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The problem of this paper is to investigate the integral curves 
defined by differential equations of the simplest form 

: =/(x,y) 

m which f(x,y) is a rational function of x and y. 
Equations of this form occur frequently in applied mathematics, 

and were first treated by Profs. Briot and Bouquet1
• Subsequently 

Prof. Poincan? gave a complete and elegant treatment. Both, h_ow­
ever, being based upon the theory of analytic functions of complex 

variables, are a little complicated. 
I have tried to consider the problem from the standpoint of real 

variables, and, by the help of the ideas of these professors, especially 
Prof. Poincare's idea of consecutive point, to obtain a method of treat­
ment. In principle the endeavour is to shew the outline of integral 

curves by the use of slope and concavity, just as is done in tracing 

curves defined by equations between x and y. 

1. General Theory of :Z. = /(x,y). 

By the famous theorem of Cauchy-Lipschitz it is known that, if 

f(z,y) is continuous and % is limited in the neighbourhood of a point 

x 0 ,y0 , there exists one integral of the differential equation 

dy - ( ) dz-/ z,y' 

which passes through the point z 0,y0• 

1 J. d l'Ecole Polytech. 36, 133-198 (1856). 
2 Sur Jes courbes definies par les equation differentielle (J. Liouville 1881, 1882 and 

1885). 
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In particular, when f(x,y) is a rational function (r) may be 

written in the form 

(2) 
dy _ P(x,y) 
dx - Q(x,y)' 

where P(x,y) and Q(x,y) are polynomials of x and y, which have no 

common factor; and we shall treat hereafter the differential equations 

of this form. 

In equation (2), the existence-theorem applies at any point where 

Q(x,y) does not· vanish. Though at a point x 0,y0 f(x, y) vanishes, if 

P(x0,y0) =I= o, considering y as the independent variable, the differential 

equation 
dx = Q(x,y) 
dy P(x,y) 

satisfies the Cauchy-Lipschitz's condition at Xo,J'o; and the existence 

of a single integral curve through the point is assured. Thus passing 

through any point where P(x,y), Q(x,y) do not vanish at the same 
time there is one integral curve of (2). 

The points where P(x,y) and Q(x,y) do not vanish at the same 

time are called ordinary points; and the exceptional points are called 

singular points of the differential equation (2). The singular points are 

given by the simultaneous equations 

(3) P(x,y) = o, Q(x,y) = o 

and there is a finite number of such points in the plane. 

Denoting the integra} curve which passes through an ordinary 

point by C(x0 ,y0), it may be expressed analytically by 

where <p and ¢• are one-valued functions which are continuous with the 

derivatives Cf/, ¢•/ and satisfy the equation 

in a certain interval ( 71, 7;) of t ancl the initial conditions 

t0 being a fixed value in (:7;., T.J 
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The functions p, cp are continuous not only of t but also of the para­
meters1 x0,y0 in any domain D(t, f, 1J) which contains t= t0, ~ = z 0, 1) = y 0 

and does not contain any singular point, provided that for any set of 

values t, ~. 1) in D the functions cp(t; ~. '1/), cf(t; ~. 1)) do not represent any 
singular point. This means that the integral curve moves continuously 

with the initial point z 0,y0• 

From the continuity of p/ and• ¢/ it follows that the integral 
curve C(z0 , y0) is rectifiable. If we take the arc length s measured from 
.:l:o,Yo on a direction as parameter, the equations to the curve will be­

come 

(4)a C(xo,Yo): z=sc(s; Xo,Yo), y=cj;(s; Xo,Yo) S1 < s < Si 

of which we have 

and 

cf;/·· ;i(p .. 4'), (cp/)2+(cj;/)2 = I 
'P.' 

p(o; Xo,Yo) = Xu, ¢(0; Xo,Yo) = Yo• 

As an integral curve can not stop at any ordinary point, it may 

be extended on both sides so long as it does not arrive at a- singular 

point. The curve so extended as possible on both sides is called a 
·complete characteristic. Of characteristics the following properties are 
reckoned: 

I) They can not have any singular point in the interior, and 
their endpoints, if they exist, are singular; 

2) They can not have any branch-point in the interior; 
3) No two characteristics can have a point in common, which 

is not an endpoint of both ; 
4) The segment between any two interior points of a character­

istic has a finite length. 
That form of characteristic which is constructed through an ordi­

nary point by possible extension on one side of the point is called 

a semi-characteristic. Assuming a direction, two semi-characteristics 

through an ordinary point are distinguished as progressive and regressive. 

Of a semi-characteristic the following four forms are to be con­

sidered: 

i) The continuation may finally arrive at a singular point and 

stop at that point ; 
ii) It may return again to the point of starting. In this case the 

curve is closed and is called a cyclic characteristic. ; 

1 E. Picard, Traite d'analyse, II, p. 333· (1905). 
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iii) It may go to an infinite distance ; 
iv) The semi-characteristic may have no second endpoint, how­

ever we may continue _the extension, the curve itself remaining in a 

finite domain. This form will be considered later. 

2. Slope and Concavity defined by a Differential 
Equation. 

In tracing a curve defined by an equation between x and y, the 

g~neral principle is due to the investigation of 1) the existence of the 

curve, 2) !fy i.e. the slope of the curve, 3) dd";:, i.e. the concavity 
dx x-

of the curve. 4) the nature of multiple points and 5) the forms of in-
definitely distant branches. This consideration is directly applied also 

to the discussion of curves defined by a differential equation. 
In the first place we shall consider the slope of characteristics 

defined by 

(2) dy = P(.x,y) = f(z,y). 
dx Q(x,y) 

Divide the points of the entire plane into five aggregates, accord­
ing as the value of f(.x,y) is I positive, II negative, III zero, IV infi­

nite or V indeterminate, then 

at points of I the line-elements are increasing, 
,, 

" 
II 

" 
,, decreasing, 

" 
III 

" 
parallel to the .x-axis, 

" 
IV 

" 
,, 

" 
y-axis 

and the points of V are singular points of the differential equation. 

Aggregates I and II consist of points in one or more domains, III and 
IV of points on curves and isolated points and V of a finite number 
of points. 

Next to find the concavity of the characteristics from the equa­
tion ( 2 ), deduce the second derivative ; 

(5) 

and, denoting the expression on the right of (S) by F(.x,y), we have 

(S)a 
dz d;~ = F(x,y), 
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where the function F(x,y) is evidently rational of z and y. 

Again divide the points in the plane into aggregates, according 

as the yalue of F(z,y) at z,y is VI positive, VII negative or VIII 

zero. Then 

at points of VI the characteristics are concave upwards, 

,, VII ,. ,, ,, ,, downwards 

and ,, ,. VIII ,, have co11tact of higher 

order than the first, with tangent lines at those poipts. For example, 

a point of VIII may be an inflexional point of the characteristic through 

that point. 
By the above two steps the entire plane will have been divided 

into the following aggregates of points : 

a) Four kinds of domains where 

i)f>, F> o, ii)f> o, F< o, iii)f < o,F< o, iv)f< o, F< o; 

b) Three kinds of curves where 

. v) 
vi) 
vii) 

(6) 
(7) 
(8) 

f(x,y) = o or 

/(x,y) = ao or 
F(z,y) = o or 

P(x,y) = o, 
Q(x,y) = o, 

Q2F_,,/ + PQ(Py' - Qx') - P2Q/ = o ; 

c) viii) Finite number of singular points where P and Q vanish 
at the same time. 

When the configuration of slope and concavity is known, we may 

trace the outline of characteristics excluded the neighbourhoods of the 
singular points. 

In tracing the characteristics it is important to know how the curve 

(8) cuts, the characteristics. Denoting by Xi,J'i a point on (8), at that 

point the slope of this curve is (- ;;') while that of the char-
.Cy X1,J't 

acteristic is /(xi, y1). Hence if 

(9) 

is positive the characteristic, in passing through the point (z1,y1 ) from 
the left to the right, cuts F=O from the upper side to the lower; if 

it is negative, from the lower to the upper, and, finally, if it is zero, 

the curve (8) and the characteristic have the same line-elements at 
the point (z1,y1). 
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3. Direction Angles and Characteristic Angles. 

Before going into the consideration of characteristics in the neigh­

bourhood of a singular point, certain preliminary conceptions should 

be introduced. 
. . ...,,. . ~ 

Regular curve . . By a regular (open) curve 1s meant an unclosed 

Jordan curve which has a tangent line everywhere, that moves conti­
nuously with the point on the curve. 

The analytical expression of a regular curve 1s 

(ro) X = {f}(t), y = IJl(t) 

in which {f)(t), IJl(t) aud their derivatives (/)'(t), IJl'(t) are continuous 

and satisfy the conditions 

and 

for any two different values t1, t~ in ( 7;_, 7;). 
Directed line. A directed line is a straight linl: which has a fixed 

positive sense, Of a directed line two sides are distinguished, namely 
the right and the left sides. 

Let there be two directed lines L0 and L. Assuming the positive 

sense for measuring the angle counterclockwise, the angle between the 

two lines may be determined up to a multiple of 21r. This ambiguity 
is removed when multiples of 21r are left out of account; and then 

the measure is expressed by a value between o and 21r. The angle 
between, L 0 and L lies in (o, rr) when L is directed leftwards; other­
wise, the angle lies in (;:-, 2r.). 

The angle between the positive x-axis and a directed line L is 

called the direction angle of the line L. 
The conception of senses, sides and direction angles is also· made 

use of in connection with regular curves and line-elements. 

To apply these to the line-elements defined by a differential equa­
tion of the form (2), take an ordinary point Mo (x0 ,y0), and for the 
direction angle at that point assign a fixed one, say a0 , of the angles 

which satisfy 

cos a = t7 Q(xo,J'o) ' sin a = a P(xo,Yo) 
-V {P(..i-o,Yo)} 2 + { Q(xo,Yo) }2 ✓ {P (xo, Yo)} 2 + { Q(xo,Yo)}2 

in which for o orie of the values I or - 1 is to be given at will. To 
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define the direction angle at an arbitrary ordinary point Jvl/1:i,y1), as­
sume a curve r1 connecting Mo and .111;_, which does not contain any 
singular point of the differential equation. Then the angle a defined by 

(11) sin ri - a P(.x,y) 
- V ]J".+Q' 

varies continuously with the point M(.x,y) on the curve r1 , starting 
from the initial value o0 • The final angle a1 at M1 is defined as the 

complete direction angle at .111;_. 

If instead of ri another curve r2 which connects the same points 
Mo, .M;_ is taken, the corresponding complete direction angle at .111;_ will 

be determined. But since cos a1 = cos a2, sin a1 = sin a2 the two complete 
direction angles a1 , a2 differ at most by a multiple of 21r. Thus the 

complete angle a at a point M(x,y) depends not only upon the co­
ordinates x, y but also upon the curve which combines the point with 

the initial point Mr,. 
To make the direction angle a one-valued function of the co­

ordinates we have only to leave any integral multiple of 21r out of 
consideration. This measure of the direction angle is called the s£mple 

direction angle. 

Generally if two ordinary points N;_, N;_, of which the complete 

angle at N;_ is given, be connected by two curves r', r", two corres­
ponding direction angles at l½ are given immediately. The difference of 
these angles is an integral multiple of 21r; and is the change of the 

r" 

Fig. 1. 

complete direction angle 1.vhen 

the line-element makes a corn-

plete revolution moving along 

the closed curve r formed by 

the two curves r', r" (Fig. r). 
It is clear that the difference 

depends upon the form of the 

closed curve r and the sense 

of revolution but not upon the 

starting point. Assuming the 

sense of revolution counter­

clockwise, the change of the complete direction angle, which arises 

from a complete revolution along r is called the characteristic angle of 

tlze closed curve r- It is an integral multiple of 21r. 
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Suppose within and on a closed curve r there is no singular point, 

then the complete direction angle a defined by (11) is one-valued and 

continuous within and on the closed curve r. The characteristic angle 

of the cycle is therefore zero. Thus ,ve have : 

Theorem I. .!f tlze clzaracteristic angle ef a closed curve is not zero, 
in the interior if the curve there exists at least one singular point. 

As the characteristic angle of a cyclic characteristic is not zero, 

being 21r, it follows : 

Cor. In the interior of a cyclic characteristic, there exists at least 

one singular point. 

Let r1, r2 be any two closed curves which contain only one singu­

lar point S in the interior, then it is easily shewn that the character­

istic angles of r1 and r 2 are equal. Hence the characteristic angle of 

such a closed curve is proper to the point S, and is called the char­
acteristic angle if the singular point S. 

Without difficulty we may further conclude that the characteristic 

angle of any closed curve is the sum of the characteristic angles be­

longing to the singular points within the closed curve. 

4. Consecutive and Contact Points.1 

Let two regular curves r1 and rt intersect at only two points 111;_, 
M, then the two segments of the curves intercepted between the points, 

will form a closed curve which divides the entire plane into two parts, 

interior and exterior domains. 

The form of the intersection of the curves is of two types : Type 

I, in which all the four extensions of the segments of r1, r2 at the ends 

111;_, M lie in one and the same domain, exterior (Fig. 2) or interior 

(Fig. 3) , Type II in which the two extensions of the segments at 111;_ 

lie in one domain while those at the second endpoint M lie in the 

other domain (Fig. 4). 

In a plane where directed line-elements are defined by (11), con­

sider a regular directed curve 

r: X = (/}(t), y = '/J'(t) 

which passes none of the singular points of the differential equation 

dy P(x,y) 
dx = Q(x, yf" 

1 J. Liouville, p. 409 (1881), 
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Fig. 4. 

Take a point lvl(t) on the curve r and let C(t) be the progressive 
semi-characteristic through the point M This may be expressed by 

C(t): x = X(s, t), y = Y(s, t) s>o, 

where s is the arc length measured from Mon the positive direction 
and the functions X, Y satisfy the relations 

(X/)2 + ( Y,1
)

2 = I, 

X(o, t) = <P(t), Y(o, t) = IJl"(t). 

When r and C(t) touch each other at M, the curve r is said to 
have a contact at the point M In particular the point M is called a 

contact point of the first kind when r is cut by C(t) at M, and of the 
second kind when, in the neighbourhood of M, C(t) lies on one side of r. 

When these two curves have other common points besides M, if 

in a neighbourhood of M. r and C(t) have no other common poi,nt, on 
the curve C(t) there will be the first point N which is common to r. 
The point N is called the consecutive point of 111 with regard to the 

curve r- When, instead of the progressive semi-characteristic, the re­
gressive semi-characteristic l;(t) through M is considered, the first point 

on Clt) which is common with r is called the preceeding point of M 
Suppose that a point M on the curve r ha.s the consecutive point 

N and the two curves r and C(t) do not touch at 111 and N, then the 
two segments of the curves will have an intersection of the type I or 

II. Accordingly the point N is called the consecutive point of the 
first or second kind. 
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We can now prove: 

T!teorem 2. ff a point M on a regular ;urve r which docs not 

contain any singular point ef a d{tfcrential equation ¾ = f(x, y) ltave 

the consecutive point N ef the first kind, t!ten on t/ze seg1nent ef r be­
tween M, N there exists at least one contact point. 

Proof. Let ds be the directed line-element de­
fined by 

To make r a directed curve assign a positive sense. 
R Suppose at M ds is directed leftwards of r, then as 

N is the consecutive point of the first kind, at that 
point ds is directed rightwards of r. Denote by 0 
the simple measure of the angle between the curve 
r and the line-element ds on r, then 

o < 0 M < n, at M and 7r < f)N < 21r at N. 

Fig. 5- As the angle fJ varies continuously from fJ 1,1 to IJ N 

when ds moves along r, it must take the value o or 

rr at a certain point R of the segment rMN· R is a point of contact 

of the curve r-

5. Applications of the Theory of Contact Points. 

There are nu~erous applications of the theory of contact points 

to the differential equation (2). 
Theorem J. Any algebraic curve which is not a characteristic of a 

dijferential equation (2) can not have indefinitely many contact points. 
Proof. Let r A be the curve defined by an irreducible algebraic 

equation A(x,y)=o. The contact points of this curve are then given 
by the simultaneous equations 

A =O, 

As these two equations are algebraic there is a finite number of solu­

tions. Specially if A(x,y) is of the m 11
' degree and f(.r:,y) is of the nth 

degree, the curve IA may have at most m{(m- r)+n} contact points. 

Theorem 4. ff a semi-clzaracteristzc ef (2) has indefinitely many 



Graphical Solution, etc. 161 

common points with an algebraic curve which is not a characteristic, it 
1s a spiral. 

Proof. Let C be a semi-characteristic which has indefinitely many 

points in common with an algebraic curve r A• As r A may have a 
finite number of branch points and singular points of the differential 

equation, we may determine such a segment rnx, that has 1) indefi­
nitely many points, say {M}, belonging to C, of which N is a limiting 

point; 2) no branch point, no singular point and no contact point in 
the interior. 

Take a point M;_ of {111 }, then on the arc r,M1N there is neces­

sarily a consecutive or preceeding point of Mi_. To fix the idea, 

suppose that there is a consecutive point of Mi_, call it Mz, then since 

r Jvi1 N contains no contact point, by theorem 2, Mz is a consecutive 
point of the second kind. We know also that the arc r AfiM2 besides 

I 

M;_, Mz contains no other point belonging 

to { M}. It is also clear that the point 
M has a consecutive point of the second 
kind with regard to the curve rnx, call it 
Ma. Ma lies in r ~N. Similarly Ma has 
a consecutive point M.i on the arc rM3N; 

and so on. 
Thus proceeding we obtain an infinite 

sequence of points Mi, M, ... flit, M.+1, ... 
converging to N, of which each is the 
consecutive point of the second kind of the 

just preceeding. Thus it is shewn that 

the characteristic C is really a spiral. 

As each segment CMi M.+1 of the 
characteristic C lies on the same sides of 

the preceeding segments C111i M_i+1 (j= I, 

2, ••. i- 1), the arc C.M; Mi+1 will converge to the point Nor to a 

curve CL through N. 

K 
r 
Fig. 6. 

In the first case the point ·N is a singular point, for each cycle 

Ai which consists of the segments CMi 114+1 and r .M; M.+1 contains N 
and the characteristic angle of A,: is 2n: (§ 3). 

In the second case the limiting curve CL is a closed one. For, 

as the consecutive point of flit is M;H and lim Mi = lim M.+1 = N, 
i~a:> i--1-oo 

the curve CL, which is the limiting position of C,11i fl4+i, starting from 
the point N must return to that point. In the neighbourhood of a 
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Fig. 7. Fig. 8. 

segment of CL, which does not contain any singular point, the curves 

CM;, M;,+1 converge uniformly and therefore the line-element of CL at 
any ordinary point satisfies the differential equation. This shews that 
CL is an integral curve. We shall call the curve CL, following Prof. 
Poincare, a limiting cycle. When CL does not pass through any sin­
gular point, it is a cyclic characteristic, but when it passes through 
singular points it may consist of a finite number of loops and a finite 

number of characteristics connecting two of the singular points as shewn 

in the figure.1 

Fig. 9. 

We have thus established: 
Theorem 5. Any semi-charac­

teristic ef spiral form converges to 
a limiting cycle or to a singular 
point. 

Theorem 6. Any scmi-clzarac­
terist.c w!tich has an infinite num­
ber ef extreme values ef x or y, or 
indefinitely many injlexional points 
is a spzral. 

Proof. That a semi-character-
istic C has an infinite number of 

extreme values of y means that the two curves C and P(x,y)=o have 

1 See p. 180. 
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indefinitely many points in common. Hence, by theorem 4, C is a spiral. 
The other cases are proved similarly. 

We can now determine the form of the semi-characteristic (iv) 

introduced in § r. 
Theorem 7. A semi-characteristic which does not go to an infinite 

distance or to any singular point is a spiral converging to a limiting cycle. 
Proof. Had the semi-characteristic a limited arc-length, it must 

converge to a limiting point which is necessarily a singular point. As 
this case is rejected the curve must have an infinite arc-length. Hence 

it follows that the characteristic has an infinite number of extreme 

values of x or y; aN.d thus it must be a spiral converging to a limit­

ing cycle. 

6. Possible Directions at Singular Points. 

The first question which arises in the discussion of characteristics 
near a singular point S is whether there will be a characteristic which 

passes through the point S and has a definite direction at that point. 

As the first step we investigate the directions along which there 
may exist an integral curve. Such directions are called possible direc­
tions at the singular point S. 

For the purpose transform the origin to the singular point, then 
we have 

(r 2) 

where Pi and Q1 are polynomials which satisfy 

Or, arranging the terms of A., Q1 according to the degree of x,y, it is 
written in the form 

dy _ Hm(x,y)+Hm+1(z,y)+ .. . 
d,i - Kn (x,y) + Kn+l (x,y) + .. . 

where H1- (x,y) and Ki, (x,y) are homogeneous integral expressions of 
).t" degree of x and y. 

Now suppose that there exists a characteristic which passes through 

the origin and has a determinate slope a at that point, then we have 

Using this relation we may find the possible directions. 
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Case m > n. Write (13) in the form 

dy _ x"'--n{Hm(I, u)+xHm+iI, u)+ ... } 
dx - Kn(r, u)+xKn+1 (r, u)+ ... 

where u = L · then, by making .x converge to zero, by (14) we have 
x' 

if a is finite. 

Next, suppose that there exists a characteristic which has the slope 

oo at the origin. Then, writing (r 3) in the form 

dx Kn(v, 1)+yKn+1(v, 1)+ ... 
dy - y"'.-n {H .. (v, r)+y Hm+i(v, r)+ ... } ' 

and making y converge to zero, we obtain 

Kn(o, 1) = o. 

Thus, when m > n, the possible slopes are 

X 
v=-, 

y 

1) a=o, 2) roots of Kn(r, a)=o and 3) a=oo whoo Kn(o, 1)=0. 

Case m = n. Again put L = u, then 
X 

dy _ H,,,(r,u)+x.H,.+1(1,u)+ .. . 
dx - Km(r,u)+xKm+1(r,u)+ .. . 

whence, by making x converge to zero, we obtain 

if a is finite. 
If the differential equation has any characteristic which touches 

the y-axis at origin, as m case m > n, we have 

Kn(o, r) = o. 

When m=n, the possible slopes at ongm are 1) roots of 

a Km (1, r1.)-Hm(l, a)=o, 2) a=cYJ when Km(O, 1)=0. 
Finally, the case m < n may be reduced to the case m > n con-

"d . h . dx Qi st enng t e equation dy = Pi . 

In short the possible directions of the equation ( r 3) are the roots of 

(15) sin 8 K.(cos 8, sin 8)-cos 8 H,(cos 8, sin 8) = o, 

where s is the lowest degree of the polynomials P1 and Q1• 
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7. Critet-ions for Existence of Characteristics which have a 
Definite Possible Direction at a Singular Point. 

We have shewn that a characteristic which has a determinate 
direction at a singular point S may exist only in a possible direction. 

We inquire conversely whether there will really exist a characteristic 

in a given possible direction. 
To solve this question let ASE be an angle which contains a 

possible direction a and does not contain any other possible direction. 
[The case where all directions are possible is treated later]. 

Consider a sector damain D, bounded by the sides SA, SB of the 

angle and a circle described with the point S as center and radius 

R, and suppose that R is chosen so small that in D no singular point 

is contained and on the side SA no contact point lies. 

s 

Let M be a point on SA and let 
C(M) be the semi-characteristic through 
M directed leftwards of SA. Then C(M) 
has another intersection with the bound­
ary of D. For if C(M) lay entirely 
in the interior of D, it would be a 
spiral converging to a limiting cycle 
(theorem 7). Consequently, by theorem 
1, in the interior of D there must exist 

Fig. 10. a singular point. But this is contrary 
to the supposition. Thus there exists 

a point M1 at which C(M) cuts the boundary of D for the first time. 

We shall use again the term consecutive point for M1 • 

As the side SA contains no contact point, the consecutive point 

M1 lies on the broken line SBA. 
1° Suppose on SA there exists a point M' whose consecutive 

point is the singular point S. Then C(M') is surely a characteristic 

which has the slope a at S. For, since C(M') can not make indefi­
nitely many oscillations (theorem 6), it must have a definite direction 

at S; and in D, as there is only one possible direction a, C(ll1') must 

have the slope a at that point. In this case any characteristic C(N) 
of which N is a point on the segment SM' has the slope a at S (Fig. 11 ). 

2° Suppose, for a sufficiently small R, all the consecutive points 
of M's lie on the segment AB, then evidently lim C(M) is a char­

.11--'>s 
acteristic in question (Fig. 12 ). 
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Fig. 12. 

3° Suppose, however small R 
may be taken, on SA there is a 
point 1/ll whose consecutive point 
M;_ lies on the side SB, then in D 
there is no characteristic in question 

(Fig. 13). 
Here we remark that the seg­

ment of the circle AB and the sides 
SA, SB may be replaced by suitable 
curves. 

The above criterion may be ex­

pressed in a more convenient form as follow : 
Criterion I. Let a be a possible direction at the singular point 

S( o, o) of the differential equation ( 12 ). Let D[( a- o)x < y < (a+ o)z, 
o < x < X] be a domain where f(x,y) is continuous and in which 

no other possible direction is contained. For simplicity let the 

expression d:c:) -f(z, (f)(x)) be denoted by x(x, (f}(z)). 

Then a) if x(x, (a-o)x) < o, x(.x, (a+o)z) > o for all x, o < x<Xi 
(< X), there exists at least one characteristic that has the slope a at 

S; b) if x(z, (fl-o)x) > 0, x(x, (a+o)x) < 0 for all X, 0 < x< x;_, all 
the characteristics in [(fl-o)x < y < (a+S) x, o < x < x;] pass through 

S and have the slope a at that point; c) let x(x, (a-o)x), x(x, (a+o)z) 
have the same sign for all x, o < x < Xi, say positive. If there exists 
a system of curves 

r (c) : Y = (/)(x, c), 0 < C < Co 

ending at the lines y=(a-o) x, f=(a+o) x, such that the curve 

converges to S when c converges to zero, and x(z, (/} (x, c)) > o 
(o < c < ci), in D there is no characteristic through S. 
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Proof. Consider the domain D 1[(a-iJ) x<::: y < (a+i3)x, o<.x<X1] 

and let cp(x; $, ( a- '1) $) be the upper semi-chara~teristic through the 

point ;, (a- iJ) ~ (o < ; < X 1). By the supposition a), it is clear that the 

consecutive point of x=f,y=(a-i3) $, with regard to the boundary of 

D 1, lies on the side x=Xi,(a-i3)X1 <y<(a+i3)X1 ; hence the 

characteristic lim <p(.:r; f, (a- iJ) f) is one in question. 
i:.-,o 

The other -two propositions are proved similarly. 

Criterion 2. Let y 1=¢lx),y2=¢2(.x) be any two different curves 

through the same singular point S(x0,y0 ) of dy = f(.x,y), and suppose 
dx 

</Ji(:c) < ¢2(x), x0 < x< X Then, if in D[s[,1(z)<:::y<¢2(x), x 0 < x<X] t is negative, in D there can not exist two <;haracteristics which 

pass through S. 
Proof. Suppose, if possible, there were two such characteristics 

y=rp1(:c) and y=rpl:c) and let 

'Pt< '/>2, Xo < .x <Xi(< X). 

Then rp/- cp/ = /(x, <pz)-f(x, 'f1)=(rp2- Cf1)f/ (x, "I)), 

where 'f) is a certain value between rp1 and <p2• 

Therefore <p/- <pt' < o when :c0 < x < Xi. and consequently by the 

condition <p1(o) = 'Pio) = Yo we should have 

'Pz(x) < '/1(.x), -100 < x < X1 

which is contradictory. 

Criterion 3. Let y 1 = ¢1(.x), y 2 = ¢2(x) be any two curves through 

the same singular point S(x0, y 0) of k = f(.x,y) and let ¢1(x) < ¢ix), 

x 0 < x< X. Then, if in D [¢1(x) <y< sf,z(x), X0 < x< X]f(x,y) 
· · d iJF . . h F( ) . h . f 1s contmuous an - 1s negative, w ere x,y 1s t e concavity unc-oy 
tion of the characteristics (§ 2), there can not exist two different char-

acteristics which pass through S and have the same slope at S. 
Proof. Were there any two such characteristics, let them be called 

y=<p1(x), y=<pz(:c) and suppose 

'P1(z) < 'Pl.x), Xo < x < X1 ( < X ). 

Then rp/' - 'f111 = F(x, 'Pz) - F(:r, '/>1) = ( '/>2- 'f1) F/(.x, 'fJ ), 'Pt < r; < 'P2• 

Therefore cpl'(:c) < rp/'(x), Xo < x < X1; hence by 

<p/(x0) = <p/(x0), we should have 

cp/(x) < <p/(x), x0 < x < X 1, and consequently, since <p1(x0) =<plx-0) 
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which is contradictory. 

Criterion 4. J~et S (x, ,Yo) be a singular point of t = J(x,y) and 

let y= y:-(x) be a characteristic which satisfies <p(x0)= Yo, cf'(x0) = a. Let 

y=¢(x) be a curve of which ¢(x0)=y0, ¢1(x0)=a and <p(x) < s[i(x), 
Xo < x<X. Then, if in D[s,,<y<sv, Xo < x<X]f(x,y) is conti­

nuous and x(x, cf;(x)) = ip'(x)-f(x, \b(x)) < o, all the characteristics 

y=s,,(x; f, ¢($)), (x0 < $ < X), pass through the singular point S and 

have the slope a at that point. 
Proof. The left semi-char­

acteristic y = <p(x; ;, \b(f))(xs ;) 

s 

through $, ¢(f) lies below the 

curve and as it can not cut either 
y~cp(x) of the two curves, y = s,,(x), 

y=cf;(x) in (x0 < x< $), it must 

Fig. 14. go to -the singular point S. 
From <p(x)<sa(x; f, ¢(f))<f(x), 

x 0 < x< $ and s,,'(x0)=a, ¢'(x0)=a it follows cp'(o; ;, cp(;))=a. 

8. Discussion of Particular Possible Directions. 
We shall now consider separately each case of possible direc­

tions introduced in § 6. 

I. m > n. dy _ xm-n{Hm(I,u)+xHm+lr,u)+ ... } 
dx - Kn(I, u)+x Kn+1(r, u)+ ... 

U =L ' . X 

r 0 a=o. When Kn(r, o) =f= o the equation has at least one integral 

on each side of the origin, which satisfies the conditionsy(o)=o,y'(o)=o. 
Proof. By the conditions m - n > r and K,,( r, o) =f= o, we may 

determine positive numbers a and .X such that in D[ - ax< y < ax, 
o < x < X] f(x,y) is continuous and 

x(x, ax)= a-J(x, ax)> o, x(x,-ax) =-a-J(x,-ox) < 0 

for all values of x, o < x < X. Hence there exists a characteristic in 
question. The existence of such integral on the left of the origin is 

proved similarly. 
In the exceptional case Kn(r, o)=o, the equation may or may not 

have the characteristic in question as shewn in the example. 

Ex. The equation dy = - x
3 

has no integral through the origin. 
dx y 
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dy x3 . x 2 x2 
but -dz- = y has two integrals y = -V 

2
, y = - -V 

2 
subject to the 

conditions y(o)=o, y'(o)=o. 
2° a is a root of K,.( I, u) =O. The differential equation may or 

may not have an integral subject to the conditions y(o) = o, y'(o) = a. 

Ex. 

y=(1+8)x 

I 
y=<p(x) 

Fig. 15. 

dy _ . x3 

dx - (y-x)2' 
(Fig. 15). 

%~ 
Here f(x,y) = -,--~ and it is zero when x=o, oo when y=x and 

(y-x)2 
at any other point it is positive or negative according- as x is positive 
or negative. The possible slopes at the origin are a=O, a= I, and 

we consider the latter. 

Now x(x, (I +a)x) = I +a-{:!, x(x, (1-o')x)=1-a- ;,.in which 

a is a positive constant le~s than I, are positive when .x is sufficiently 
small. Also we have 

x(x, x) = -oo when X > 0 and x(x, x)= + 00 when X < 0. 

As x(x, (I+ o')x) and x(.x, x) have different signs, in D [ x < y < 
( I + 1J) x, o < x < X] X being a sufficiently small positive value, by 

criterion 1 a) the equation has an integral y=<p(x) which satisfies the 

conditions <p(o) =O, <p'(o)= I. 
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Since x(x, ( I -a)x) > 0 when O < X <::: .rYi, where X1 is a positive 
value, all the characteristics in l( r - a) x <::: y <::: rp (x), o < x <::: X 1] pass 

through the origin having the slope + I at that point. 

When x < o, f(x,y) is negative and there is no characteristic 

which passes through the origin in the third quadrant. 

a= co, Kn(o, r) = o. 
dy = y3 

Ex. x2 . dx -y8 
The upper semi•characteristics sii(x; ;, fi), 

f; < o, lie between the positive y-axis and the curve y=x½, x < o, 
hence Jim <p(x; ;, ;½) is a characteristic which touches the positive 

l:➔O 

y-axis at the origin. Below the x-axis there is no characteristic which 

touches the y-axis at the origin (Fig. 16) . 

II. nz=n. 

. Y 

Fig. 16. 

dy _ Hm(x,y) + Hm+1(x,y) + •. • 
d.x - Km(x,y) + Hm+1(x,y) + ... 

The possible' directions of this equation are 1) roots of 

and 2) a = oo if K,,,(o, r) = o. 
In .case 2), if we interchange the variables x and y, it will be re-
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duced to case r) corresponding to the slope a=o. Hence we have 

only to consider the existence of integrals of the form 

y = x(a+s(x)) 

where a is a root of ( l S)a and c(x) is a variable which vanishes with x. 

1° a is a common root of u K,,,(1, u)=o .and Hm(l, u)=o. 

Ex. !!z_ = y-x2+zx3 a=o is a common root of Hi(1,u)=u 
dx y 

=O and u K;(1, u)=u~=o and there is the integral y=x2 of the re-
quired form. 

dy f+x4 
-d = ., has no integral which satisfiesy(o)=o andy'(o)=o, 

X y· 
. dy . 1 h since dx is a ways greater t an 1. 

2° a is a root ofn(u)=o but not of Km(I, u)=o. Puty=(a.+y1)x, 
then 

or since Km(r,a.)=4=:o, n(a)=aKm(1,a)-Hm(1,r1)=0, it may be 
written in the form 

dyl 
X-= 

dx 
( r6) 

:where R(x,y1) 1s a rational function. The differential equation of form 

(16) will be considered in subsequent article. 

3° Case where n(u) =O is an identity. In this case all directions 

are possible. 

Put y = xy1, then, remembering y 1 Km(r,y1)-Hm(1,y1) = o, the 

differential equation will be transformed into 

where Lly1) are polynomials of ; 1
1 and R(x,y1) is a rational 

Let c be any value for which Km(r,c)4o, then Rand 

function. 
<JR 

-,.-.- are 
UY1 

continuous functions of x and y 1 in the neighbourhood of x=O,Yt =c. 
dy• 

Therefore, by Cauchy's theorem, there exists one integral of dx1 

=R(x,y1), which assumes the value c at x=o. The original equation 

has therefore the integral of the form 

y = {c+e(x, c)}x 

where lim e=o and c 1s an arbitrary constant for which K,,.( I, c) ==f=O. 
x-,.o 
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To know if the given differential equation will have an integral 

which has the direction of the y-axis at origin, put x =v and consider 
y 

y as the independent variable. Then in the same way we may prove 

the existence of the integrals 

where Jim 
y--),0 

e1 =0 and c' is an arbitrary constant for which Km(c', i)=J:=o. 

The condition Y'x-o= oo corresponds to c'=o. 
Thus, when n(u)=o is an identity, there exists one integral on 

each side of the origin, which has an arbitrarily given slope c at the 

origin, provided that c is not the slope of the lines K .. (x,y) = o. 
. X . 

In the exceptional directions there may or may not exist 'integrals 

y 

Fig. 17. 

as illustrated by the example. 

Ex. 
dy - y2_x3 
dr - xy 

(Fig. 17). 

The exceptional direction is 8=o. On the right of the ongrn 

there is no integral which satisfies y(o)=o, y'(o)=o; but on the left 
there are two such integrals y = ✓z (-x)½ and x= -✓2(-x)½. 
The general integral of the equation is f =cx2

- 2.x-3. · 
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9. Form of Characteristics in the Neighbourhood 
of a Singular Point. 

To know the nature of characteristics near a singular point S, 
consider a closed curve r which contains only the singular point S in 

the interior. Such a curve is called a cycle about S. The simplest 
cycle about S is a cirde of the center S, which contains no other 

singular point. We shall call it a circle about S. , We here consider 
the form of characteristics which lie in a cycle K about S. 

With respct to K the characteristics are divided into five types: 
i) Both sides may end at K (characteristic of parabolic form); 

• ii) One side may end at K and the other side at the singular 
point S• having a definite direction at that point (characteristic of ray 

form); 

iii) Both sides may end at S (characteristic of loop form); 

iv) The characteristic may be a spiral; 
v) It may be a cycle about S. 

Of course these types are not essential of the characteristics but depend 

upon the cycle of reference, e.g. a characteristic of ray form with regard 
to one cycle, may be a loop with regard to a larger cycle. 

We consider first a singular point where no characteristic passes, 

which has a definite direction at that point. 
Let l be a straight line through S, then as this line is not a char­

acteristic we may determine a segment SM which contains no contact 

point. Let K be a cycle about S which passes through M and has 
no other intersection with the segment SM. 

s 

K 

Fig. 18 

M 

X 

Let C(X) be the left 
semi-charateristic through a 
point X 011 lsu and consider 
the curve K1 which consists 
of lsM and the cycle K. 
With respect to Ki., the 
point X h_as the consecutive 
point Y which is different 
from S. Further we know 
that the consecutive points 
Y's corresponding to X's 
(S < X<:e::: M) can not all 

lie on K. For were this the 
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case, denoting Jim V by Vs, the characteristic C( :V~) would be a ray 
x~s 

contrary to supposition. Hence qn ls.if there must be a point, call it .X1 , 

whose consecutive point :V, lies on fm-
When X1 = Y,_ the characteristic C(X1) is a cycle about S, and all 

the characteristics within it must be cycles or spirals. 

I Z 

s 

Fig. 19. 

When .J:; is different from Yi_, Y, is a consecu-

tive point of the second kind, and the segment 

C1 X1 Yi.) of the characteristic C(X1), intercepted 
between .X1, J~ with the segment lx1 Yi, will form 

a cycle K 2 about S. Within K 2 there is no char­
acteristic of ray or loop or parabolic form and 
all the characteristics must be cycles or spirals. 

Theorem 8. -!f through a singular point S 
there is not any characteristic which has a definite 
direction at S, then a neighbourhood of S can be 
constructed such that all the characteristics within 
it are spirals or cycles. 

Suppose the consecutive point Y1 of X1 lies 
between S and Xi. Then C(X1) is a spiral and 

it will converge to the point S or to a limiting cycle about S. In the 

first case all the characteristics in the cycle 10, are spirals converging 

to the singular point S. In the second case the limiting cycle CL and 

the cycle K 2 will form a ring domain R; and all the characteristics in 

R will be spirals converging to the same limiting cycle CL. 
If all the characteristics in a neighbourhood of 'a singular point S are 

cycles, the point S is called a center. On the contrary, if in any cycle about 

S there is a characteristic of spiral form, the point S is called a focus. 
Using the terms we may say: if through a singular point S no 

characteristic which has a determinate direction at that point passes, 

the point S is a focus or a center. 
Remark I. If at a singular point S no -possible direction exists, 

S is a focus or a center. 
Remarks 2. The characteristic angle belonging to a focus or to 

a center is 21r. 

Remark 3.1 Prof. Poincare has shewn that if in a cycle K about 

S there exists an infinite number of cyclic characteristics which do 

not have S as a limiting point, then all the characteristics in the neigh-

• bourhood of S are cycles and the point S is a center. 

l J. Liouville pp. 256-257 (1882)-
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10. Form of Characteristics in the Neighbourhood of a Singular 
Point which is neither a Focus nor a Center. 

Let S be a singular point which is neither a focus nor a center, 

then through S at least one characteristic passes which has a definite 

direction at S. Consider a circle K about S which cuts the charac­
teristic. Then, since the circle K is an algebraic curve and is not a 

characteristic, it contains a finite number of contact points. Of these 
contact points if there are some at which the semi-characteristics have 

parabolic form these semi-cliaracteristics will divide the domain bounded 

by K into a finite number of parts. 

s 

N1' 

Fig. 20. 

One of the subdomains con­
tains S in the interior, call it D 1• 

It will generally be bounded by 
a finite number of segments of 

the circle K, KN/ N2 , KNl N3, ••• 

KN,/ N 1 and a finite number 
of characteristics C(N;_N/), 
C(N2Nl) ... C(Nn Nn') as shewn 
in Fig. 20. The boundary B1 

of D1 may also contain a finite 
number of contact points M 1, M 2, 

...... M,,. not belonging to the 
segments { (NN')}, and we shall 
obtain an aggregate {M, (NN)} 
of contact points and segments 

of characteristics. 

Let C1(M), ClM) be the two semi-characteristics at a contact 

point M and let C1(N), C(N') be the semi-characteristics at N and 

N', which are the extensions of the characteristic C(N, N'). The ag­

gregate {M, (NN')} is divided into the following three classes: 

a) Those points or segments at which both the semi-characteris­

tics C1 and C2 lie out of D1 (Fig. 2 r) ; 
b) Those at which both lie in D 1 (Fig. 22); 
c) Those at which one lies out of D1 and the other lies in D1 

(Fig. 23). 
It is to be noticed that when the semi-characteristic at a point 

M or N enters into the interior of D1, it must be a ray, as it can not 

be parabolic. 
Let C(N, N') be a segment belonging to a) and let L be the ad-
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N' 
N 

. s 

M 

Fig. 21. 

s 

Fig. 23. 

s 

Fig. 24. 

Takeo Wada. 

N' 

N 

Fig. 22. 

jascent point of N, which is different 
from N' and belongs to the aggregate 
{ 111, N, N'}. L is a contact point or 
an endpoint of another characteristic 
C(N, N'), and in K(L, N) there is no 
contact point (Fig 24). 

Let Y be a point of K(L, N), 
then, remembering that the characteristic 
through a point P moves continuously 
with the point P, we see that when Y 
is sufficiently near to N the characteristic 
C(Y) is parabolic and separates the 
characteristic C(N, N') from the singular 
point S. The point Y has therefore its 

consecutive point Vi with respect 

to the boundary B1• 

Now divide all the points on 
K(L, N) into two groups A, B by 
the following rule : Assume the 

Z order LNN' and let Z be any point 
on K(L, N). 1 ° If all the char­
acteristics C( Y), Z < Y < N, be 
parabolic and separate C(N, N') 
from S, we put the point Z into 
group B. 2° If the point Z does 
not satisfy the condition I O

, we 
put it into group A. 
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Then the partition A, B will determine a point E, which may 

coincide with L when the characteristic C(L) is a ray. 

Let lim C1 Y, Y') = C(E, E'), then C(E, E') is a characteristic 
Y__,.E+O 

which passes through the point S. For, were C(E, E') a characteristic 

of parabolic form, suppose it lay on the same side of S with C(N, N'), 
in K(L, E) there would be a point Z through which a characteristic 

passes that has the same property as C(E, E') and the point Z( < E) 
would belong to group ~B. This is impossible. Similarly C(E, E') 
can not be a parabolic characteristic which lies on the opposite side 

of S with C(N, N'). Thus the curve C(E, E') must pass through S, 

N' N 

E' 

s 

Fig. 25. 

E 

and it will generally consist of 
two rays and a number of loops. 

It is generally shewn that 
the number of l<!lops which have 
the common vertex S and of 
wbich any lies out of the others 
must be finite. For, supposing 
there be l such loops, draw a 
circle about S, which cuts all the 
loops, then, 111 each segment 
of the circle intercepted by one 
loop there exists at least one con­
tact point and in the circle there 
are at least l contact points. 
Now, by theorem IV, when the 

degree of f(x,y)= ~ is m, any circle can not have more than z(m+ 1) 

contact points. This shews that through the point S there can not be 

more than 2 (m+ 1) loops of the said property. 

Thus, when C(NN') be a segment of a) class, there exist two 

ray characteristics SE, SE' and finite loops which with the segment 
ENN'E' (of B1) form a domain where all the characteristics are para­

bolic (Fig. 25). 

The same may be said of a contact point of class a) i.e. when 

M is a point of a) there exist two ray characteristics SF, SF' and 
finite_ loops such that in the domain, bounded by the curves and the 
segment FMF' of Bi, all characteristics are parabolic. \Ve shall call 
these domains parabolic domains. 

\Ve consider now the elements of class b ). 
Let a point M or an arc C(NN') be an element of class 
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b). Then two ray characteristics C,(M), C/11,1) or three characteristics 

c;_(N), c;(N') and C (NN') will form a loop, in the interior of which 

all characteristics are loops. The same may be said of any loop which 
forms the boundary of a parabolic domain. These domains are called 
loop domains. 

From D 1 when all parabolic and loop domains are removed, there 
will remain a finite number of sector domains in which the character­

istics are rays. We call these ray-domains. 
Theorem 9. TVhen S is a singular point which is neither a focus nor 

a center, there exists a neighbourhood D1 of S and a finite number of char­
acteristics of, ray and loop forms, which divide D 1 into subdomains o/ 
the three kinds : parabolic, ray and loop. 

A singular point is called a node when all the characteristics 111 

a neighbourhood of the point are rays. 

From theorems 8, 9 it follows : 

Cor. If there exists a sequence of cycles about a singular point 

S, which converges to S and has no contact point, then the singular 

point S is a focus or a node. 

We can now determine what form a limiting cycle may have. 
Let CL be a limiting cycle of a spiral C. If CL does not pass 

through any singular point it is a regular closed curve. 

When it passes through singular points it will consist of character­

istics whose extremities are singular points. Let S1 be a singular point 

on CL and Ci(S1) be a branch of CL through S1. If C';_(S1) is not a loop 
it is a ray which goes to another singular point. That the number of 

characteristics belonging to CL, which pass through the point S1, is 

finite, may be proved as in theorem 9. 
It will be further shewn that the number of branches of CL at S1 

is even. If there 
were an odd 

Fig. 26. 

number of 

branches of C~ 
through 51, there 
must one, say . 
l;;(S1), on both 

Ci sides of which 
the spiral C 
would lie. Let 
Mi,MM; be a 
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segment of a straight line which contains a point Mon Ci(S) and 

does not contain any contact point. Then on each segment MM;, 
MM there would be indefinitely many points on C and we might 

determine a point X on 111;_ M, whi.ch would be common to C, such 
that the consecutive point Y with respect to the segment M;M~ 
would be on Jvl~ and be of the first kind. This would bring a 
contact point on .l'rfi.M2, which is contradictory. 

Hence we may conclude : any limiting cycle may consist of a finite 

number of loops and a finite number of ray characteristics which con­

nect different singular points, and at each singular point meet an even 

number of branches (Fig. 9). 

Fig. 9. 

11. Form of Characteristics in an Infinite Distance. 

If there be any characteristic y=So(x) of a differential equation 

dy -j( ) _ P(x,y) 
-d-x - x,y - -Q-(x-,-y)-

which has a definite direction at infinite distance, then the three limit­

ing values 

Iim dd:Y, lim .JI_ and lim f(x,y) 
X--,.CIJ % :t'--,.rtJ Z X----+rl:i 

will have the same value. Using these conditions we <;an determine 

the possible directions of characteristics at infinite distance. 

For the purpose, arrange the terms of P(x,y) and Q(x,y) in de­

scending powers of x and y, thus 

dy _ H,,,.(x,y)+H,,,,,_i(x,y)+ ... 
dx - K,.(x,y)+K._i(x,y)+ ... ' 

where H.(x,y), K;,(x,y) are homogeneous expressions of ith degree. 
Treating this in a similar manner as we did a singular point, we find 

that the possible directions at infinite distance are : 
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i) m > n, cos IJ Hm(cos 0, sin 0) = o; 
ii) m = n, sin 0 K,,,( cos 0, sin 0)- cos 0 H,,,( cos 0, sin 0) = o; 
iii) m < n, sin 0 K,.(cos 0, sin 0) = o. 

To examine the existence of characteristics m a possibl_e slope a 

we use the projective transformation 

( 17) 
I y 

x=-y, Jl=x 

if a =t= oo (i.e. 0 =t= : ). Then 

(18) 
dY = Y-f(y, -f) 
dX X 

YX•n-n {Kn(I,Y)+XK"_,(r.Y)+ ... }- {H,n(1,Y)+XHm_i(r,Y)+ ... } 
xm-n+1 {Kn(I, Y)+XKn-1(1, Y)+ ... } 

and we have to consider the characteristics at X = o, V = a of the 
new equation. If ( r8) has a characteristic of the form 

Y = a+X(11+e(X)), IXI < a 

where lim e(X) = o, then the original equation has a characteristic 
x-o 

of the form 

When a=oo or a is a possible slope which ts not zero, put 

then the equation (2) is transformed into 

(20) 
dY f(-f,-y)Y-1 

-dX = Xf ( ; ' +) 
_ Y{Hm(1~1)+XH,,,_i( V, 1)+ ... } -X"'-n{Kn( Y,1)+XK,,_i( Y, 1)+ ... } 
- X{ H,,.( Y, I)+ XHm-1( Y,I)+~} 

and we have to consider the characteristics through the point X =O, 

Y = ..!.., when a is finite, or the new origin, when a is infinite. 
a 

By the transformation (17) or (19) the infinity line in the xy-plane 
is transformed into the Y-axis of the new plane ; and by the equation 
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(18) or (20) we see that, with the exception of the case where m = n 
and sin(} Km (cos(}, sin 0)-cos (} Hm (cos 0, sin O)=o is an identity, the 
Y-axis (X=o) is a characteristic and any possible direction at infinite 

distance is transformed into a singular point which lies on the Y-axis of 

the new plane. 

12. Singular Points of the First Order. Focus and Center. 
Suppose a singulai: point S of a differential equation (2) is taken 

for the origin, then we have 

(21) dy _ az+by+ .. . 
dz -Ax+By+ ... . 

If in this equation D = aB-Ab =I= o, the origin is called a singular 
point t?f the first order. In the following we shall consider the char­

acteristics of (21) in the neighbourhood of the origin. 
The equation for possible slopes of (21) is 

Bt-+(A-b)t-a = o 

and there are two real different, or real coincident, or no real possible 

slopes, according as the discriminant 

is positive, zero or negative. We consider these cases separately. 
When E is negative, the origin is a focus or a center as there is 

no possible direction at that point (§ 9, Remark 1). 
To find the form of characteristics near the origin more exactly, put 

y = r sin(}, z = r cos 0, 
then ( 21) becomes 

r' A cos2 (} + ( B +a) cos (} sin (} + b sin2 
(} + r ( ) 

----~----'----,-:.-------~----'-----c-acos2(}+(b-A)cos0sin0-Bsin2tl+r( ) ' r 

where the expresssions in the brackets are polynomials of r, cos(} and 
sin 0, and, by the form of the equation, we know that, for sufficiently 

small r, : is continuous of r and 8. 

Neglecting higer infinitesimals the last equation becomes 

R' _ A cos2
(} + (B + a) cos 8 sin 8 + b sin20 

R - a cos20+ (b-A) cos 8 sin 0-B sin20 

and, integrating this, we obtain 
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where 
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eM arctgG 
R=C . 

Va cos28+ (b-A) cos O sin tl-B sin28 

M= b+A 
-v'-E' 

G= -2BtanO+b-A. 
i/-E 

and C is an arbitrary constant. The integrals are spirals if M ==!= o, since 

R (O+ 2rr) = eazM1t R(O) 

where a is I or - I according as B is negative or positive. 

As the integral r differs from R by ap infinitesimal, we may say 

that the characteristics of (23) in the n~ighbourhood of origin are spirals 

converging to the origin when E < o and A+ b ==!= o. 
When A+b=o the integrals Rare cycles since R(O+w)=R(O). 

It can not be inferred that the same holds for the integrals r. We 

may so far only conclude that the origin may be a center when E < o 
and A+b = o.1 

13. Singular Points of the First Order which is 
neither a Focus nor a Center. 

Though equation (21), of which E=(A-b)2+4aB is not negative 

may be treated directly, it is more convenient to consider the reduced 

equation. 

(24) 

then 

(25) 

Put 

where 

dr; _ a1~+b11J+ .. . 
d~ - Ai~+ B1r;+ .. . 

(26) { 
a1 = - {Ba2+ (A-b) a-a}, bi= a+bp-Aa-Ba(3,} 

A 1 =-a+A{3-ba+Bap, B 1 = B(32 +(A-b) (3-a. 

When D > o the two roots of (22) are real and different, call 

them t1, t2, and in the equations of transformation put a=ti, {3=t2, then 

we have 

and (25) becomes 

1 A rigorous criterion to distinguish center and focus was given by Prof. Poincare in 

J. Liouville, pp. 173-196 (1885). 



(27) 

where A= Bt1 +A 
Bt~+A 

the equation 
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dr; _ A7J + .. . 
df - .f+ .. . 

The value of A is the ratio of the two roots of 

and it is positive or negative according as D is negative or positive. 

When D=o the two roots of (22) are equai, say tr, and put t1 

for {3 in ( 2 3), then 

a1 = -B(t1-a)\ A 1=b1 = -Btl+t1(b+Ba)-ba, B1 = o 

and ( 2 5) becomes 
d1J _ r;+J~ + ... 
d~ - .f+ ... (28) 

where 

and a 1s a value which is not equal to t1 • 

As the transformation (24) is linear homogeneous, to a cycle r 
about the origin of :ry-plane, a cycle 71 about the origin of ~r;-plane 

corresponds and to a characteristic C in the old, a characteristic C1 in 
the new plane. Also it is evident that the type of C with regard to 
r is the same as that of C1 with regard to r1• Thus to find· the form 

of characteristics of ( 2 r) we have to investigate the characteristics of 

the transformed equation. It is also to be noticed that in the trans­
formed equation (27) the possible directions are , 1 =O, , 2 = oo and that 

these correspond to ti, t2 of the original equation. 

d1J - Jr;+ ... -/(r: ) A 
d= - I:: - . .,, ' 1J ' < 0. - r,;+ ..• 

To apply criterion r § 7, 
1s a positive number. Since 

positive value X such that, in 

is continuous and 

take two lines y=lx y= -lx where l 

lim /(:r, ux)=Au, we may determine a 
X->0 

D [ -l:r<y <+tx, o < x< X] f(:r,y) 

f(x,-lx) > -l, f(x,l:r) < l (o < x<X). 

Hence in D there exists a characteristic y = 90(:r) which satisfies 90( o) 

=o, 90'(0)=0. Besides y=90(z), in D there is no characteristic which 
passes through the origin, as 
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of - J.x+ .. . 
-ay - (x+ ... )2 

is negative in [-lx-<--y-::5.+lx,o < x<Xi], when X 1 is sufficiently 

small. 
Similarly, it ts shewn that in the direction 0=11: there exists a 

single integral. 

To find the existence of characteristics in the directions 0- r. - 2' 

0 = 3n- write the equation in the form 
2 ' 

I 
T~+... I 

7J+ •.. , T < o, 

and, considering 7J as the independent variable, we may conclude that 

there exists a single characteristic in each direction of O =.!!__ and 
2 

0= 31r . 
2 

Thus the equation (27) has four ray characteristics in the direc-

tions 8=o, 8=.!!....., 8=11: and 0= 31r ; and all the other characteristics 
2 2 

near the origin are parabolic. 

A singular point of this sort is called a col.1 

Remark. At a col the characteristic angle is - 2r.. 

We treat first the case o < ). < I. To find the existence of char­
acteristics in the direction fJ=o, again apply criterion I § 7. We 

have lim f(x, ux)=J.u and there exists a positive number X such that 
x-o . 

in [lz<y<+lx,o < x<X],f(x,y) is continuous and 

-l-.f(x,-lx) < o, l-f(x, lx) > o (o < x< X) 

where l is a positive number. This shews that in the direction O=o 
there exists a characteristic. Now by calculation we find 

(o <). < r) 

and, as this value is negative in [ -lz<y < +lx, o < x< Xi] for 

t As a proper definition is not found, following Prof. Poincare, the french term ' col' 

is adopted. 
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sufficiently small positive .x;_, in the direction O=o there is not any 
other characteristic. Similarly, in the direction {} =rr, there exists only 

one characteristic. 

Next consider a circle of radius p which has the origin as center. 

The contact points of the circle are given by 

and it is clear that when p is sufficiently small the simultaneous equa­
tions have no solution. The origin is therefore a node. As the differ-

ential equation has only the remaining possible directions 0=~, 
. 2 

fl = 31r , the characteristics 
2 

in the neighbourhood of the origin must 

have these directions at the origin. 

Case A= I. In this case the equation for possible directions be­

comes an identity ; and all directions at the origin are possible. Also 

there is no exceptional direction. The origin is therefore a node ; and 

in each direction at the origin there is only one characteristic. 

Case A > I. Writing the equation in the form 

I 
0 < y < I, 

and considering '1) as the independent variable, it reduces to the case 

o<l<1. 

In this case a=OCJ 1s a double root of the equation (22). By 
criterion I § 7, we see that all characteristics in [ -ly <: z <: ly, 
o < y <: Y], where l and Y are sufficiently small positive values, touch 
the positive y-axis, and those in [ty<:.x<: -ly, -Y<:y < o] touch 

the negative y-axis at the origin. Further, the ellipse z=p cos fl, 
y=bp sin (J has no contact point when b > I 2A I, for sufficiently small 
p. The origin is therefore a node. As there are only two possible 

directions fJ = r., 0= 31r, all the characteristics in the neighbourhood 
2 2 

of the origin must have these directions at the ongm. 

The finding concerning characteristics in the neighbourhood of a 

singular point of the first order may be summed up into the following : 

Theorem IO. In the equation 
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dy _ ax+ by+ . . . D = I a b 1..--l.-. 
dz - Ax+ By+ ... ' - A B --r o 

i) Wizen E = (A-b)2 +4aB < o, tlze origin is generally a focus. 
it may be a cellter only when the additional condition A+ b=o is satisfied; 

ii) Wizen E> o t!te origin is a col (Fig. 27) or a node according as D 
is positive or negative; and specially a) when E > o, D < o, denoting 
by t2 tliat one of the _possible directions, for wlziclz tlze absolute value ef 
Bt+ A is greater tlzan that at the other root ti, there are indefinitely 
many characteristics that have the slope t2 o,z both sides ef the origin, 
and there zs a single characteristic on each side of the origin, that has 
the slope ti (Fig. 28); b) when a=o, B=o, A=b on each direction at 

the origin there is a single characteristic ; 
iii) When E = o the origin is a node and all characteristics lzave 

l , A - b h . . ( D,' ) t1ze same siope ---:;:g- at t e orzgm rtg. 29 . 

Equation ( 16), given in § 8 

.x dy = a.x+by+ ... b =f= 0 
d.x 1+A1.x+Biy+ ... ' 

1s a special case of the above. The possible directions at the origin 
a are -- and oo ; and the origin is a col or a node according as b 

I - b 
is negative or positive. 

Fig. 27. 
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y 

Fig· 28. 

y 

dy _ X-2ry 
dx--2x+y 

-/----.L-------¥------/----------,/L___x_ 
/ 

Fig. 29. 
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14. Examples. 
The general principle for tracing characteristics defined by the 

equation 7z = ~[::;? is due to the investigation of 

r 0 .f(x,y) = ~t•Y~ i.e. a) curve P(x,y)=o, b) curve Q(x,y)= o 
=z,y 

c) sign of .f(.x,y); 
2° F(.x,y) i,e. a) curve F(.x,y)=o, b) sign of F(.x,y), c) 

x{ (.x,y)h-o = ( d.dy) - (.f(x,y))F-0; 
% F-0 

3° Natm:e of singular points; 
4 ° Nature of characteristics at infinite distance ; 
5 ° Limiting cycles. 
Examples of tracing characteristics from their equations. 

Ex. I. 

n,N 

n,P 

Fig. 30. 

.P,P 

dy = y2- .,,2 (F' 32) dx ~ ig. . 

y 

P,P 
P,P 

P,N 
P,N 

p: f >O 

n: f <o 
P: F>o 

N: F<O 

--x 
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We have 

and the configuration of slope and concavity is shewn in Fig. 30. 
On the curve F(x,y)=o, 

and we find 

X > o, when 

when 

X = oo when 

and 

-I<:< - i,1-\' 
y - I 
-;- --:-1Ff 

189 

and [x(x,y)]i,,... 0=o has no roo't, so there is no contact point on the 
curve F=o. 

The given equation has no singular point. 

At infinite distance the possible directions are (I) a1 = oo , (2) 

y 

\ 
\ 

Y==l 

X 

Fig. 31. 
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d ( ) B h b . . y I h d"cr. a2 = I an 3 ~= - I. y t e SU stitutlon X=x• y=){ t e 111er-

ential eqnation becomes 

dY 
d.X -

y_ y3 _ _}{2 

.X(r - y2) (Fig. 3 r) 

and the three directions go to the points: (r) X=o, Y=o; (2) X=o, 
Y=1 and (3) X=o, Y=-1. 

(r) The point X=o, Y=o is a node and in each direction there 
1s a single characteristic. 

( 2) Put Y = Yi+ r then dYi_ = ~~ j-_J_ Vi
2 
+ _yi3 j-X 

2 = fi(X Vi) 
' dX X(Y?+ 2 Y1) ' 

and the possible directions at X=o, Yi. =O are 8=o, 8=1r, 8=!!_ and 
2 

8= 31r. The integral X=o is the only characteristic in the direction 
2 

y 

00 

Fig, 32. I 
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0 =!!_ fJ = yr There is a single characteristic on each direction 
2' 2 . 

O=o, 8=r.:. 
(3) X = o, Y = - I is a node and all the characteristics near the 

point have the direction -~ at X =O, Y = - I. 
2 

Thus the differential equatioq at infinite distance has ( r) charac-

teristics which have arbitrary straight lines parallel to the y· axis as 

asymptotes, (2) single characteristic on each of first and third quadrants, 
which has the line x=y as asymptote, (3) indefinitely many character-

istics which have the direction 
r.: in second and fourth quadrants. 

Ex. 2. 

Here 

4 

x dy = x-zy+y2 (Fig. 35). 
dz 

f(x,y) - x-zy+f 
X 

I 
l (Y) 

Fig. 33· 
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{x(.r,y)} F-o = z(y) is shewn 111 Fig. 33. 

The singular points are x=o,y=o and x=o,y=2. 
The origin is a col through which, besides the characteristic x=o, 

a characteristic with the slope ~ passes. 
3 

The point x=o,y=2 is a node. At that point all characteristics 
except x=O have the slope - 1. 

The possible directions at infinite distance are a= oo and a=o, 

a=oo. 
y I 

Put x=y,Y=y 

dY Y(1-3X+XY) 
dX - X(r-2X+XY) 

then 

Hence X =O, Y =O is a node through which in each direction a single 

characteristic passes. 

a= o. I Yi x=-,y=-, 
X1 X1 

Put then 

dYi _ -X1+3X1 Y;_-Y;2 
dX; - Xl (Fig. 34). 

Y, 

x, 

---- f=o 

Fig. 34. 
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At X1=0, Yi.=o the possible direction is oo. Using the configura­
tion of slope and the criterions given in § 7, we find: X 1 =O is a char­

acteristic ; in the first and fourth quadrants there is no characteristic 
through the origin; in the third quadrant there is a single characteristic 

Ci which has the slope + oo at the origin ; the characteristics below C1 

are parabolic and those above C1 are rays having the sl_ope · - oo at 

the origin. 

) 
',, ;' 
' '-' '-

' ' \ 
-------------------- ---------- \\ 

~---~~ --- -•-- - ----- -- - I 
1 / 

Fig. 35. 

F=o 

J=o 

I 
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Hence of the original equation we may say: 1° there are two 
characteristics, one of which lies above the x-axis and the other 

below it, that have any line x=c as asymptote; 2° in the second 

quadrant there is a single characteristic which has the slope o at infi­
nity. This is the characteristic corresponding to Ci; 3° in the third 

quadrant there is an infinite number of characteristics which have the 
slope o at' infinite distance. 

Ex. 3. dy - 4%:Y 
dx - y~+x4 

4-X'.Y We have f(x,y) = 2 4
, 

i)-F 4x3(x4 y2) y + x 
_II_= - and we know 

(Fig. 36). 

ay (yz+ x4Y 
negative according as L is positive or negative. 

X 
The equation has only one singular point x=o, y=o and evidently 

y=o is a characteristic through it. 
To find if there will be characteristics besides this, we apply 

criterion 4 § 7. Assume 

7J = a~n, n > I 

then 
d7J 4ai;"+3 

x(t 7J) = d~ -/{~, r;) = na~n-1_ a2~2"+~4 

and we have, if ~ > o, 

'Y 

Fig. 36. 
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i) x>o when r<n<2,a>o or n = 2, a> r; 

ii) x=o when n = 2, a= r; 

iii) x<o when n = 2, 0 <a< I or 2 < n < 4, a> o; 

iv) x>o when n > 4, a> o. 

By ii) y=z2 is a characteristic ~nd, since t < o, above this 

curve there is no characteristic through the origin. In ( o < y < x2, 
x > o) all characteristics pass through the origin and touch the posi­
tive x-axis. Also we know that the characteristics are symmetrical 
with respect to the x or the y-axis. 

The possible directions at infinite distance are a =o and a= oo ; 

and all the characteristics except y=o have the slope + oo at it'i.finity. 

dy _ -x-y+y (x2+y2) 
dz - y Ex. 4. (Fig. 37). 

The configuration of slope is shewn in the figure. The equation 
has only one singular point x=o, y=o; and this point is a focus. 

Consider the circle 
~2+rl = p2 

then X(f,r;) = :i-f(f,r;) = r-p\ 

p 

-------- --------- ..... --- ..... .......... .......... ___ ----
p 

Fig. 37. 

p 

p 
P:f>o 
n:J<O 

--- J=-o 
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therefore x(e. 1) > o when o<,n < I' 

=O when p = I, 

<o when I< p, 

Thus the circles ~2 +r/=p2 have no contact points except the 
points ~ = ± p, '1) =O when p =l= I. At the contact points the circle and 
the characteristics cut each other and we see that the circle ~2 + YJ2 = I 
is the only limiting cycle. 

In each of the first and third quadrants there is a characteristic 
which has the x-axis as asymptote. All the other characteristics have 
the slope oo at infinite distance. 

Ex. 5 
. z{2(x2 +y2

)- I }dx+ 

[ {2(x2 +y2) + 1}y+-1 (2z2
- 1){(z2 +y2)2-x2+ y2} ]dy=o (Fig. 38). 

2 

The equation has four finite singular points z=O,y=o; x=O,y=I; 
I I 

z=~/-=, Y=O anu x=-~, y=o. 
V 2 1/2 , 

1° x=o, y=o is a col and the slopes of the characteristics through 
that point are - I and + 1. 

2° z=o, y= I is also a col and the slopes of the characteristics 

h h h . I I 
t roug t at point a:e - -.I 

2
_, +-./ 

2 
. 

3° Put X = ✓-2-+x, then 

dy _ -2X+ ... 
dX - 3-./ 2 

2y--
8
-X+ ... 

and we know that the point x= -.Ir 
2 

, y = o is a focus. 

The equation remains unchanged by putting -x for z, hence the 
line-elements are symmetrical with respect to the y-axis. 

The equation has the characteristic (x2 +y2
)

2-x2+y2=o; and each 
loop of this lemniscate is the limiting cycle of the spirals which have 

h r: • I I 
t e 1oc1 at x = -V 

2 
, y=o or x = - -.I 

2 
, y =o. 

By the configuration of the slope the form of the characteristics 
may be traced as shewn in Fig. 38. 
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· Fig. 38. 
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