary

to the supposition. Thus there exists

a point A at which C(3/) cuts the boundary of D for the first time.
We shall use again the term consecutive point for 4.

As the side SA contains no contact point, the consecutive point
MM lies on the broken line SBA.

IO
point is the singular point S. Then C(AM/) is surely a characteristic

Suppose on S4 there exists a point M’ whose consecutive

which has the slope a at S. For, since C(#’) can not make indefi-
nitely many oscillations (theorem 6), it must have a definite direction
at S; and in D, as there is only one possible direction a«, C(4/") must
have the slope a at that point. In this case any characteristic C(V)
of which N is a point on the segment SA7” has the slope a at .S (Fig. 11).

2° Suppose, for a sufficiently small R, all the consecutive points
of M's lie on the segment AB, then evidently li‘gs C(M) is a char-

acteristic in question (Fig. 12).
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Fig. 12.

B 3° Suppose, however small R

may be taken, on SA there is a

My point 4/ whose consecutive point

M, lies on the side SAB, then in D

8 @ there is no characteristic in question
(Fig. 13).

M Here we remark that the seg-
ment of the circle AB and the sides
SA, SR may be replaced by suitable
curves.

The above criterion may be ex-

A
Fig. 13.

pressed in a more convenient form as follow :

Critevion 1. Let a be a possible direction at the singular point
S(0,0) of the differential equation (12). Let D[(a—0)x =y = (a+ )z,
0 < x=X] be a domain where f(x,») is continuous and in which
no other possible direction is contained. For simplicity let the
expression iZ%;ﬂ—f(:c, @(x)) be denoted by y(x, @(x)).

Then a) if y(x, (a—3d)x) <o, y(x, (a+38)x) > o for all x, 0 <r=X;
(= X), there exists at least one characteristic that has the slope a at
S b) if y(x, (a—0)x) > o, y(x, (e+0d)x) <o for all z, o<x =X, all
the characteristics in [(¢—0)x = y = (a+6) #, 0 < x == X] pass through
S and have the slope a at that point; ¢) let y(x, (a—0)x), ¥(z, (a+0)%x)
have the same sign for all x, 0 < x = X,, say positive. If there exists
a system of curves

7@ =00, 0<c=q

ending at the lines y=(a—0) x, y=(a+0) », such that the curve
converges to S when ¢ converges to zero, and ¥(x, @ (x,¢))>o0
(0 < ¢=1¢), in D there is no characteristic through S.
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Proof. Consider the domain Dif(a—0) v== y = (¢ + )z, 0=2r= X]]
and let ¢(x;é&,(e—0)§) be the upper semi-characteristic through the
point &, (a—0) & (0 < & < X;). By the supposition a), it is clear that the
consecutive point of x=§, y=(a—3)§, with regard to the boundary of
Dy, lies on the side r=.X, (a—0)X; =y = (a+0)X;; hence the
characteristic lim ¢(x;§, (a—0) £) is one in question.

290

The other two propositions are proved similarly,

Criterion 2. Let y,=¢(%), 3,=d(x) be any two different curves
through the same singular point S(x, 5,) of % = f(#,7), and suppose
di(x) < dox), H=x=X. Then, ifin D[,(x) =y =¢s(2), 2o < r=X]
T is negative, in /) there can not exist two c¢haracteristics which
pass through S. -

Proof. Suppose, if possible, there were two such characteristics
7=o¢(x) and y=¢,(x) and let

O < ¢, Xy < ZézYl(éX)
Then ol — ¢/ = f(7, ¢) —f(# @) =(p:— )./} (%, 7),
where 7 is a certain value between ¢, and ¢,.

Therefore ¢,/—¢,’ < 0 when x, < #= X,. and consequently by the
condition ¢,(0) = ¢,(0) = y, we should have

0o(2) < @i2), M <=
which is contradictory.

Criterion 3. Let 3, = ¢(%), 2 = ¢y(#) be any two curves through
the same singular point S(#, ) of% = f(x,7) and let ¢y (x) < ¢sfx),
% < x=X. Then, if in D[fQx)=y=dx), v <xr=X]f(x2)
is continuous and ym is negative, where /(x,y) is the concavity func-
tion of the characteristics (§ 2), there can not exist two different char-
acteristics which pass through .S and have the same slope at S.

Proof. Were there any two such characteristics, let them be called
y=¢i(x), y=g¢yx) and suppose

o(x) < o), Mm<r=X(=X).
Then ¢ ~¢1" = F(x, ¢2) = (7, @)=(02~¢1) £/(%,7), ¢ < 5 < ¢a.
Therefore  ¢(x) < ¢(x), % < = X,; hence by
0./ (%,) = ¢/(x,), we should have
¢l (x) < @/(x), %, < x= X;, and consequently, since ¢;(x,) =g@(x)
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= y,, the relation ¢(x) < ¢u¥), % < x =L
which is contradictory. p
Criterion 4. let S(x,3,) be asingular point of —a’% = f(x,y) and

let y=¢(#) be a characteristic which satisfies ¢(x)=x ¢(x)=a. Let
y=¢(x) be a curve of which ¢@x)=r, ¢(r)y=ea and ¢(x) < ¢(2),
%, < r=2X. Then, if in D le=r=d n<r= X f(x,y) is conti-
puous and (z, ¢(#)) = ¢'(x)—/(x, ¢(x)) <o, all the characteristics
y=¢(x; & ¢(&), (m < §=X), pass through the singular point .S and

have the slope « at that point.
Proof. The left semi-char-

y=P () acteristic y = ¢(x; 5, J(E))(xr=<¢
EQ (&) through &, ¢(§) lies below the
curve and as it can not cut either
y=9(@) of the two curves, ¥ = ¢(x),
y=¢(x) in (% < x=§), it must
Fig. 14. go to -the singular point S.
From ¢(2)Z¢(x; &, §(O) =¢(2),

H=xr=2¢ and ¢'(x)=a, ¢'(x)=qa it follows ¢'(0; ¢, ¢(&§))=e.

o

8. Discussion of Particular Possible Directions.

We shall now consider separately each case of possible direc~
tions introduced in § 6.

a " H (L W)+ v H (1, 0+
Lo dr Kn(l’%)+x](n+1(l,u)+... ’

n=2
x

1° a=o0. When K,(1,0)== 0 the equation has at least one integral
on each side of the origin, which satisfies the conditions y(0)=o0, y’(0) =0.

Proof. By the conditions m—#z=1 and A,(1,0)3F 0, we may
determine positive numbers & and X such that in D[ —0x = y = oz,
0 < 2= X] f(#,9) is continuous and

y(x, 0x) = 0—f(x, 6x) > o, y(x,—0x) = —0—f(x,—0x) < 0

for all values of &, 0 < = X. Hence there exists a characteristic in
question. The existenée of such integral on the left of the origin is
proved similarly.

In the exceptional case K,(I,0)=o0, the equation may or may not
have the characteristic in question as shewn in the example.

Ex. The equation ;{l = — }x— has no integral through the origin.
¥
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ay P - # 2 .
but & = = has two integrals y = ————, y = —_—_ subject to the
== grals 5 = . 7 Subl
conditions y(0)=o0, y'(0)=o0. ‘

2° ais a root of K,(1,#)=0. The differential equation may or

may not have an integral subject to the conditions y(0) =0, y(0) = a.

=(1+8)
Y y v=2
y=9lx)
\\ / y=(-0)a
—> X
Fig. 135.
dy .28 :
. == _  (Fig. 13).
Ex iy e (Fig. 15)
3
Here f(x,y) = % and it is zero when x=0, o when y=x and

(y—»)
at any other point it is positive or negative according as x is positive
or negative. The possible slopes at the origin are a=0, a=1, and
we consider the latter.
x

Now 3w (14+0)7) = 140~ y(x, (1=9)p)=1-8— 7, in which

J is a positive constant less than 1, are positive when x is sufficiently
small. Also we have

%(#, #)=—0o when x > 0 and ¥(x, )=+ when » < o.

As y(x, (1 +06)x) and y(x, x) have different signs, in D[r=yp=
(140)x,0 < = X] X being a sufficiently small positive value, by
criterion 1 a) the equation has an integral y=¢(x) which satisfies the
conditions ¢(0)=o0, ¢’(0)=1.
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Since y(x, (1—0)x) > 0 when o < x= X, where X; is a positive
value, all the characteristics in L(I —0)r=y=¢(x), 0o <zx=X] pass
through the origin having the slope +1 at that point.

When x < o, f(x,7) is negative and there is no characteristic

which passes through the origin in the third quadrant.

3'° a =0, K0,1)=o0.

. dy 7" . . 2
Ex. 2L = _. The upper semi-characteristics ¢(x; &, &°
dx xz__y; pp ¢(2 3 3 );
§ < o, lie between the positive y-axis and the curve y=x3, x <o,
hence lim ¢(x;§,6%) is a characteristic which touches the positive
E—>0
y-axis at the origin. Below the s-axis there is no characteristic which

touches the y-axis at the origin (Fig. 16).

Y

N
\ wz_ yazo

— ;
O
\

Fig. 16.

é/_ J— Hm(xly)+[{m+l(x:y)+ i

II. wm=n.

The possible” directions of this equation are 1) roots of
(15), () = uk, (1, 0)—H,(1,u4) = 0

and 2) a = o if K,(0,1) = o0.
In case 2), if we interchange the variables x and y, it will be re-
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duced to case 1) corresponding to the slope a=0. Hence we have
only to consider the existence of integrals of the form

= w(are@)
where @ is a root of (15), and &(x) is a variable which vanishes with .

1° a is a common root of # K,(1,#)=0 and (1, #)=0.

Ex. -‘:?;— = Z——x;/ﬁ 2=0 is a common root of H(1,4)=u
=0 and # K,(1,u4)=#*=0 and there is the integral y=2? of the re-
quired form.
Yy

dx

since —jy— is always greater than 1.
x

has no integral which satisfies y(0)=o0 and »(0)=o0,

2° o is a root of #(x)=0 but not of K,(1,#)=0. Puty=(a+mn)x,
then i
H (1, a+p3)+x H, (1, 2+ 7))+ ...

ay,
v Dy =
i a+_]/1 Km(I, a+j/1) +x K11+1(I) o +J/1)+ A

dx

or since K,(1,a)zF0, 7(a) =akK,(1,a) —H,(1,«)= o0, it may be
written in the form

ay, . axtéyt... _ ’
(16) i 14+ Ax+ By, + ... = R(x,2)

where R(x,7,) is a rational function. The differential equation of form
(16) will be considered in subsequent article.

3° Case where 7#(#)=0 is an identity. In this case all directions
are possible.

Put y = zp, then, remewmbering y K,(1,7)— H,(1,5) = 0, the
differential equation will be transformed into

iﬂ/_l — Lm(y1)+x['m+1(]/1>+---
dv K1, )+ 7K1, 1) + .

= R(x, 1)

where Z,(y,) are polynomials of 34 and R(x,y,) is a rational function.
Let ¢ be any value for which X, (1,¢)==0, then & and %R are

W
continuous functions of x and y, in the neighbourhood of x=o0,y,=c.

. . dyy
Therefore, by Cauchy’s theorem, there exists one integral of e

dx

=R(x, ), which assumes the value ¢ at x=0. The original equation
has therefore the integral of the form

y={ctelx, o)yx

where lim e=o0 and ¢ is an arbitrary constant for which X,(1,¢)==0.
x—r0
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To know if the given differential equation will have an integral
which has the direction of the y-axis at origin, put Z =2 and consider

¥ as the independent variable. Then ian the same way wé may prove
the existence of the integrals

X = <€/+51( .7/: Cl))_ﬂ/ 1]

where lim ¢ =0 and ¢ is an arbitrary constant for which &,(c/, 1)3=0.
y—0 .

The condition §/,_y=o0 corresponds to ¢/=o0.
Thus, when #(#)=0 is an identity, there exists one integral on
each side of the origin, which has an arbitrarily given slope ¢ at the

K(%9)
X

origin, provided that ¢ is not the slope of the lines =0.

In the exceptional directions there may or may not exist integrals

Y
, w
Fig. 17.
as illustrated by the example.
2 48
Ex. &y _rox (Fig. 17).

dx zy
The exceptional direction is #=o0. On the right of the origin
there is no integr;ﬂ' which satisfies p(0)=o0, #’(0)=o0; but on the left
there are two such integrals y =1/ 2 (—2)% and x=—1/ 2 (—2)*.
The general integral of the equation is y*=ca®—2z"
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9. Form of Characteristics in the Neighbourhood
of a Singular Point.

To know the nature of characteristics near a singular point S,
consider a closed curve y which contains only the singular point .S in
the interior. Such a curve is called a cycle about S. The simplest
cycle about S is a circle of the center S, which contains no other
singular point. We shall call it a circle about S.. We here consider
the form of characteristics which lie in a cycle K about S.

With respct to K the characteristics are divided into five types:

i) Both sides may end at K (characteristic of parabolic form);

_ ii) One side may end at K and the other side at the singular

point S: having a definite direction at that point (characteristic of ray
form) ;

iii) Both sides may end at S (characteristic of Joop form);
iv) The characteristic may be a spiral;
v) It may be a cycle about S.

Of course these types are not essential of the characteristics but depend
upon the cycle of reference, e.g. a characteristic of ray form with regard
to one cycle, may be a loop with regard to a larger cycle.

We consider first a singular point where no characteristic /passes,
which has a definite direction at that point.

Let / be a straight line through S, then as this line is not a chat-
acteristic we may determine a segment SA7 which contains no contact
point. Let X be a cycle about S which passes through 47 and has
no other intersection with the segment S

Let C(X) be the left
semi-charateristic through a
point X on Jg, and consider
the curve K; which consists
of /gy and the cycle K.
With respect to KX, the
point X has the consecutive
point ¥ which is different
from S. Further we know
that the consecutive points
V’s corresponding to X's
(S< X=M) can not all
Fig. 18 lie on K. For were this the
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case, denoting lim ¥ by V,, the characteristic C(Yy) would be a ray
X—8

contrary to supposition. Hence on /g, there must be a point, call it Y;,
whose consecutive point ¥, lies on /g,

When X, =¥, the characteristic C(X;) is a cycle about -.S, and all

the characteristics within it must be cycles or spirals.
When X, is different from ¥, ¥, is a consecu-
1 tive point of the second kind, and the segment
Ci X1 Y)) of the characteristic C(X7), intercepted
between X7, ¥} with the segment Lx; v, will form
a cycle X, about S. Within X, there is no char-
X, acteristic of ray or loop or parabolic form and
all the characteristics must be cycles or spirals.
Theorem 8. If througlh a singular point S
there is not any characteristic which has a definite
8 divection at S, then a neighbourhood of S can be
constructed such that all the characteristics within
it are spivals or cycles.
Fig. 19. Suppose the consecutive point ¥; of X lies
between .S and X;. Then C(X;) is a spiral and
it will converge to the point .S or to a limiting cycle about .S. In the
first case all the characteristics in the cycle X are spirals converging
to the singular point.S. In the second case the limiting cycle €, and
the cycle K; will form a ring domain R; and all the characteristics in
R will be spirals converging to the same limiting cycle (.

If all the characteristics in a neighbourhood of‘a singular point .S are
cycles, the point .S is called a center. On the contrary, if in any cycle about
S there is a characteristic of spiral form, the point S is called a focus.

Using the terms we may say: if through a singular point S no
characteristic which has a determinate direction at that point passes,

Y.

the point S is a focus or a center.

Remark 1. If at a singular point .S no -possible direction exists,
S is a focus or a center.

Remarks 2. The characteristic angle belonging to a focus or to
a center is 27,

Remark 3! 7Prof. Poincaré has shewn that if in a cycle K about
S there exists an infinite number of cyclic characteristics which do
not have S as a limiting point, then all the characteristics in the neigh-

« bourhood of .S are cycles and the point .S is a center.

1 J. Liouville pp. 256-257 (1882).
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10. Form of Characteristics in the Neighbourhood of a Singular
Point which is neither a Focus nor a Center.

Let S be a singular point which is neither a focus nor a center,
then through S at least one characteristic passes which has a definite
direction at S. Consider a circle K about S which cuts the charac-
teristic. Then, since the circle K is an algebraic curve and is not a
characteristic, it contains a finite number of contact poiats. Of these
contact points if there are some at which the semi-characteristics have
parabolic form these semi-characteristics will divide the domain bounded
by K into a finite number of parts.

One of the subdomains con-
N tains S in the interior, call it D,.
It will generally be bounded by
a finite number of segments of
the circle K, Kny/N, KNyN,, ...
Knyy v, and a finite number
of  characteristics  C(VAN),
C(VuVY) ... C(V, N,/) as shewn
in Fig. 20. The boundary 5B
of D, may also contain a finite
number of contact points 4, M,
N s M, not belonging to the
segments {(/VAV’)}, and we shall
Fig. 20, obtain an aggregate { M, (NNV)}
of contact points and segments

of characteristics.

Let G(M), CM) be the two semi-characteristics at a contact
point M and let (y(V), C(NV') be the semi-characteristics at & and
N, which are the extensions of the characteristic C(/V, N'). The ag-
gregate {M, (INN'")} is divided into the following three classes : ‘

a) Those points or segments at which both the semi-characteris-
tics ¢, and G lie out of D, (Fig. 21);

b) Those at which both lie in D, (Fig. 22);

c) Those at which one lies out of D; and the other lies in Dy
(Fig. 23).

It is to be noticed that when the semi-characteristic at a point
M or IV enters into the interior of J;, it must be a ray, as it can not
be parabolic.

Let C(V, N') be a segment belonging to a) and let L be the ad-
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Fig. 23.

Fig. 24.

N

=z \

Takeo Wada.

Fig. 22.

jascent point of /V, which is different
from NV’ and belongs to the aggregate
{M, N, N'})., L is a contact point or
an endpoint of another characteristic
C(Z\-f,]\_7'), and in K(Z,NV) there is no
contact point (Fig 24).

Let ¥ be a point of K(L,N),
then, remembering that the characteristic
through a point £~ moves continuously
with the point 7, we see that when ¥V
is sufficiently near to V the characteristic
C(Y) is parabolic and separates the
characteristic C'(&V, V') from the singular
point S. The point ¥ has therefore its
consecutive point ¥; with respect
to the boundary 5.

Now divide all the points on
K(L,NV) into two groups 4, B by
the following rule: Assume the
order LNVN' and let Z be any point
on K(L,N). 1° If all the char-
acteristics C(Y), Z< Y <N, be
parabolic and separate C(V, V')
from .S, we put the point Z into
group B. 2° [If the point Z does
not satisfy the condition 1°, we
put it into group A.
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Then the partition 4, B will determine a point Z, which may
coincide with Z when the characteristic C(L) is a ray.
Let hm C\Y VY=C(E, E"), then C(E, E') is a characteristic

which passes throuorh the point S. For, were C(£, E') a characteristic
of parabolic form, suppose it lay on the same side of S with C(V, V'),
in K(L, E) there would be a point Z through which a characteristic
passes that has the same property as C(Z, £’) and the point Z(<E)
would belong to group B. This is impossible. Similarly C(E E
can not be a parabolic characteristic which lies on the opposite side
of S with C(V, N'). Thus the curve C(Z, £') must pass through S,
and it will generally consist of
two rays and a number of loops.
It is generally shewn that
the number of loops which have
the common vertex S and of
wlich any lies out of the others
must be finite. For, supposing
there be / such loops, draw a
circle about S, which cuts all the
loops, then, in each segment
of the circle intercepted by one
loop there exists at least one con-
tact point and in the circle there
Fig. z5. are at least / contact points.
Now, by theorem IV, when the

degree of f(x,7)= —g is m, any circle can not have more than 2(m+ 1)

contact points. This shews that through the point S there can not be
more than 2 (m+1) loops of the said property.

Thus, when C({NVN’) be a segment of a) class, there exist two
vay characteristics SE, SE’ and finite loops which with the segment
ENN'E’ (of B)) form a domain where all the characteristics are para-
bolic (Fig. 25).

The same may be said of a contact point of class a) i.e. when
M is a point of a) there exist two ray characteristics SF, SF' and
finite loops such that in the domain, bounded by the curves and the
segment FMF’ of B, all characteristics are parabolic. We shall call
these domains parabolic domains.

We consider now the elements of class b).

Let a point #/ or an arc C(NVN’') be an element of class
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b). Then two ray characteristics (M), (M) or three characteristics
CG(V), G(N') and C(NVN') will form a loop, in the interior of which
all characteristics are loops. The same may be said of any loop. which
forms the boundary of a parabolic domain. These domains are called
loop domains.

From D; when all parabolic and loop domains are removed, there
will remain a finite number of sector domains in which the character-
istics are rays. We call these ray-domains. '

Theovem 9. When S is a singular point which is neither a focus nor
a center, there exists a neighbourhood D, of S and a jfinite number of char-
acteristics of ray and loop forms, whick dwide D, tnto subdomains of
the three Finds . parabolic, ray and loop.

A singular point is called a zode when all the characteristics in
a neighbourhood of the point are rays.

From theorems 8, 9 it follows:

Cor. If there exists a sequence of cycles about a singular point
S, which converges to .S and has no contact point, then the singular
point S is a focus or a node.

We can now determine what form a limiting cycle may have.

Let C; be a limiting cycle of a spiral €. If €, does not pass
through any singular point it is a regular closed curve.

When it passes through singular points it will consist of character-
istics whose extremities are singular points. Let .S, be a singular point
on C; and G(S;) be a branch of Cy through S;.  If (i(S;) is not a loop
it is a ray which goes to another singular point. That the number of
characteristics belonging to Cj, which pass through the point S, is
finite, may be proved as in theorem o.

It will be further shewn that the number of branches of ; at S5
. is even. If there
were an odd
number of
branches of (;
through S;, there
must one, say .
C(Sy), on both
sides of which
the spiral C
would lie. Let
MMM, be a
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segment of a straight line which contains a point 47 on C;(S) and
does not contain any contact point. Then on each segment MM,
MM, there would be indefinitely many points on € and we might
determine a point X on M M, which would be common to C, such
that the consecutive point ¥ with respect to the segment MMM,
would be on MM, and be of the first kind. This would bring a
contact point on A4 A/, which is contradictory.

Hence we may conclude : any limiting cycle may consist of a finite
number of loops and a finite number of ray characteristics which con-
nect different singular points, and at each singular point meet an even
number of branches (Fig. 9).

Cp

Fig. 9.

11. Form of Characteristics in an Infinite Distance.

If there be any characteristic y=¢(x) of a differential equation

ay Pz, )
— = X, = — .
o =)= o)
which has a definite direction at infinite distance, then the three limit-

ing values
lim ay lim 2

z—>w dx’ z->0 X

and lim f(x, »)

will have the same value. Using these conditions we can determine
the possible directions of characteristics at infinite distance.

For the purpose, arrange the terms of P(x,y) and Q(z,7) in de-
scending powers of x and y, thus

dy _ Hu (%, )+ Hpslz, )+ ...

dx Kz, )+ K, (z, )+ ...

b

where Hy(x,7), ]ﬁ(x, y) are homogeneous expressions of #* degree.
Treating this in a similar manner as we did a singular point, we find
that the possible directions at infinite distance are:
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i) m > n, cos 8 H,(cosb,sinf) =o;
ii) m = n, sin 0 K, (cos 8, sin §) —cos 0 H,(cos 8, sin ) = 0;
iiiy w2 < », sin @ K, (cos 8, sin ) = o.

To examine the existence of characteristics in a possible slope a
we use the projective transformation

y
(17) r= V=%
if ag= o0 (ie. 0 #%) Then
1 Yy
v _ " )
(18) ax X

_YxX " {K0,V)+ XK, _(1L.YV)+.. - {H0.V)+ XH, ,(1,V)+...}
X K1, YV )+ XK, (1, Y+ ...}

and we have to consider the characteristics at X = 0, V= a of the
new equation. If (18) has a characteristic of the form

V=1a+XB+e(X)), |X|<0

where lim ¢(X) =0, then the original equation has a characteristic
X—0

of the form
= X L
¥ ax+ﬁ+e( ), le > 5

When a=o or a is a possible slope which is not zero, put

1 X=21 y==
(19) P 5
then the equation (2) is transformed into

: V 1
(20) o zx) ¥
ax YV 1
xf(x —X")

_ V{H (V) + XHo oV, )} = XK V1) + XKV, 1)+ 00}
- X{H, (Y, 1)+ XH, (Y, 1)+...}

and we have to consider the characteristics through the point X =o,
V= %, when a is finite, or the new origin, when « is infinite.

By the transformation (17) or (19) the infinity line in the xy-plane
is transformed into the Y-axis of the new plane; and by the equation
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(18) or (20) we see that, with the exception of the case where m=n
and sin 0 X, (cos 0, sin ) —cos 0 A, (cos 8, sin f)=0 is an identity, the
Y-axis (X=0) is a characteristic and any possible direction at infinite
distance is transformed into a singular point which lies on the V-axis of
the new plane.

12, Singular Points of the First Order. Focus and Center.

Suppose a singular point S of a differential equation (2) is taken
for the origin, then we have

(21) ‘ ‘ dy _ axtby+...

dv ~ Ax+By+..."

If in this equation D = aB—Ab F o, the origin is called a singular
point of the first order. In the following we shall consider the char-
acteristics of (21) in the neighbourhood of the origin.

The equation for possible slopes of (21) is

(22) Bf+(A—-bt—a =0

and there are two real different, or real coincident, or no real possible
slopes, according as the discriminant

E=(A—b6\+4aB

is positive, zero or negative. We consider these cases separately.
When £ is negative, the origin is a focus or a center as there is
no possible direction at that point (§ 9, Remark 1).
To find the form of characteristics near the origin more exactly, put

p=rsinf, xr= rcosb,
then (21) becomes

(23) 7 _ Acos’ 0+ (B+a)cosfsin +56sin® +7( )
r  acos®+(6—A)cossinl—Bsin0+7( Y’

where the expresssions in the brackets are polynomials of #, cos # and

sin @, and, by the form of the equation, we know that, for sufficiently
ar ‘

dl

Neglecting higer infinitesimals the last equation becomes
R A cos’+ (B +a) cos 0 sin 0+ 5sin’f

small 7, is continuous of # and 4.

R a cos*+ (6—A) cos 0 sin 0 — B sin®0 ’

and, integrating this, we obtain
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oM arcig G
R — =
1/ac0520+(b Ay cos O sin 0 — B sin*d
where M = b+ 4 G = —2Btan0+6—4

V=E By —
and C is an arbitrary constant. The integrals are spirals if M/ 3= o, since
R (0+ 27) = &Y™ R(6)

where ¢ is 1 or —1 according as B is negative or.positive.

As the integral 7 differs from R by an infinitesimal, we may say
that the characteristics of (23) in the neighbourhood of origin are spirals
converging to the origin when £ < 0 and A+43=o.

When A+ &=o0 the integrals R are cycles since R(0+27)= R(ﬂ)
It can not be inferred that the same holds for the integrals ». We
may so far only conclude that the origin may be a center when £<o0
and 4+6 = ol

13. Singular Points of the First Order which is
neither a Focus nor a Center.

Though equation (21), of which £=(A—6)*+4aB is not negative
may be treated directly, it is more convenient to consider the reduced

equation.
Put ‘
(24) r=E§+y, y=d+py
then .
dy _ af+ om+...
(25) d= ~ A&+ Byt ..
where

26) {al =—{Bd*+ (A—~0b)a—a}, 51:a+éﬂ—Aa—Baﬂ,}
2
A, =—a+ AR —ba+ Baj, B, = BF+(A—-b)3-a.
When D > o0 the two roots of (22) are real and different, call
them #, %, and in the equations of transformation put a=4#, 3=1, then

we have
a, =0, b= (t—t)Bt+A), A, = (t,—t)Bt+4), Bi=o0

and (25) becomes

1 A rigorous criterion to distinguish center and focus was given by Prof. Poincaré in
J. Liouville, pp. 173-196 (1885).
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0777 p+..
(z7) aE T E+...
where A= M The value of 4 is the ratio of the two roots of
Bt,+ A

the equation
F—(A+8)p+ Ab—aB,= o;

and it is positive or negative according as D is negative or positive.
When D=o0 the two roots of (22) are equal, say #, and put #
for 8 in (23), then

= —B(tl"—a)?, Alzél = _Bt12+t1(b+Ba>'—ba, Bl =0

and (25) becomes

_{11_77+/15+
(28) 2z T Er.L
where A= B (t—ay f= A—4

T Btl—#(6—Bo)y+ba 'l 2B

and a is a value which is not equal to 4.

As the transformation (24) is linear homogeneous, to a cycle 7
about the origin of zy-plane, a cycle y; about the origin of &-plane
corresponds and to a characteristic ' in the old, a characteristic (5 in
the new plane. Also it is evident that the type of € with regard to
7 is the same as that of C; with regard to y,. Thus to find the form
of characteristics of (21) we have to investigate the characteristics of
the transformed equation. It is also to be noticed that in the trans-
formed equation (27) the possible directions are 7,=0, T,=0 and that
these correspond to #, % of the original equation.

o d’? — Ap_‘— = A
I i &), A<o.

To apply criterion 1 § 7, take two lines y=/r y=—/r where /
is a positive number. Since lim f(x, ux)=2u, we may determine a

positive valie X such that, in D[ hr=y=+ir,o< x=X]f(x,7)
is continuous and
S, =) > =1, f(xlix)<! o<xr=X).

Hence in D there exists a characteristic y=¢,(x) which satisfies ¢,(0)

=0, ¢)/(0)=0. Besides y=¢,(x), in D there is no characteristic which
passes through the origin, as



184 Takeo Wada.

o _ At
oy (+...)°

is negative in [—Ir=y=+Ir,0 < = X,], when X is sufficiently

small.
Similarly, it is shewn that in the direction §=m there exists a

single integral.
. e . brd
To find the existence of characteristics in the directions 0:—2-,

0:-322, write the equation in the form

I
. —%4..
a4 — <o,

dy T gt

and, considering # as the independent variable, we may conclude that

there exists a single characteristic in each direction of 0=_;r_ and
="

2
Thus the equation (27) has four ray characteristics in the direc-

tions 0=o0, 0=", f=x and ="
2 2

; and all the other characteristics

near the origin are parabolic.
A singular point of this sort is called a ¢co/*
Remark. At a co/ the characteristic angle is — 2rx,
dy n+... -
2° 2 =T = , O0<A
P% §+... Sy <
We treat first the case o < 4 < 1. To find the existence of char-
acteristics in the direction ¢=0, again apply criterion 1 § 7. We
have lim f(x, ux)=4Au and there exists a positive number X" such that

z-—>0 .
in [lx=y=+ir,0 < xr=X], f(x,») is continuous and
—I-flx,—lx) <o, I—flx,lr)>0 (0<xr=X)

where / is a positive number. This shews that in the direction #=o0
there exists a characteristic. Now by calculation we find

Jd (d%\ _ AA-1)&E+...
a7 ()= iy i<y

and, as this value is negative in [~Ir=y < +lr,0 < x= X,] for

1 As a proper definition is not found, following Prof. Poincaré, the french term ¢ col’

is adopted.



Graphical Solution, etc. 185

sufficiently small positive X;, in the direction #=0 there is not any
other characteristic. Similarly, in the direction §=mn, there exists only
one characteristic,

Next consider a circle of radius p which has the origin as center.
The contact points of the circle are given by

z(x+.)+y(+...) =0, P+yi=p

and it is clear that when p is sufficiently small the simultaneous equa-
tions have no solution. The origin is therefore a node. As the differ-

ential equation has only the remaining possible directions 0—_—1,

0=—3§-—, the characteristics in the neighbourhood of the origin mist
have these directions at the origin.

Case A=1. In this case the equation for possible directions be-
comes an identity ; and all directions at the origin are possible. Also
there is no exceptional direction. The origin is therefore a node; and
in each direction at the origin there is only one characteristic.

Case 4 > 1. Writing the equation in the form

1
i —$+---
I P S
dn 7+ ... ]

and considering % as the independent variable, it reduces to the case
0<A< L

o ) _ prift...
3 &= ern o iFe

In this case a=o0 is a double root of the equation (22). By
criterion 1 § 7, we see that all characteristics in [-=x=0,
0 < =Y, where / and ¥ are sufficiently small positive values, touch
the positive y-axis, and those in [y =zx= —f, —V=y < 0] touch
the negative y-axis at the origin, Further, the ellipse x=pcos¥,
y=6psinf has no contact point when & > | 24|, for sufficiently small
p. The origin is therefore a node. As there are only two possible
directions 0=%,0=—3_2£, all the characteristics in the ncighbourhood

of the origin must have these directions at the origin.
The finding concerning characteristics in the neighbourhood of a

singular point of the first order may be summed up into the following :
Theorem 10. In the equation
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dy _ axrtbp+...
dr  Ax+By+.."

1) When E= (A—0b)+4aB < o, the origin is generally a focus.
1t may be a center only when the additional condition A+ b=0 is satisfied ;

i) When E> 0 the origin is a col (Fig. 27) or a node according as D
is positive or megative,; and specially a) when E > 0, D < 0, denoting
by t, that one of the possible divections, for whick the absolute value of
Bt+ A is greater than that at the other voot t,, theve are indefinitely
many chavacteristics that have the slope t, on both sides of the origin,
and theve is a single characteristic on eack side of the origin, that has
the slope t, (Fig. 28); &) when a=0,B=0, A=b on each direction at
the origin there is a single characteristic ;

)y When E=o the origin is a node and all charactevistics have

4wt the origin (Fig. 29).

the same slope

Equation (16), given in § 8

ady ax+by+ ...
7 1+ Ax+By+...° 650

is a special case of the above. The possible directions at the origin

a e .. .
are 7 and oo; and the origin is a ¢o/ or a node according as 4
I_

is negative or positive,

dy _ @
dx™ 9y

N/
2

1

|

Fig. 27.
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w2

Fig- 28,

Yy __x-29
dx -2x+y
X

Fig. 29.

187
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14. Examples.

The general principle for tracing characteristics defined by the
equation @ _ P7)

is due to the investigation of

&~ Owy)
1° flx,y) = %%% ie. a) curve P(x,y)=o0, b) curve Q(x,y)= 0

c) sign of f(x,7);
2°  F(x,p) ie. a) curve F(x,y)=0, b) sign of F(x,y), c)
1M = (L), = e

dx /) ro
3° Nature of singular points;
4° Nature of characteristics at infinite distance ;

5° Limiting cycles.
Examples of tracing characteristics from their equations.

Ex. 1. —= =g*—2* (Fig. 32).

: f<o
:F>o
. F<o

Fig. 30.

AL I B
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We have  flx,9)=3"~ 4 F(x, 9)=2{ (5~ 2")— 2}

. and the configuration of slope and concavity is shewn in Fig. 30.
On the curve F(x,y)=o0,

: _ r=4 ]
[X(x:y)]ﬁ’=0 [J/z(aya_x:) Feo
and we find

¥ > 0. when 1<%<oo and ~_§_<,in<0,

3

~

¥ <0 when ——I<Ly;<-—;

V'3’
¥ = o when A
X V'3
and [y(#, 9)]se0o=0 has no root, so there is no contact point on the
curve F=o0,

The given equation has no singular point.

At infinite distance the possible directions are (1) =, (2)

Y

\

i
i

/

Y=1

X
Y="1

A
}

-~

Fig. 31.
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a;=1 and (3) ¢;=—1. By the substitution x=7y, y:-}(,— the differ-
ential equation becomes
ay -y _X:* .
= (Fig. 31)

aX ~ T X(1-Y9

and the three directions go to the points: (1) X=o0, Y=0; (2) X=o,
Y=1 and (3) X=0, V=—1.
(1) The point X=o0, ¥=0 is a node and in each direction there
~is a single characteristic,
A 2Vi+3 VP + VP4 X7 >
P = h —_1_ = -.__1»* 1 —lA———— = ‘(Y,}
(z) Put Y=V¥,+1, then v X (Vit2V) AXY)

and the possible directions at X=o0, ¥;=0 are 8=o0, 0=, 0=% and

0:-325. The integral X=o0 is the only characteristic in the direction

\4/

Fig, 32. /
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vid T . . - .

0=—2—, =37, There is a single characteristic on each direction
2

0=o0, 0=n.

(3) X=o0, Y=—1 is a node and all the characteristics near the
point have the direction —-gl at X=o0, V=—1.

Thus the differential equation at infinite distance has (1) charac-
teristics which have arbitrary s‘fraight lines parallel to the y-axis as
asymptotes, (2) single characteristic on each of first and third quadrants,
which has the line x=y as asymptote, (3) indefinitely many character-

istics which have the direction —Z in second and fourth quadrants,
4

Ex. 2, x% = x—2y+y" (Fig. 35).
Here fry) = _’f:_zj’—'*’_f
—2x+ 6y +22y—75°+2
Flz,y)= 7 x’?’ e ’
. o and the curve
& )} o (6—143+ 1355 —45°)(3—2y

x(Y)

IV

o
e
— |
w0
<

Fig. 33.
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{x(x, )} o = #(») is shewn in Fig. 33.

The singular points are x=0,y=0 and x=o0,y=2,
The origin is a co/ through which, besides the characteristic x=o,

a characteristic with the slope % passes.

The point x=o0, y=2 is a node, At that point all characteristics

except x=0 have the slope —1.
The possible directions at infinite distance are a=ow and a=o0,

a=co. Put x=—/—YV—,y=——;{— then

dY _ Y(1—3X+XY)
dX X(—2X+XY)~

Hence X=0, Y=0 is a node through which in each direction a single

characteristic passes.

a=o0. Put x=j%, =——§‘—1, then
av, _ —X+3X5 V-V’ .
d){l - X12 (Flg 34)'
Y,

-

Fig. 34.
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At X;=o, Y;=0 the possible direction is . Using the configura-~
tion of slope and the criterions given in § 7, we find: X;=o0 is a char-
acteristic; in the first and fourth quadrants there is no characteristic
through the origin; in the third quadrant there is a single characteristic
C; which has the slope + o at the origin; the characteristics below
are parabolic and those above (; are rays having the slope —oo at
the origin.

Fig. 3s.
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Hence of the original equation we may say: '1° there are two
characteristics, one of which lies above the x-axis and the other
below it, that have any line x=¢ as asymptote; 2° in the second
quadrant there is a single characteristic which has the slope o at infi-
nity. This is the characteristic corresponding to (;; 3° in the third
quadrant there is an infinite number of characteristics which have the
slope 0 at infinite distance.

G _ 4y Fi
dx 7+t (Fig. 36).

Ex. 3.

3

4_2 4 2+ XS
We have  f(r5) = _E, Flag) = 27 (?EJJ’,Z i ),
%f_‘z—%%_;—z/% and we know that f(x,y), F(x’ J/) are positive or

negative according as s positive or negative.
x

The equation has only one singular point x=o0, y=0 and evidently
¥=0 is a characteristic through it.
To find if there will be characteristics besides this, we apply
criterion 4 § 7. Assume
p=af n>1
ay
@z

s aEnts
/(1) = o

then &, 7)) =

and we have, if § > o,

Fig. 36.
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i) y>0 when 1 <z<2, >0 or =2 a>1;
iiy) y=0 when z=2 a=1;

iii) y<o when #=2 0<a<1 or 2<7n<4,a>0;
iv) ¥ >0 when #>4, a>o.

By ii) y=x" is a characteristic and, since —(;L < 0, above this

curve there is no characteristic through the origin. In (0= y =4
z > 0) all characteristics pass through the origin and touch the posi-
tive x-axis. Also we know that the characteristics are symmetrical
with respect to the x or the y-axis.

The possible directions at infinite distance are a=0 and a=w ;
and all the characteristics except y=0 have the slope +oo at iffinity,

dy _ —x—y+y (P45 ,
Ex. 4. %: =+ ( +J/). (Fig. 37).

=

The configuration of slope is shewn in the figure. The equation
has only one singular point x=o0, y=0; and this point is a focus.

Consider the circle
g4 = p?

W e, g) = 1—p,

then L&, g =

3
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therefore 1€.7) >0 when o< p <1,
=0 when p=1,

<o when 1 <p,

Thus the circles &*+%*=p® have no contact points except the
points §=1 p,7 =0 when p==1. At the contact points the circle and
the characteristics cut each other and we see that the circle &+9*=1
is the only limiting cycle.

In each of the first and third quadrants there is a characteristic
which has the x-axis as asymptote. All the other characteristics have
the slope o at infinite distance.

Ex. 5
. x{2(F ) - 1ydr+

[{2(=+") + I}y+% (22— D {4+ — 2"+ 3%} dy=0 (Fig. 38).

The equation has four finite singular points x=0, y=0; x=0, y=1;

I I
r=——, =0 and r=— ——, y=o0.
vz’ ER
1° x=0, y=0 is a ¢o/ and the slopes of the characteristics through

that point are —1 and 41,
2° x=0, y=1 is also a co/ and the slopes of the characteristics

through that point are — L, o+ L.
= . V2 Vv 2
3° Put r=——+X, then

vz

dj/ — —~2X+...
Wy
and we know that the point x= —I_é—_, y=0is a focus.

The equation remains unchanged by putting —x for x, hence the
line-elements are symmetrical with respect to the y-axis.
The equation has the characteristic (#°+3%)°—2*+)*=0; and each

loop of this lemniscate is the limiting cycle of the spirals which have

the foci at » = —I?, y=0 or x:—-—l—_z_, ¥ =o0.

By the configuration of the slope the form of the characteristics
may be traced as shewn in Fig. 38.
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e
7
/
7\
/Q

(/LN

/
/
[

- Fig. 38.



