On the Solutions of Partial Differential Equations of First Order at the Singular Points.

By
Toshizô Matsumoto.

(Received May 8, 1917.)

Introduction.

Briot and Bouquet were the first to study in a general way the solution of the differential equation of the form

$$
x \frac{d y}{d x}=a x+b y+\ldots,
$$

at its singular point $x=0, y=0$. Afterwards Picard and Poincaré found, at the same time, the form of solutions which are not holomorph. On this occasion, Poincare treated in his Thèse, the solution of the partial differential equation of the form

$$
\xi_{1}(x) \frac{\partial f}{\partial x_{1}}+\xi_{2}(x) \frac{\partial f}{\partial x_{2}}+\ldots+\xi_{n}(x) \frac{\partial f}{\partial x_{n}}=0
$$

where $\xi_{1}(x), \xi_{2}(x), \ldots \xi_{n}(x)$ are holomorphic functions of n variables x_{1}, $x_{2}, \ldots x_{n}$ about the origin ($0,0, \ldots 0$), and each function begins with terms of first order of $x_{1}, x_{2}, \ldots x_{n}$. Under certain conditions he found $n-$ I solutions of the equation. Afterwards, by several mathematicians, the exceptional cases were studied, for the case of two variables, rather as an ordinary differential equation. The literature on the study is given by Painlevé in Encyclopédie d. Sc. Math., (Tome II, vol. 3); but researches upon the partial differential equation are comparatively rare ; and the problem is extremely difficult. I will, at first, repeat the discussion of the foregoing equation and next discuss the solutions of complete systems.

1. There is given a partial differential equation of first order between n independent variables $x_{1}, x_{2}, \ldots x_{n}$ such that

$$
X f \equiv \xi_{1}(x) \frac{\partial f}{\partial x_{1}}+\xi_{5_{2}}(x) \frac{\partial f}{\partial x_{2}}+\ldots+\xi_{n}(x) \frac{\partial f}{\partial x_{n}}=0,
$$

where $\xi_{1}(x), \xi_{2}(x), \ldots \xi_{n}(x)$ are functions of these n variables. By the symbol X, we always mean the operation of the form

$$
\xi_{1}(x) \frac{\partial}{\partial x_{1}}+\xi_{2}(x) \frac{\partial}{\partial x_{2}}+\ldots+\xi_{n}(x) \frac{\partial}{\partial x_{n}},
$$

exerted upon a function $f(x)$ of the variables $x_{1}, x_{2}, \ldots x_{n}$.
To find the solution of this equation, consider two equations of the form

$$
\xi_{1}(x) \frac{\partial f_{1}}{\partial x_{1}}+\xi_{2}(x) \frac{\partial f_{1}}{\partial x_{2}}+\ldots+\xi_{n}(x) \frac{\partial f_{1}}{\partial x_{n}}=F_{1}\left(f_{1}\right)
$$

and

$$
\xi_{1}(x) \frac{\partial f_{2}}{\partial x_{1}}+\xi_{2}(x) \frac{\partial f_{2}}{\partial x_{2}}+\ldots+\xi_{n}(x) \frac{\partial f_{2}}{\partial x_{n}}=F_{2}\left(f_{2}\right)
$$

where $F_{1}\left(f_{1}\right)$ and $F_{2}\left(f_{2}\right)$ are functions of f_{1} resp. f_{2} alone. If we find the solutions f_{1} and f_{2}, then, putting

$$
\int \frac{d f_{1}}{F_{1}\left(f_{1}\right)} \equiv \theta_{1}\left(f_{1}\right), \quad \int \frac{d f_{2}}{F_{2}\left(f_{2}\right)} \equiv \theta_{2}\left(f_{2}\right)
$$

we have

$$
X \theta_{1}\left(f_{1}\right)=\mathrm{I}, \quad X \theta_{2}\left(f_{2}\right)=\mathrm{I}
$$

Hence the difference $\theta_{1}\left(f_{1}\right)-\theta_{2}\left(f_{2}\right)$ is a solution of our equation $X f=0$.

By this method, Poincaré ${ }^{1}$ proved the existence of $n-1$ solutions of the partial differential equation

$$
\begin{equation*}
X f \equiv \xi_{1}(x) \frac{\partial f}{\partial x_{1}}+\xi_{2}(x) \frac{\partial f}{\partial x_{2}}+\ldots+\xi_{n}(x) \frac{\partial f}{\partial x_{n 2}}=0 \tag{I}
\end{equation*}
$$

where

$$
\begin{aligned}
& \xi_{1}(-x)=\lambda_{1} x_{1}+\ldots \\
& \xi_{2}(x)=\lambda_{2} x_{2}+\ldots \\
& \ldots \ldots \ldots \ldots \ldots \\
& \xi_{n}(x)=\lambda_{1} x_{n}+\ldots
\end{aligned}
$$

The functions $\xi_{1}(x), \xi_{-}(x), \ldots \xi_{n}(x)$ are holomorphic about ($0,0, \ldots 0$) and the dotted parts are terms of higher order than the first. To solve

1 Poincaré, Thèse (Paris, 1879) and Acta Mathematica 13 (1890), Sur le problème des trois corps....

Picard, Traité D'analyse, III.
this equation, take for $F_{1}\left(f_{1}\right)$, the form $\lambda_{1} f$. For the existence of a holomorphic solution of the equation

$$
\begin{equation*}
X f=\xi_{1}(x) \frac{\partial f}{\partial x_{1}}+\xi_{2}(x) \frac{\partial f}{\partial x_{2}}+\ldots+\xi_{n}(x) \frac{\partial f}{\partial x_{n}}=\lambda_{1} f \tag{2}
\end{equation*}
$$

Poincare gave the following conditions between the coefficients λ_{1}, λ_{i}, $\ldots \lambda_{n}$, namely :
I^{o}, the relations

$$
\lambda_{1} p_{1}+\lambda_{2} p_{i}+\ldots+\lambda_{i}\left(p_{i}-1\right)+\ldots+\lambda_{n} p_{n}=0, \quad i=1,2, \ldots n,
$$

are not satisfied by any positive integral values of $p_{1}, p_{2}, \ldots p_{n}$, provided,

$$
p_{1}+p_{2}+\ldots+p_{n} \geq 2 ;
$$

2°, if we denote $\lambda_{1}, \lambda_{1}, \ldots \lambda_{n}$ by the points on a plane, then we can trace a convex polygon in which these n points lie but which does not contain the origin; or we may say that this is a straight line through the origin, on one side of which all the n points lie.

Let us, in the following, call these two conditions, Poincare's conditions, for simplicity.

For the equation (2), the conditions for $i=2,3, \ldots n$ are unnecessary. Now differentiating the equation (2) p_{1} times with respect to x_{1}, p_{2} times with respect to $x_{2}, \ldots p_{n}$ times with respect to x_{n} and putting $x_{1}=x_{2}=\ldots=x_{n}=0$, we have the value of

$$
\left(\lambda_{1}\left(p_{1}-1\right)+\lambda_{2} p_{2}+\ldots+\lambda_{n} p_{n}\right)\left(\frac{\partial^{p_{1}+p_{2}+\ldots+p_{n}} f}{\partial_{x_{1}} p_{1} \partial_{x_{2}}^{p_{2}} \ldots \partial_{x_{n}}^{p_{n}}}\right)_{0}
$$

expressed by the values of partial derivatives lower than $p_{1}+p_{2}+\ldots$ $+p_{n}$ at $x_{1}=x_{2}=\ldots=x_{n}=0$. Under Poincare's conditions, the coefficient of the derivative is not zero, moreover the quotient

$$
\left|\frac{\lambda_{1}\left(p_{1}-1\right)+\lambda_{2} p_{2}+\ldots+\lambda_{n} p_{n}}{p_{1}-1+p_{2}+\ldots+p_{n}}\right|
$$

is greater than a certain number $\varepsilon>0$, for any $p_{1}, p_{1}, \ldots p_{n}$. Using Mr. Picard's notations, put

$$
f=A x_{1}+v,
$$

where A is an arbitrary constant. Then the equation (2) becomes

$$
\lambda_{1} x_{1} \frac{\partial v}{\partial x_{1}}+\lambda_{n} x_{2} \frac{\partial v}{\partial x_{2}}+\ldots+\lambda_{n} x_{n} \frac{\partial v}{\partial x_{n}}-x_{1} v=
$$

$$
\begin{equation*}
=\varphi_{1} \frac{\partial v}{\partial x_{1}}+\varphi_{2} \frac{\partial v}{\partial x_{2}}+\ldots+\varphi_{2} \frac{\partial v}{\partial x_{n}}+\varphi^{\prime} \tag{3}
\end{equation*}
$$

where the functions $\varphi_{1}, \varphi_{2}, \ldots \varphi_{n}$ and ψ commence at least by terms of second order. Let M be the maximum modulas of $\varphi_{1}, \varphi_{2}, \ldots \varphi_{n}$ and ψ in the convergent circles with radius a, about the origin. Then the equation

$$
\begin{gathered}
\varepsilon\left(x_{1} \frac{\partial V}{\partial x_{1}}+x_{2} \frac{\partial V}{\partial x_{2}}+\ldots+x_{n} \frac{\partial V}{\partial x_{n}}-V\right) \\
=\left\{\frac{M}{\left.1-\frac{x_{1}+x_{2}+\ldots+x_{n}}{a}-M-M \frac{x_{1}+x_{2}+\ldots+x_{n}}{a}\right\}} \begin{array}{rl}
& \times\left(\frac{\partial V}{\partial x_{1}}+\frac{\partial V}{\partial x_{2}}+\ldots+\frac{\partial V}{\partial x_{n}}+\mathrm{I}\right)
\end{array}\right.
\end{gathered}
$$

give a horomorphic solution $V(x)$ commencing at least by terms of second order. This function $V(x)$ serves as fonction majorante of the solution $v(x)$ of the equation (3). Hence the equation (2) has a holomorphic solution of the form

$$
f=A x_{1}+v(x)
$$

For the details, we refer to Mr. Picard's book.
2. When we differentiate both sides of the equation (3), \S I, $\boldsymbol{p}_{\mathbf{r}}$ times with respect to x_{1}, p_{2} times with respect to $x_{2}, \ldots p_{n}$ times with respect to x_{n} and put $x_{1}=x_{2}=\ldots=x_{n}=0$, then from the left-hand side, we obtain

$$
\left(\lambda_{1}\left(p_{1}-1\right)+\lambda_{2} p_{2}+\ldots+\lambda_{n} p_{n}\right)\left(\frac{\partial^{p_{1}+p_{2}}+\ldots+p_{n}}{\partial_{x_{1}} p_{1} \partial_{x_{2}} p_{2} \ldots \partial_{x_{n}} p_{n}}\right)_{0} .
$$

The right-hand side is a linear homogeneous function of

$$
\left(\frac{\partial^{p_{1}+p_{2}+\ldots+p_{n}}}{\partial x_{1} p_{1} \partial_{x_{2}}^{p_{2}} \ldots \partial x_{x_{2}}^{p_{n}}}\right)_{0}
$$

and

$$
\left(\frac{\partial^{q_{1}+q_{2}+\ldots+q_{n}} v}{\partial_{x_{1}}^{q_{1}} \partial \partial_{x_{2}}^{q_{2}} \ldots \partial_{x_{2}}^{q_{n}^{n}}}\right)_{0}
$$

where

$$
\begin{aligned}
& 0 \leq q_{1} \leq p_{1}, 0 \leq q_{2} \leq p_{2}, \ldots 0 \leq q_{n} \leq p_{n} \\
& 2 \leq q_{1}+q_{2}+\ldots+q_{n}<p_{1}+p_{2}+\ldots+p_{n}
\end{aligned}
$$

since the functions $\varphi_{1}, \varphi_{2}, \ldots \varphi_{n}$ and ψ contain no terms lower than second order and $v(x)$ commences also with terms of second order at least. Therefore
$\left(\frac{\partial^{p_{1}+p_{2}}+\cdots+p_{n}}{\partial x_{1}^{p_{1}} \partial x_{2}^{p_{2}} \cdots \partial x_{n}^{p_{n}}}\right)_{0}$ is a linear homogeneous function of $\left(\frac{\partial^{p_{1}+p_{2} \ldots+p_{n}} \psi}{\partial x_{1}^{p_{1}} \partial x_{2}^{p_{2}} \ldots \partial x_{n}{ }^{p_{n}}}\right)_{0}$ and $\left(\frac{\partial^{q_{1}+q_{2} \ldots+\ldots q_{n}}}{\partial x_{1}^{q_{1}} \partial x_{2}^{q_{2}} \ldots \partial x_{n}^{q_{n}}}\right)_{0}$, where $q_{1}, q_{2}, \ldots q_{n}$ obey the above conditions. Hence for $p_{1}+p_{2}+\ldots+p_{n}=2$,

$$
\left(\frac{\partial^{2} v}{\partial x_{i} \partial x_{j}}\right)_{0} \quad i, j=\mathbf{1}, 2, \ldots n,
$$

are linear homogeneous functions of

$$
\left(\frac{\partial^{2} \psi}{\left.\partial x_{i}\right\rangle x_{j}}\right)_{0}, \quad i, j=1,2, \ldots n
$$

For $p_{1}+p_{2}+\ldots+p_{n}=3$, all derivatives of third order at $x_{1}=x_{2}=\ldots=$ $x_{n}=0$, are linear homogeneous functions of

$$
\left(\frac{\partial^{3} \psi}{\partial x_{i} \partial x_{j} \partial x_{k}}\right)_{0} \quad \text { and } \quad\left(\frac{\partial^{2} v}{\partial x_{i} \partial x_{j}}\right)_{0}, \quad i, j, k=1,2, \ldots n,
$$

and hence they become linear homogeneous functions of

$$
\left(\frac{\partial^{3} \psi}{\partial x_{i} \partial x_{j} \partial x_{k}}\right)_{0},\left(\frac{\partial^{2} \psi}{\partial x_{i} \partial x_{j}}\right)_{0}, \quad i, j, k=\mathrm{I}, 2, \ldots n .
$$

Proceeding in this way, all the derivatives of $v(x)$ at $x_{1}=x_{2}=\ldots=x_{n}=0$ are linear homogeneous functions of some number of derivatives of ψ at $x_{1}=x_{2}=\ldots=x_{n}=0$. But a derivative of a power-series at a point, divided by a certain positive integer, becomes a coefficient of the powerseries. Hence we can enunciate the above result as follows. All the coefficients of the expansion of $v(x)$ at $x_{1}=x_{2}=\ldots=x_{n}=0$ are certain linear homogeneous function of some number of coefficients of the power series $\psi(x)$.
If we compare equations (2) and (3), § I, we see that

$$
\psi(x)=-A\left(\xi_{1}(x)-\lambda_{1} x_{1}\right) .
$$

That is, all the coefficients of $\psi(x)$ are multiplied by A. Whence we know that all the coefficients of $v(x)$ are linear homogeneous functions of A, or put

$$
v(x)=A \omega(x)
$$

then $w(x)$ is independent of A. Therefore the solution of the equation (2), § I becomes
where

$$
\begin{aligned}
f & =A x_{1}+v(x) \\
& =A\left(x_{1}+(w(x))\right. \\
& \equiv A f_{1}(x) \\
f_{1}(x) & \equiv x_{1}+w(x)
\end{aligned}
$$

and clearly $f_{1}(x)$ is a holomorplic solution af the freceding equation and its coefficients have no arbitrarity.

This solution $f_{1}(x)$ is unique, for if not, the equation (3), § I, would have two solutions, say $v_{1}(x)$ and $v_{2}(x)$, therefore $v_{1}(x)-v_{2}(x)$ should satisfy the equation

$$
\begin{gathered}
\lambda_{1} x_{1} \frac{\partial v}{\partial x_{2}}+\lambda_{2} x_{2} \frac{\partial v}{\partial x_{2}}+\ldots+\lambda_{n} x_{n} \frac{\partial v}{\partial x_{n}}-\lambda_{1} v \\
\quad=\varphi_{1} \frac{\partial v}{\partial x_{1}}+\varphi_{2} \frac{\partial v}{\partial x_{2}}+\ldots+\varphi_{n} \frac{\partial v}{\partial x_{n}} .
\end{gathered}
$$

But in this equation, the function ψ is absent, therefore by the result just obtained, it must follow that

$$
v_{1}(x)-v_{2}(x) \equiv 0
$$

This is against our assumption; hence the solution $f_{1}(x)$ is unique. Hence any holomorphic solution such as

$$
f=A x_{1}+\ldots
$$

can be written in the form

$$
f=A f_{1}(x)
$$

3. Returning to the former, under Poincare's conditions, we find the holomorphic solutions

$$
\begin{aligned}
& f_{1}=x_{1}+\ldots \\
& f_{2}=x_{2}+\ldots
\end{aligned}
$$

of the equations

$$
\Delta f_{1}=\lambda_{1} f_{1}, \quad X f_{2}=\lambda_{2} f_{2}
$$

respectively. Hence, $\log f_{1} \frac{\mathbf{1}}{\lambda_{1}}-\log f_{2} \frac{\mathbf{I}}{\lambda_{2}}$, and therefore $f_{1}-\frac{\mathbf{I}}{\lambda_{1}} f_{2} \frac{\mathbf{1}}{\lambda_{2}}$ is a solution of the equation (I), §I. Proceeding in this way, the proposed equation has $n-I$ solutions of the form

$$
f_{1}^{-\frac{1}{\lambda_{1}}} f_{2}^{\frac{1}{\lambda_{2}}}, \quad f_{1}^{-\frac{1}{\lambda_{1}}} f_{3}^{\frac{1}{\lambda_{3}}}, \ldots \ldots f_{1}^{-\frac{1}{\lambda_{1}}} f_{n}^{\frac{1}{\lambda_{n}}}
$$

If in the equation, some number of $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ be equal, say $\lambda_{1}=\lambda_{2}$, put

$$
f=A x_{1}+\mathrm{B} x_{2}+v(x),
$$

then

$$
\psi=-A\left(\xi_{1}(x)-\lambda_{1} x_{i}\right)-B\left(\xi_{2}(x)-\lambda_{1} x_{2}\right) .
$$

Then all the coefficients of $v(x)$ are linear homogeneous functions of A and B. Putting at first $A=\mathrm{I}, B=0$ then $A=0, B=\mathrm{I}$, we obtain two solutions

$$
\begin{aligned}
& f_{1}=x_{1}+\ldots \\
& f_{2}=x_{2}+\ldots,
\end{aligned}
$$

and any other holomorphic solution of the form

$$
f=A x_{1}+B x_{2}+\ldots
$$

can be written in this way

$$
f=A f_{1}(x)+B f_{2}(x) .
$$

The case where more than two λ^{\prime} s are equal may be treated in the same way.
4. The partial differential equation

$$
\begin{equation*}
X f=\xi_{1}(x) \frac{\partial f}{\partial x_{1}}+\xi_{2}(x) \frac{\partial f}{\partial x_{2}}+\ldots+\xi_{n}(x) \frac{\partial f}{\partial x_{n}}=0 \tag{I}
\end{equation*}
$$

is equivalent to the system of ordinary differential equations

$$
\begin{equation*}
\frac{d x_{1}}{\bar{\xi}_{1}(x)}=\frac{d x_{2}}{\xi_{2}(x)}=\ldots=\frac{d x_{n}}{\xi_{n}(x)}, \tag{2}
\end{equation*}
$$

where, as before, writing only the first terms,

$$
\begin{aligned}
& \xi_{1}(x)=\lambda_{1} x_{1}+\ldots, \\
& \xi_{2}(x)=\lambda_{2} x_{2}+\ldots, \\
& \ldots \ldots \ldots \ldots \ldots \\
& \xi_{n}(x)=\lambda_{n} x_{n}+\ldots
\end{aligned}
$$

When $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ don't satisfy Poincaré's conditions, but zehen $\lambda_{1}, \lambda_{2}, \ldots \lambda_{v}$, $(\nu<n)$ satisfy the conditions and morecver the conditions that the equality

$$
\begin{gathered}
\lambda_{1} p_{1}+\lambda_{2} p_{2}+\ldots+\lambda_{v} p_{v}=\lambda_{i}, \quad i=v+1, \ldots n, \\
p_{1}+p_{2}+\ldots+p_{v} \geq 2
\end{gathered}
$$

for
cannot be satisfied, then the solutions $x_{1}, x_{2}, \ldots x_{n}$ of the equation (2), equated to $\frac{d t}{t}$, can be expressed as power-series of $t^{\lambda_{1}}, t_{\lambda_{2}}, \ldots t_{\lambda_{v}}$ and converge, provided the moduli of these quantities are sufficiently small. To prove this Mr. Picard transformed the equations (2) by

$$
y_{1}=t^{\lambda_{1}}, y_{2}=t^{\lambda_{2}}, \ldots y_{\nu}=t^{\lambda_{\nu}} .
$$

Considering $x_{1}, x_{2}, \ldots x_{n}$ as functions of $y_{1}, y_{2}, \ldots y_{v}$, the transformed equations are

$$
\begin{gather*}
\lambda_{1} y_{1} \frac{\partial x_{1}}{\partial y_{1}}+\lambda_{2} y_{2} \frac{\partial x_{1}}{\partial y_{2}}+\ldots+\lambda_{v} y_{v} \frac{\partial x_{1}}{\partial y_{v}}=\xi_{1}(x)=\lambda_{1} x_{1}+\ldots, \\
\lambda_{1} y_{1} \frac{\partial x_{2}}{\partial y_{1}}+\lambda_{2} y_{2} \frac{\partial x_{2}}{\partial y_{2}}+\ldots+\lambda_{v} y_{v} \frac{\partial x_{2}}{\partial y_{v}}=\xi_{2}(x)=\lambda_{2} x_{2}+\ldots, \tag{3}\\
\ldots \\
\lambda_{1} y_{1} \frac{\partial x_{n}}{\partial y_{1}}+\lambda_{2} y_{2} \frac{\partial x_{n}}{\partial y_{2}}+\ldots+\lambda_{v} y_{v} \frac{\partial x_{n}}{\partial y_{v}}=\xi_{n}(x)=\lambda_{n} x_{n}+\ldots .
\end{gather*}
$$

Since the coefficients $\lambda_{1}, \lambda_{2}, \ldots \lambda_{\text {, }}$ satisfy Poincare's conditions and the other just mentioned, this system of partial differential equations has n holomorphic solutions $x_{1}(y), x_{i}(y), \ldots x_{y}(y)$. For the detail, we refer to Mr. Picard Book.
5. The preceding system of partial differential equations can be obtained from another point of view, i.e.

Ta determine the substitution

$$
\begin{aligned}
& x_{1}=\theta_{1}\left(y_{1}, y_{2}, \ldots y_{v}\right), \\
& x_{2}=\theta_{2}\left(y_{1}, y_{2}, \ldots y_{v}\right), \\
& \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
& x_{n}=\theta_{n}\left(y_{1}, y_{2}, \ldots y_{v}\right)
\end{aligned}
$$

by which the differential expression

$$
X f=\xi_{1}(x) \frac{\partial f}{\partial x_{1}}+\xi_{2}(x) \frac{\partial f}{\partial x_{2}}+\ldots+\xi_{n}(x) \frac{\partial f}{\partial x_{n}}
$$

is to be reduced to the differential expression

$$
\begin{equation*}
\nu f \equiv \eta_{1}(y) \frac{\partial f}{\partial y_{1}}+\eta_{2}(y) \frac{\partial f}{\partial y_{2}}+\ldots+\eta_{v}(y) \frac{\partial f}{\partial y_{v}}, \tag{2}
\end{equation*}
$$

where $\eta_{1}, \eta_{2}, \ldots \eta_{1}$, are any functions of $y_{1}, y_{2} \ldots y_{v}$.
Now by this substitution, we have

$$
\begin{aligned}
y f & =\sum_{j=1}^{\nu} \eta_{j}(y) \frac{\partial f}{\partial y_{j}} \\
& =\sum_{j=1}^{\nu} \eta_{j}(y) \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial x_{i}}{\partial y_{j}} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{\nu} \eta_{j}(y) \frac{\partial x_{i}}{\partial y_{j}} \frac{\partial f}{\partial x_{i}} .
\end{aligned}
$$

This is identical with the differential expression $X f$. Hence, equating the coefficient of $\frac{\partial f}{\partial x_{i}}, i=1,2, \ldots n$, we have

$$
\begin{gather*}
\eta_{1}(y) \frac{\partial x_{1}}{\partial y_{1}}+\eta_{2}(y) \frac{\partial x_{1}}{\partial y_{2}}+\ldots+\eta_{v}(y) \frac{\partial x_{1}}{\partial y_{v}}=\xi_{1}(x), \\
\eta_{1}(y) \frac{\partial x_{2}}{\partial y_{1}}+\eta_{2}(y) \frac{\partial x_{2}}{\partial y_{2}}+\ldots+\eta_{v}(y) \frac{\partial x_{2}}{\partial y_{v}}=\xi_{2}(x), \tag{3}\\
\ldots \ldots \ldots \ldots \ldots \ldots \\
\eta_{1}(y) \frac{\partial x_{n}}{\partial y_{1}}+\eta_{2}(y) \frac{\partial x_{n}}{\partial y_{2}}+\ldots+\eta_{v}(y) \frac{\partial x_{n}}{\partial y_{v}}=\xi_{n}(x) .
\end{gather*}
$$

The n solutions $x_{1}=\theta_{1}(y), x_{2}=\theta_{2}(y), \ldots x_{n}=\theta_{n}(y)$ are the required substitions.
If we take for the arbitrary functions

$$
\eta_{1}=\lambda_{1} y_{1}, \eta_{2}=\lambda_{2} y_{2}, \ldots \eta_{n}=\lambda_{n} y_{n} .
$$

this system of equations (3) coincides with the system given by Mr . Picard. If we put for $\eta_{1}, \eta_{2}, \ldots \eta_{v}$ some holomorphic functions commencing by terms $\lambda_{1} y_{1}, \lambda_{2} y_{2}, \ldots \lambda_{y} y_{v}$ respectively, under the conditions written in the last section between $\lambda_{1}, \lambda_{2} \ldots \lambda_{\gamma}$, the system of partial differential equations (3) has always n holomorphic solutions $\theta_{1}(y)$, $\theta_{2}(y), \ldots \theta_{n}(y)$.
6. Before the proof of the existence-theorem of the system of equations (3) of the last section, some remarks should be given about
the system of equations (3), §4, whose existence-theorem is given by Mr. Picard.

Suppose, at first, all $\lambda^{\prime} s$ are different from one another, then the solutions of the system of equations (3), § 4, take the form.

$$
\begin{aligned}
& x_{1}=\theta_{1}(y)=a_{1} y_{1}+\theta_{1}^{\prime}(y), \\
& x_{2}=\theta_{2}(y)=a_{2} y_{2}+\theta_{2}^{\prime}(y),
\end{aligned}
$$

$$
\begin{align*}
& x_{v}=\theta_{v}(y)=a_{v} y_{v}+\theta_{v}^{\prime}(y), \tag{1}\\
& x_{v+1}=\theta_{v+1}(y), \\
& \ldots \ldots \ldots \\
& x_{n}=\theta_{n}(y),
\end{align*}
$$

where $\theta_{1}{ }^{\prime}, \theta_{2}{ }^{\prime} \ldots \theta_{v}{ }^{\prime}$, and $\theta_{v+1} \ldots \theta_{n}$ are power series of $y_{1}, y_{2} \ldots y_{v}$ which don't contain terms of first order and $a_{1}, a_{2}, \ldots a_{v}$ 'are arbitrary constants not zero. Hence we have

$$
\left[\frac{\partial\left(x_{1}, x_{2}, \ldots x_{v}\right)}{\partial\left(y_{1}, y_{2}, \ldots y_{v}\right)}\right]_{0}=a_{1}, a_{2} \ldots a_{v} \neq 0
$$

Therefore, from the first ν equations of (1), we can find $y_{1}, y_{2}, \ldots y_{v}$ as functions of $x_{1}, x_{2}, \ldots x_{v}$:

$$
\begin{align*}
& y_{1}=\gamma_{1}\left(x_{1}, x_{2}, \ldots x_{v}\right), \\
& y_{2}=\gamma_{2}\left(x_{1}, x_{2}, \ldots x_{v}\right), \\
& \ldots \ldots \ldots \tag{2}\\
& y_{v}=\chi_{v}\left(x_{1}, x_{2}, \ldots x_{v}\right) .
\end{align*}
$$

Substituting these values of $y_{1}, y_{2}, \ldots y$, in the remaining $n-\nu$ equations (I), we obtain $n-\nu$ cohditions between $x_{1}, x_{2}, \ldots x_{n}$:

$$
\begin{align*}
& \Psi_{1}\left(x_{1}, x_{2}, \ldots x_{n}\right)=0, \\
& \Psi_{2}\left(x_{1}, x_{2}, \ldots x_{n}\right)=0, \tag{3}\\
& \ldots \ldots \ldots . \\
& \Psi_{n-v}\left(x_{1}, x_{2} \ldots x_{n}\right)=0 .
\end{align*}
$$

When some number of $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ are equal, by the remark of last paragraph of $\S 3$, similar systems of equations as (2) and (3) will de obtained. Now by the substitution (1), there holds the identity $Y f \equiv X f$, in the full expression

$$
\begin{aligned}
& \lambda_{1} y_{1} \frac{\partial f}{\partial y_{1}}+\lambda_{2} y_{2} \frac{\partial f}{\partial y_{2}}+\ldots+\lambda_{v} y_{v} \frac{\partial f}{\partial y_{v}} \\
\equiv & \xi_{1}(x) \frac{\partial f}{\partial x_{1}}+\xi_{2}(x) \frac{\partial f}{\partial x_{2}}+\ldots+\xi_{n}(x) \frac{\partial f}{\partial x_{n}} .
\end{aligned}
$$

Therefore any solution $F\left(y_{1}, y_{2}, \ldots y_{v}\right)$ of the equation

$$
Y f=\lambda_{1} y_{1} \frac{\partial f}{\partial y_{1}}+\lambda_{2} y_{2} \frac{\partial f}{\partial y_{2}}+\ldots+\lambda_{v} y_{v} \frac{\partial f}{\partial y_{v}}=0
$$

by aid of the transformation (2) and the conditions (3), must satisfy the equation

$$
\begin{equation*}
X f=\xi_{1}(x) \frac{\partial f}{\partial x_{1}}+\hat{\xi}_{2}(x) \frac{\partial f}{\partial x_{2}}+\ldots+\xi_{n}(x) \frac{\partial f}{\partial x_{n}}=0 \tag{4}
\end{equation*}
$$

The former equation, as we have seen, has $\nu-1$ solutions

$$
y_{1}-\frac{1}{\lambda_{1}} y_{2}^{\frac{1}{\lambda_{2}}}, \quad y_{1}^{-\frac{1}{\lambda_{1}}} y_{3}^{\frac{1}{\lambda_{3}}}, \ldots y^{-\frac{1}{\lambda_{1}}} y_{v}^{\frac{1}{\lambda_{v}}}
$$

Substituting the values (2), we arrive at the result :
When the constants $\lambda_{1}, \lambda_{2}, \ldots \lambda_{v}$ satisfy Poincare's conditions and no relation $\lambda_{1} p_{1}+\lambda_{2} p_{2}++\ldots+\lambda_{v} p_{v}=\lambda_{i}, i=\nu+1, \ldots n$, hold, provided $p_{1}+p_{2}$ $+\ldots+p_{v} \geq 2$; then the cquation (4) has $\nu-\mathrm{I}$ solutions of the form

$$
\chi_{1}^{-\frac{1}{\lambda_{1}}} \chi_{2}^{\frac{1}{\lambda_{2}}}, \chi_{1}^{-\frac{1}{\lambda_{1}}} \chi_{3}^{\frac{1}{\lambda_{3}}}, \ldots \chi_{1}^{-\frac{1}{\lambda_{1}}} \chi_{y^{\frac{1}{\lambda_{v}}}}
$$

and the variables $x_{1}, x_{2} \ldots x_{n}$ satisfy the conditions (3).
7. We shall apply this result to the problem of § I .

When $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ satisfy Poincare's conditions, let us consider the following system of n equations

$$
\begin{gather*}
\lambda_{1} y_{1} \frac{\partial x_{1}}{\partial y_{1}}+\lambda_{2} y_{2} \frac{\partial x_{1}}{\partial y_{2}}+\ldots+\lambda_{n} y_{n} \frac{\partial x_{1}}{\partial y_{n}}=\xi_{1}(x), \\
\lambda_{1} y_{1} \frac{\partial x_{2}}{\partial y_{1}}+\lambda_{2} y_{2} \frac{\partial x_{2}}{\partial y_{2}}+\ldots+\lambda_{n} y_{n} \frac{\partial x_{2}}{\partial y_{n}}=\xi_{2}(x) \tag{I}\\
\ldots \ldots \ldots \ldots \ldots . \\
\lambda_{1} y_{1} \frac{\partial x_{n}}{\partial y_{1}}+\lambda_{2} y_{2} \frac{\partial x_{n}}{\partial y_{2}}+\ldots+\lambda_{n} y_{n} \frac{\partial x_{n}}{\partial y_{n}}=\xi_{n}(x) .
\end{gather*}
$$

This system is quite analogous with the system (3), § 4. Moreover
if we write n for ν, Mr. Picard's proof of the existence-theorem may be applied, term by term, and give n holomorphic solutions

$$
\begin{align*}
& x_{1}=\theta_{1}\left(y_{1}, y_{2}, \ldots y_{n}\right), \\
& x_{2}=\theta_{2}\left(y_{1}, y_{2}, \ldots y_{n}\right), \tag{2}\\
& \ldots \ldots \ldots \\
& x_{n}=\theta_{n}\left(y_{1}, y_{2}, \ldots y_{n}\right) .
\end{align*}
$$

The inverse functions are

$$
\begin{align*}
& y_{1}=\chi_{1}\left(x_{1}, x_{2}, \ldots x_{n}\right), \\
& y_{2}=\chi_{2}\left(x_{1}, x_{2}, \ldots x_{n}\right), \\
& \ldots \ldots \ldots . \tag{3}\\
& y_{n}=\chi_{n}\left(x_{1}, x_{2}, \ldots x_{n}\right),
\end{align*}
$$

and, by the theorem of the last section, the $n-I$ functions $y_{1}-\frac{1}{\lambda_{1}} y_{2} \frac{1}{\lambda_{2}}$, $y_{1}-\frac{1}{\lambda_{1}} y_{3} \frac{1}{\lambda_{3}}, \ldots y_{1}-\frac{1}{\lambda_{1}} y_{n} \frac{1}{\lambda_{n}}$ are solutions of the equation

$$
X f=\xi_{1}(x) \frac{\partial f}{\partial x_{1}}+\xi_{2}(x) \frac{\partial f}{\partial x_{2}}+\ldots+\xi_{n}(x) \frac{\partial f}{\partial x_{n}}=0,
$$

where between $x_{1}, x_{2}, \ldots x_{n}$, no further relation exists.
Since $X f$ and If are equivalent, we see at once that each

$$
y_{i}=\chi_{i}\left(x_{1}, x_{2}, \ldots x_{n}\right), i=\mathrm{I}, 2, \ldots n
$$

is a holomorphic solution of the equation

$$
X f=\hat{\xi}_{1}(x) \frac{\partial f}{\partial x_{1}}+\xi_{2}(x) \frac{\partial f}{\partial x_{2}}+\ldots+\xi_{n}(x) \frac{\partial f}{\partial x_{n}}=\lambda_{i} f, i=\mathrm{I}, 2, \ldots n .
$$

i.e., the differential expression $X f$, transformed by the n holomorphic solutions (3) of $X f=\lambda_{i} f, i=1,2, \ldots n$, will take the form

$$
Y f=\lambda_{1} y_{1} \frac{\partial f}{\partial y_{1}}+\lambda_{2} y_{2}-\frac{\partial f}{\partial y_{2}}+\ldots+\lambda_{n} y_{n} \frac{\partial f}{\partial y_{n}} .
$$

We shall often meet this transformation in the future.
8. Now let us return to the proof of the existence-theorem of the system of equations

$$
\eta_{1}(y) \frac{\partial x_{1}}{\partial y_{1}}+\gamma_{2}(y) \frac{\partial x_{1}}{\partial y_{2}}+\ldots+\gamma_{v}(y) \frac{\partial x_{1}}{\partial y_{v}}=\xi_{1}(x),
$$

$$
\begin{gather*}
\eta_{1}(y) \frac{\partial x_{2}}{\partial y_{1}}+\eta_{2}(y) \frac{\partial x_{2}}{\partial y_{2}}+\ldots+\eta_{v}(y) \frac{\partial x_{2}}{\partial y_{v}}=\xi_{v}(x) \tag{I}\\
\ldots \ldots \ldots \ldots \ldots \ldots \\
\eta_{1}(y) \frac{\partial x_{n}}{\partial y_{1}}+\eta_{k}(y) \frac{\partial x_{n}}{\partial y_{2}}+\ldots+\eta_{v}(y) \frac{\partial x_{n}}{\partial y_{v}}=\xi_{n}(x),
\end{gather*}
$$

where the $\eta_{1}, \eta_{2}, \ldots \eta_{v}$ are holomorphic and commence with terms $\lambda_{1} y_{1}$, $\lambda_{2} y_{2}, \ldots \lambda_{v} y_{v}$ respectively. This system is not escentially different from the system (3), § 4 which Picard has used. For, as we have just seen, our system (1) will be transformed by the ν solutions $z_{i}, i=1,2, \ldots \nu$ of the equations

$$
\begin{equation*}
\eta_{1}(y) \frac{\partial z_{i}}{\partial y_{1}}+\eta_{2}(y) \frac{\partial z_{i}}{\partial y_{2}}+\ldots+\eta_{v}(y) \frac{\partial z_{i}}{\partial y_{v}}=\lambda_{i} z_{i}, i=\mathrm{I}, 2, \ldots n, \tag{2}
\end{equation*}
$$

into the form

$$
\begin{gathered}
\lambda_{1} z_{1} \frac{\partial x_{1}}{\partial z_{1}}+\lambda_{2} z_{2} \frac{\partial x_{1}}{\partial z_{2}}+\ldots+\lambda_{v} z_{v} \frac{\partial x_{1}}{\partial z_{v}}=\xi_{1}(x), \\
\lambda_{1} z_{1} \frac{\partial x_{3}}{\partial z_{1}}+\lambda_{2} z_{2} \frac{\partial x_{2}}{\partial z_{2}}+\ldots+\lambda_{v} z_{v} \frac{\partial x_{2}}{\partial z_{v}}=\xi_{2}(x), \\
\ldots \ldots \ldots \ldots \\
\lambda_{1} z_{1} \frac{\partial x_{n}}{\partial x_{1}}+\lambda_{2} z_{2} \frac{\partial x_{n}}{\partial x_{2}}+\ldots+\lambda_{v} z_{v} \frac{\partial x_{n}}{\partial z_{v}}=\xi_{n}(x) .
\end{gathered}
$$

The existence of holomorphic solutions of this system as well as equations (2) are already known. Hence the systen (1) has n holomorphic solutions. The arbitrary choice of $\eta_{1}, \eta_{2} \ldots \eta_{v}$ in the problem of the reduction of § 5 serves us nothing

At the end of the section, we remark that the system (I) is an extended case of the problem of $\S \mathrm{I}$, and hence the proof of the ex-istence-theorem should go parallel with each other.

Poincaré's conditions, are not necessary conditions for the existence of solutions; but there are infininitely may equations in which Poincaré's conditions are not satisfied. This case will be considered in the future, and enter into the problem where the first terms of the functions $\xi_{1}(x), \xi_{2}(x), \ldots \xi_{n}(x)$ consist from linear homogeneous functions of the variables.
9. Being given the equation

$$
X f=\xi_{1}(x) \frac{\partial f}{\partial x_{1}}+\xi_{2}(x) \frac{\partial f}{\partial x_{2}}+\ldots+\xi_{n}(x) \frac{\partial f}{\partial x_{n}}=0
$$

where

$$
\begin{aligned}
& \xi_{1}(x)=\lambda_{11} x_{1}+\lambda_{12} x_{2}+\ldots+\lambda_{1 n} x_{n}+\ldots \\
& \xi_{2}(x)=\lambda_{21} x_{1}+\lambda_{22} x_{2}+\ldots+\lambda_{2 n} x_{n}+\ldots \\
& \ldots \ldots \ldots \\
& \xi_{n}(x)=\lambda_{n 1} x_{1}+\lambda_{n 2} x_{2}+\ldots+\lambda_{n n} x_{n}+\ldots
\end{aligned}
$$

in which only the terms of first order are written, we try to transform these terms of first order in the simplest forms by the transformation of variables

$$
\begin{aligned}
& x_{1}=a_{11} y_{1}+a_{12} y_{2}+\ldots+a_{1 n} y_{n} \\
& x_{2}=a_{21} y_{1}+a_{22} y_{2}+\ldots+a_{2 n} y_{n} \\
& \ldots \ldots \ldots \\
& x_{n}=a_{n 1} y_{1}+a_{n 2} y_{2}+\ldots+a_{n n} y_{n}
\end{aligned}
$$

Let L and A mean the matrices formed of $\lambda_{11}, \lambda_{12}, \ldots \lambda_{1 n}, \ldots \lambda_{m i}$, and $a_{11}, a_{12}, \ldots a_{1 n}, \ldots a_{n n}$ respectively, then the matrix formed of the coefficients of first order of the variables $y_{1}, y_{2}, \ldots y_{n}$, in the transformed equation, is

$$
A^{-1} L A
$$

When the n roots $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ of the characteristic equation of L

$$
\left|\begin{array}{llll}
\lambda_{11}-\lambda & \lambda_{12} & \ldots & \lambda_{1 n} \\
\lambda_{21} & \lambda_{22}-\lambda & \ldots & \lambda_{2 n} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots
\end{array}\right|=0
$$

are different from each other, then by suitable choice of A, the matrix can be transformed in a multiplication $\left(\lambda_{1}, \lambda_{2} \ldots \lambda_{n 2}\right)$. This case is treated in the preceding sections,
The case where the characteristic equation has multiple roots was not treated by Poincaré. Whether this case has been treated by other mathematicians, I don't know. In this, by the theory of substitutions, we can so find a matrix A that the transformed matrix of L, i.e., $A^{-1} L A$ will take the form, the number of the multiple roots being ν,

$$
\left(\begin{array}{cccc}
L_{1} & 0 & \ldots & 0 \\
0 & L_{1} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & L_{y}
\end{array}\right)
$$

where $L_{i}, i=\mathrm{I}, 2, \ldots \nu$ is itself a matrix whose diagonal elements are all $\lambda_{i}, i=1,2, \ldots \nu$, a multiple root of the preceding characteristic equation, and the elements over the diagonal are all zero. We remark that when the matrix L belongs to a group of substitution of finite order, it can be transformed into a multiplication.
10. Suppose that the equation has been already transformed and is given in the form

$$
\begin{align*}
X f \equiv \xi_{1}(x) \frac{\partial f}{\partial x_{1}}+\xi_{2}(x) \frac{\partial f}{\partial x_{2}} & +\ldots+\xi_{n_{1}}(x) \frac{\partial f}{\partial x_{n_{1}}} \\
& +\ldots+\xi_{n}(x) \frac{\partial f}{\partial x_{n}}=0, \tag{I}
\end{align*}
$$

where, writing only the terms of first order

$$
\begin{align*}
& \xi_{1}(x)=\lambda_{1} x_{1}+\ldots, \\
& \xi_{2}(x)=\lambda_{21} x_{1}+\lambda_{1} x_{2}+\ldots, \\
& \ldots \ldots \ldots \tag{2}\\
& \xi_{n_{1}}(x)=\lambda_{n_{1} 1} x_{1}+\lambda_{n_{1} 2} x_{2}+\ldots+\lambda_{1} x_{n_{1}}+\ldots, \\
& \xi_{n_{1}+1}(x)=\lambda_{2} x_{n_{1}+1}+\ldots,
\end{align*}
$$

The matrix L made of the coefficients of terms of first order of the variables $x_{1}, x_{2}, \ldots x_{n}$ has a normal determinant $|L|$, the elements over the diagonal are all zero. The vanishing of certain elements under the diagonal elements is not at present necessary.

In the following, we investigate whether the successive calculation of the differential equation

$$
\begin{equation*}
X f=\lambda_{1} f \tag{3}
\end{equation*}
$$

is possible or not and then search for a holomorphic solution.
If we differentiate the equation (3) p_{1} times with respect to x_{1}, p_{2} times with respect to $x_{2}, \ldots p_{n}$ times with respect to x_{n} and then put $x_{1}=x_{2}=\ldots=x_{n}=0$, we will obtain an equation between several differential coefficient at $x_{1}=x_{2}=\ldots=x_{n}=0$. Put $p_{1}+p_{2}+\ldots+p_{n} \equiv m$, then the highest derivatives are of order m, in which the derivative $\left(\frac{\partial^{m} f}{\partial x_{1}^{p_{1}} \partial x_{2}^{p_{2}} \ldots \partial x_{n}^{p_{n}}}\right)_{0}$ appears; but in general this is not the only derivative of order m. Therefore, to obtain the values of derivatives of m th order at $x_{1}=x_{2}=\ldots=x_{n}=0$, we must solve a system of simultaneous equations of first order. The following shows that the determi-
nant made weith the cocfficients of derivatives of $m^{\text {th }}$ order in this system of simultaneous equations is a normal detcrminant.

To prove this, let us introduce some abbriviations and definitions. a. Let us write, for simplicity

$$
\left(x_{i}^{p_{i}} x_{j}^{p_{j}} \ldots x_{l}^{p_{l}}\right) \equiv\left(\frac{\partial^{f_{i}+p_{j}+\ldots+p_{l}} f}{\partial x_{i}^{p_{i}} \partial x_{j}^{p_{j}} \ldots \partial x_{l}^{p_{l}}}\right)_{x_{1}=x_{j}=\ldots=x_{n}=0,},
$$

where the order of the suffixes are so fixed that

$$
\mathrm{r} \leq i<j<\ldots<l \leq n
$$

and call this new expression the differential quotient or quotient of $\left(p_{i}+p_{j}\right.$ $\left.+\ldots+p_{l}\right)$ th order, often omiting the order.
b. With two quotients of the same order
(I). $\quad\left(x_{a}^{p_{a}} x_{b}^{p_{b}} \ldots x_{h}^{t_{h}} \ldots\right), \quad \mathrm{I} \leq a<b<\ldots<h<\ldots \leq n$,
(II). $\left(x_{\alpha}^{q_{\alpha}} x_{\beta}^{q / \beta} \ldots x_{\eta}^{q_{n}} \ldots\right), \quad \mathrm{I} \leq \ell<\beta<\ldots<\eta<\ldots \leq n$,
where

$$
p_{a}+p_{b}+\ldots+p_{h}=q_{\alpha}+q_{\beta}+\ldots+q_{\eta}
$$

if $x_{h}{ }^{p_{h}}$ and $x_{n} q_{\eta_{i}}$ be such in the first pair, lying in the same place counted from the left, that

$$
h \neq \eta, \quad \text { or } \quad p_{h} \neq q_{n} \quad \text { and } \quad k=\eta .
$$

When $h<\eta$, let us say that the quotient (I) is of higher stage than the quotient (II), or simply, (I) is higher than (II) ; or the latter is lower than the former, when $h=\eta$ yet $\eta_{h}>q_{n}$, we also say that the quotient (I) is higher than the quotient (II), and the like.
c. Now take the quotient $\left(x_{i}^{p_{i}} \ldots x_{h}^{p_{h}} x_{k}^{p_{k}}\right)$ of $\left(p_{i}+\ldots+p_{h}+p_{k}\right)$ th order. If $h+\mathrm{I}=k$, then with respect to $\left(x_{i}^{p_{i}} \ldots x_{h}^{p_{h}} x_{h+1}^{p_{h}+1}\right)$, we say that

$$
\left(x_{i} p_{i} \ldots x_{h}{ }_{h}^{p_{h}+\mathbf{1}} x_{n}{ }_{h}^{p_{k+1}}{ }^{-1}\right) \text { is next higher than }\left(x_{i} \ldots x_{i}^{p_{h}} x_{h+1} p_{k+1}\right) .
$$

If $h+\mathrm{I}<k$, then with respect to $\left(x_{i}^{t_{i}} \ldots x_{h}^{p_{h}} x_{k}^{p_{k}}\right)$, we say that

$$
\left(x_{i} p_{i \ldots} \ldots x_{h}{ }^{p_{h} x_{k-1}} x_{n}{ }^{p_{k}-\mathrm{r}}\right) \text { is next higher than }\left(x_{i}^{p_{i}} \ldots x_{k}{ }^{p_{h}} x_{k}^{p_{k}}\right) \text {. }
$$

Thus we could give a definite stage to each differential qnotients of m th order at $x_{1}=x_{2}=\ldots=x_{n}=0$; and, according to this definition, $\left(x_{n}^{m}\right)$ is of the lowest and $\left(x_{1}^{m}\right)$ is of the highest stage.

Now differentiate the equation

$$
\begin{equation*}
X f=\xi_{1}(x) \frac{\partial f}{\partial x_{1}}+\xi_{2}(x) \frac{\partial f}{\partial x_{2}}+\ldots+\xi_{n}(x) \frac{\partial f}{\partial x_{n}}=\lambda_{1} f \tag{3}
\end{equation*}
$$

p_{i} times with respect to $x_{i}, \ldots p_{h}$ times with respect to x_{h}, \ldots, where $p_{i}+\ldots+p_{h}+\ldots=m$, and put $x_{1}=x_{2}=\ldots=x_{n}=0$, then we obtain a linear equation containing the quotient ($x_{i}^{p_{i}} \ldots x_{h}^{p_{h}} \ldots$). The remaining quotients of m th order in the equation must be of lower stage than ($x_{i}^{p_{i}} \ldots x_{h}^{p_{h}} \ldots$). For, in general, with respect to the suffix h, the coefficients $\xi_{1}(x), \xi_{2}(x), \ldots \xi_{h-1}(x)$ don't contain the variable x_{h} in their terms of first order. Therefore any quotient, the exponent of whose variabie x_{h} is less than p_{l} and whose other variable before x_{h} is greater than that of ($x_{i}^{p_{i}} \ldots x_{h}^{p_{h}} \ldots$) cannot appear, i.e., any quotient higher than ($x_{i}^{p_{i}} \ldots x_{h}^{p_{h}} \ldots$) cannot appear in that equation.

The number of the simultaneous linear equations is equal to the number of the derivatives of order m. It is given by the coefficients of m th order in the expansion of $\left(1+x+x^{2}+\ldots+x^{m}\right)^{n}$. Now arrange all the linear equations in such an order that, when any two consecutive equations are taken, the highest quotient in the one is next higher (or next lower) than the highest quotient in the other, the equations containing the quotient (x_{1}^{m}) and (x_{n}^{m}) standing at both ends. The equation which contains (x_{n}^{m}) as the highest cannot contain any quotient of m th order. Thus the determinant made with the coefficients of all the quotients of mith order in the simultaneous linear equations, arranged in the order stated above, is a normal determinant; and hence, in eack solution of a linear equation containing one unknown, all the quotients of mth order may be calculated successively, from a lower to a higher stage.

Let us again take up the differential equation (3);

$$
\begin{equation*}
\xi_{1}(x) \frac{\partial f}{\partial x_{1}}+\xi_{2}(x) \frac{\partial f}{\partial x_{2}}+\ldots+\xi_{n}(x) \frac{\partial f}{\partial x_{n}} \equiv \lambda_{1} f . \tag{3}
\end{equation*}
$$

Differentiate this equation by $x_{1}, x_{2}, \ldots x_{n}$ respectively and put $x_{1}=x_{2}$ $=\ldots x_{n}=0$, then we know that there is no contradiction provided
and

$$
\begin{equation*}
\left(\frac{\partial f}{\partial x_{2}}\right)_{0}=\left(\frac{\partial f}{\partial x_{\mathbf{x}}}\right)_{0}=\ldots=\left(\frac{\partial f}{\partial x_{n}}\right)_{0}=0, \tag{4}
\end{equation*}
$$

$$
\left(\frac{\partial f}{\partial x_{\mathrm{I}}}\right)_{0}=\text { arbitrary }
$$

Let us fix so that

$$
\begin{equation*}
\left(\frac{\partial f}{\partial x_{1}}\right)_{0}=+\mathrm{I} \tag{4}
\end{equation*}
$$

Now write the equation (3) as follows:

$$
\begin{gather*}
\lambda_{1} x_{1} \frac{\partial f}{\partial x_{1}}+\lambda_{1} x_{2} \frac{\partial f}{\partial x_{2}}+\ldots+\lambda_{1} x_{n_{1}} \frac{\partial f}{\partial x_{n_{1}}}+\ldots+\lambda_{v} x_{n} \frac{\partial f}{\partial x_{n}}-\lambda_{1} f \\
=\varphi_{1} \frac{\partial f}{\partial x_{1}}+\varphi_{2} \frac{\partial f}{\partial x_{2}}+\ldots+\varphi_{n} \frac{\partial f}{\partial x_{n}} \tag{5}
\end{gather*}
$$

where the function $\varphi_{i},(i=1,2, \ldots n)$ is obtained by replacing the function $\xi_{i}(x),(i=1,2, \ldots n)$ except the term containing the first power of $x_{i}(i=1,2, \ldots n)$ from the left-hand side to the right-hand side.
Differentiate the equation (5) p_{1} times with respect to x_{1}, p_{2} times with respect to $x_{2}, \ldots p_{n}$ times with respect to x_{n} and put $x_{1}=x_{2}=\ldots=x_{n}=0$, then on the left-hand side, there remains the term

$$
\left\{\left(\left(p_{1}-\mathrm{I}\right)+p_{2}+\ldots+p_{n_{1}}\right) \lambda_{1}+\ldots+\left(\ldots+p_{n}\right) \lambda_{v}\right\}\left(x_{1}^{p_{1}} x_{2}^{p_{2}} \ldots x_{n}^{p_{n}}\right) .
$$

The right-hand side is a homogeneous linear expression between quotients of orders lower than $p_{1}+p_{2}+\ldots+p_{n}$ and of stages lower than ($x_{1}^{p_{1}} x_{2}^{p_{2}} \ldots x_{n}^{p_{n}}$). Now assume that $\lambda_{1}, \lambda_{2}, \ldots \lambda_{v}$ satisfy Poincare's conditions. Then we can find a definite positive number ε such that

$$
\begin{equation*}
\varepsilon \leq\left|\frac{\left.\left(p_{1}-1+p_{2}+\ldots+p n_{1}\right) \lambda_{1}+\ldots+{ }^{\prime} \ldots+p_{n}\right) \lambda_{v}}{p_{1}-1+p_{2}+\ldots+p_{n_{1}}+\ldots+p_{n}}\right|, \tag{6}
\end{equation*}
$$

for all positive integral numbers $p_{1}, p_{2}, \ldots p_{n}$ which satisfy the relation

$$
p_{1}+p_{2}+\ldots+p_{n} \geq 2 .
$$

Therefore, the coefficient of $\left(x_{1}^{p_{1}} x_{2}^{p_{2}} \ldots x_{n}^{p_{n}}\right)$ does not vanish; and hence, for the reason stated above, all differential quotients of any order at $x_{1}=x_{2}=\ldots=x_{n}=0$ can be calculated successively, the initial value being given by (4).

On the other hand, it is always possible to determine n positive numbers $\varepsilon_{1}, \varepsilon_{2}, \ldots \varepsilon_{n}$ which are different from one another and satisfy the following inequalities

$$
\begin{equation*}
\frac{\varepsilon_{1}}{2}<\varepsilon_{i}<\frac{\varepsilon+\varepsilon_{1}}{2}<\varepsilon, \quad i=2,3, \ldots n . \tag{7}
\end{equation*}
$$

For, take a positive number ε_{1} less than ε, then it satisfies the inequalities

$$
\frac{\varepsilon_{1}}{2}<\frac{\varepsilon+\varepsilon_{1}}{2}<\varepsilon
$$

and we can insert between $\frac{\varepsilon_{1}}{2}$ and $\frac{\varepsilon+\varepsilon_{1}}{2}, n-\mathrm{I}$ positive numbers ε_{2}, $\varepsilon_{3} \ldots \varepsilon_{n}$, which are different from one another and from ε_{1}. These inequalities show that
a.

$$
\begin{equation*}
2 \varepsilon_{i}>\varepsilon_{1}, i=2,3, \ldots n \tag{8}
\end{equation*}
$$

and also

$$
2 \varepsilon_{j}>\varepsilon_{1}, j=2,3, \ldots n
$$

Adding these two inequalities and dividing by 2 , we have

$$
\begin{equation*}
\varepsilon_{i}+\varepsilon_{j}>\varepsilon_{1}, i, j=2,3, \ldots n \tag{9}
\end{equation*}
$$

By (8) and (9) it follows that

$$
-\varepsilon_{1}+p_{2} \varepsilon_{2}+p_{3} \varepsilon_{3}+\ldots+p_{n} \varepsilon_{n}>0
$$

for any positive integral values $p_{2}, p_{3}, \ldots p_{n}$ (zero inclusive) satisfying the relation

$$
p_{3}+p_{3}+\ldots+p_{n} \geq 2 ;
$$

whence it follows tnat, since $\varepsilon_{1}, \varepsilon_{2}, \ldots \varepsilon_{k}$ are all positive,

$$
\left(p_{1}-\mathrm{I}\right) \varepsilon_{1}+p_{2} \varepsilon_{2}+\ldots+p_{n} \varepsilon_{n}>0
$$

for any positive integral values $p_{1}, p_{2}, \ldots p_{n}$ (zero inclusive) such that

$$
p_{1}+p_{2}+\ldots+p_{n} \geq 2
$$

Thus the n constants $\varepsilon_{1}, \varepsilon_{2}, \ldots \varepsilon_{n}$ satisfy Poincare's conditions.
b. The inequalities (7) show that

$$
\begin{equation*}
\varepsilon^{i}<\varepsilon, i=\mathrm{I}, 2, \ldots n ; \tag{io}
\end{equation*}
$$

moreover that

$$
\begin{equation*}
2 \varepsilon_{i}<\varepsilon+\varepsilon_{1}, \text { or }-\varepsilon_{1}+2 \varepsilon_{i}<\varepsilon, i=2,3, \ldots n, \tag{II}
\end{equation*}
$$

and also

$$
-\varepsilon_{1}+2 \varepsilon_{j}<\varepsilon, \quad j=2,3, \ldots n
$$

Adding these two inequalities and dividing by 2 , we obtain

$$
\begin{equation*}
-\varepsilon_{1}+\varepsilon_{i}+\varepsilon_{j}<\varepsilon, i, j=2,3, \ldots n \tag{12}
\end{equation*}
$$

By (io), (11) and (i2), we have

$$
\left(p_{1}-\mathrm{I}\right) \varepsilon_{1}+p_{1} \varepsilon_{2}+\ldots+p_{n} \varepsilon_{n}<\left(p_{1}-\mathrm{I}+p_{2}+\ldots+p_{n}\right) \varepsilon,
$$

provided

$$
p_{1}+p_{2}+\ldots+p_{n} \geq 2
$$

whence it follows that

$$
\frac{\left(p_{1}-1\right) \varepsilon_{1}+p_{2} \varepsilon_{2}+\ldots+p_{n} \varepsilon_{n}}{p_{1}-1+p_{2}+\ldots+p_{n}}<\varepsilon .
$$

Comparing this inequality with the inequality (6), we see that

$$
\begin{equation*}
\left(p_{1}-1\right) \varepsilon_{1}+p_{2} \varepsilon_{2}+\ldots+p_{n} \varepsilon_{n}<\left|\left(p_{1}-1+p_{2}+\ldots+p_{n_{1}}\right) \lambda_{1}+\ldots+\left(\ldots+p_{n}\right) \lambda_{v}\right| . \tag{13}
\end{equation*}
$$

Now consider the equation

$$
\begin{align*}
& \varepsilon_{1} x_{1} \frac{\partial f}{\partial x_{1}}+\varepsilon_{2} x_{2} \frac{\partial f}{\partial x_{2}}+\ldots+\varepsilon_{n} x_{n} \frac{\partial f}{\partial x_{n}}-\varepsilon_{1} f \\
& =\varphi_{1}^{\prime} \frac{\partial f}{\partial x_{1}}+\varphi_{2}^{\prime} \frac{\partial f}{\partial x_{2}}+\ldots+\varphi_{n}^{\prime} \frac{\partial f}{\partial x_{n}} \tag{14}
\end{align*}
$$

where the modulas of each coefficient of $\varphi_{i}(i=1,2, \ldots n)$ is the corresponding coefficient of $\varphi_{i}{ }^{\prime}(i=1,2, \ldots n)$.
Now take for initial values, the values given by (4), then from (14) all values of differential quotients of any order at $x_{1}=x_{2}=\ldots=x_{n}=0$ can be calculated successively, and moreover they are all positive. Since the laws of calculation of the values of differential quotients at $x_{1}=x_{2}$ $=\ldots=x_{n}=0$ from the equations (5) and (14), comparing the constants in (5) and (14), and noticing the inequality (13), we conclude that all the absolute values of diffcrential quotients of any order at $x_{1}=x_{2}=\ldots$ $=x_{n}=0$, calculated from the equation (5) are less than the values of corresponding differential quotients at $x_{1}=x_{2}=\ldots=x_{n}=0$ calculated from the equation (I4).

Since the determinant made with the coefficients of terms of first order in $x_{1}, x_{2}, \ldots x_{n}$ in (I4) is a normal determinant whose diagonal elements are $\varepsilon_{1}, \varepsilon_{2}, \ldots \varepsilon_{n}$, the roots of the characteristic equation corresponding to the determinant are $\varepsilon_{1}, \varepsilon_{2}, \ldots \varepsilon_{n}$ and they are all different one from another. Therefore by $\S 9$, the equotion (14) may be transformd into the form:

$$
\begin{equation*}
\left(\varepsilon_{1} y_{1}+\ldots\right) \frac{\partial f}{\partial y_{1}}+\left(\varepsilon_{2} y_{2}+\ldots\right) \frac{\partial f}{\partial y_{2}}+\ldots+\left(\varepsilon_{n} y_{n}+\ldots\right) \frac{\partial f}{\partial y_{n}}=\varepsilon_{1} f \tag{15}
\end{equation*}
$$

where the dotted parts mean terms of higher order than first. Now
$\varepsilon_{1}, \varepsilon_{2}, \ldots \varepsilon_{n}$ satisfy Poincaré's conditions, and this equation has a holomorphic solution as stated in §I. Therefore the equation (14) has a holomorphic solution by the initial conditions (4), since in transforming the equation (14) into (15) the vasiable x_{1} does not change, i.e., $x_{1} \equiv y_{1}$, Therefore by the preceding paragraph, our proposed equation (5), i.e., (3) has a holomorphic solution such as

$$
f_{1}=x_{1}+\ldots,
$$

writing only the term of first order.
11. Next we search for a holomorphic solution of the differential equation

$$
\begin{equation*}
X f=\lambda_{1} f+\lambda_{21} f_{1} \tag{I}
\end{equation*}
$$

or, writing as equation (5), § ıo, and using the functions $\varphi_{1}, \varphi_{2}, \ldots \varphi_{n}$,

$$
\begin{align*}
& \lambda_{1} x_{1} \frac{\partial f}{\partial x_{1}}+\lambda_{1} x_{2} \frac{\partial f}{\partial x_{2}}+\ldots+\lambda_{v} x_{n} \frac{\partial f}{\partial x_{n}}-\lambda_{1} f \\
& =\varphi_{1} \frac{\partial f}{\partial x_{1}}+\varphi_{2} \frac{\partial f}{\partial x_{2}}+\ldots+\varphi_{n} \frac{\partial f}{\partial x_{n}}+\lambda_{21} f_{1} . \tag{2}
\end{align*}
$$

In calculating the values of derivatives at $x_{1}=x_{2}=\ldots=x_{n}=0$, we may take the following initial conditions

$$
\begin{equation*}
\left(\frac{\partial f}{\partial x_{2}}\right)_{0}-\mathbf{1}=\left(\frac{\partial f}{\partial x_{i}}\right)_{0}=0, \quad i=\mathrm{I}, 3,4, \ldots n . \tag{3}
\end{equation*}
$$

Thereby consider the equation as in (14), \S Io, using the functions $\varphi_{1}{ }^{\prime} \varphi_{3}{ }^{\prime} \ldots \varphi_{n}{ }^{\prime}$,

$$
\begin{align*}
& \varepsilon_{2} x_{1} \frac{\partial f}{\partial x_{1}}+\varepsilon_{1} x_{2} \frac{\partial f}{\partial x_{2}}+\ldots+\varepsilon_{n} x_{n} \frac{\partial f}{\partial x_{n}}-\varepsilon_{1} f \\
& =\varphi_{1}^{\prime} \frac{\partial f}{\partial x_{1}}+\varphi_{2}^{\prime} \frac{\partial f}{\partial x_{2}}+\ldots+\varphi_{n}^{\prime} \frac{\partial f}{\partial x_{n}}+\left|\lambda_{21}\right| f_{1}^{\prime} \tag{4}
\end{align*}
$$

where $\left|\lambda_{21}\right|$ means the absolute value of λ_{21} and the coefficients of f_{1}^{\prime} are the absolute values of the corresponding coefficients in f_{1}. Now differentiate the equation (4) by x_{1} and put $x_{1}=x_{2}=\ldots=x_{n}=0$, then between the quotients of first order we have the equation

$$
\varepsilon_{2}\left(x_{1}\right)-\varepsilon_{1}\left(x_{1}\right)=\left|\lambda_{21}\right|\left(x_{2}\right)+\left|\lambda_{31}\right|\left(x_{3}\right)+\ldots+\left|\lambda_{21}\right| .
$$

Assume $\left(x_{i}\right)=0, i=3,4, \ldots n$, then we have

$$
\left(x_{2}\right)=\frac{\varepsilon_{3}-\varepsilon_{1}}{\left|\lambda_{21}\right|}\left(x_{1}\right)-1 .
$$

We may take, without any contradiction against the inequalities (7), § Io, so that $\varepsilon_{2}>\varepsilon_{1}$. Hence as the initial condition we must take

$$
\begin{gather*}
\left(\frac{\partial f}{\partial x_{1}}\right)_{0}=\frac{2\left|\lambda_{11}\right|}{\varepsilon_{2}-\varepsilon_{1}}>0 \\
\left(\frac{\partial f}{\partial x_{2}}\right)_{0}-\mathrm{I}=\left(\frac{\partial f}{\partial x_{i}}\right)_{0}=0, \quad i=3,4, \ldots n \tag{5}
\end{gather*}
$$

under these initial conditions, we see easily that the solution calculated from the equation (4) has all positive coefficients and serves as a fonction majorante of that calculated from (2).
To prove the existence of a holomorphic solution under these initial conditions, put

$$
f=\frac{2\left|\lambda_{2_{1}}\right|}{\varepsilon_{2}-\varepsilon_{1}} x_{1}+x_{2}+v
$$

then since φ_{1}^{\prime} does not contain any term of first order, while φ_{2}^{\prime} has $\left|\lambda_{21}\right| x_{1}$, we have the following equation

$$
\begin{gathered}
\varepsilon_{2} x_{1} \frac{\partial v}{\partial x_{1}}+\varepsilon_{1} x_{2} \frac{\partial v}{\partial x_{2}}+\ldots+\varepsilon_{n} x_{n} \frac{\partial v}{\partial x_{n}}-\varepsilon_{1} v \\
=\theta_{1} \frac{\partial v}{\partial x_{1}}+\theta_{2} \frac{\partial v}{\partial x_{2}}+\ldots+\theta_{n} \frac{\partial v}{\partial x_{n}}+\theta,
\end{gathered}
$$

where

$$
\begin{gathered}
\theta_{2}=\varphi_{2}^{\prime}-\left|\lambda_{21}\right| x_{1}, \quad \theta=\left|\lambda_{21}\right|\left(f_{1}^{\prime}-x_{1}\right)+\frac{2\left|\lambda_{21}\right|}{\varepsilon_{2}-\varepsilon_{1}} \varphi_{1}^{\prime}+\theta_{2} \\
\theta_{i}=\varphi_{i}^{\prime}, \quad i=1,3,4, \ldots n
\end{gathered}
$$

and θ does not contain terms of first order. Now by the transformation of variables, as considered in the foregoing section, this equation may be transformed into the form

$$
\left(\varepsilon_{2} y_{1}+\ldots\right) \frac{\partial v}{\partial y_{1}}+\left(\varepsilon_{1} y_{2}+\ldots\right) \frac{\partial v}{\partial y_{2}}+\ldots+\left(\varepsilon_{n} y_{n}+\ldots\right) \frac{\partial v}{\partial y_{n}}=\varepsilon_{1} v+\chi,
$$

wehre χ does not contain terms of first order. Compare this equation with the equation (3), § i. In our case ψ will increase by χ. But for proof of the existence of the integral, it is enough that the function ψ does not contain terms of first order. Hence our equation, also has a holomorphic solution $v(y)$ with no terms of first order. Conse-
quently the equation (4) has a holomorphic solution under the initial conditions (5). Hence our proposed equation (2), i.e., (1) has a holomorphic solution under the initial conditions (3), a solution such as

$$
f_{2}=x_{2}+\ldots
$$

Specially when $\lambda_{21}=0$, the equation (2) will be identical with (5), § 10. If we replace x_{2} for x_{1}, we have also a holomorphic solution f_{2}.

The preceding considerations are quite general, and we arrive at the result: There exist n_{1} holomorphic solutions $f_{1}, f_{2}, \ldots f n_{1}$ of the differential equations

$$
\begin{align*}
& X f_{1}=\lambda_{1} f_{1} \\
& X f_{2}=\lambda_{21} f_{1}+\lambda_{1} f_{2} \\
& \ldots \ldots \ldots \tag{6}\\
& X f_{n_{1}}=\lambda_{n_{1} 1} f_{1}+\lambda_{n_{1} 2} f_{2}+\ldots+\lambda_{1} f_{n_{1}}
\end{align*}
$$

where, writing only the terms of first oder

$$
\begin{align*}
& f_{1}=x_{1}+\ldots \\
& f_{2}=x_{2}+\ldots \\
& \ldots \ldots \ldots \tag{7}\\
& f_{n_{1}}=x_{n_{1}}+\ldots
\end{align*}
$$

Since there are ν multiple roots, proceeding as in the foregoing, we can prove the existence of $\nu-1$ groups of holomorphic solutions as (7), each group corresponding to the multiple root $\lambda_{2}, \lambda_{3}, \ldots$ or, λ_{y}.

Let us take these n holomorphic solutions as new independent variables such that

$$
\begin{aligned}
& y_{1}=f_{1}, \\
& y_{2}=f_{2}, \\
& \cdots \cdots \cdots \\
& y_{n_{1}}=f_{n_{1}}, \quad \text { and the like; }
\end{aligned}
$$

and transform the differential expression $X f$ of the equation (1), § 10 , then we obtain

$$
\begin{equation*}
Y f \equiv \eta_{1}(y) \frac{\partial f}{\partial y_{1}}+\eta_{2}(y) \frac{\partial f}{\partial y_{2}}+\ldots+\eta_{n_{1}}(y) \frac{\partial f}{\partial y_{n_{1}}}+\ldots+\eta_{n}(y) \frac{\partial f}{\partial y_{n}}, \tag{8}
\end{equation*}
$$

where

$$
\begin{gathered}
\eta_{1}(y)=\lambda_{1} y_{1}, \\
\eta_{2}(y)=\lambda_{11} y_{1}+\lambda_{1} y_{2}
\end{gathered}
$$

$$
\eta_{n_{1}}(y)=\lambda_{n_{1} 1} y_{1}+\lambda_{n_{1} 2} y_{2}+\ldots+\lambda_{1} y_{n_{1}}
$$

and the like. This transformation is a more general case of that in § 7.

Thus the problem of the differential equation

$$
\begin{equation*}
X f=0 \tag{9}
\end{equation*}
$$

is reduced to the problem of the differential cquation

$$
\begin{equation*}
Y f=0 . \tag{ı}
\end{equation*}
$$

12. According to the Encyclopédie ${ }^{1}$ (loc. cit.), Mr. Bendixson solved, after Poincaré, the system of differential equations

$$
\begin{gather*}
\frac{d x_{1}}{a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}}=\frac{d x_{2}}{a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}}=\ldots \\
=\frac{d x_{n}}{a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}} \tag{I}
\end{gather*}
$$

for the case where the characteristic equation

$$
\Delta(\lambda)=\left|\begin{array}{llll}
a_{11}-\lambda & a_{12} & \ldots a_{1 n} \\
a_{21} & a_{22}-\lambda & . . a_{2 n} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
a_{n 1} & a_{n!} & \ldots & a_{n n}-\lambda
\end{array}\right|=0 .
$$

has multiple roots and satisfy Poincare's conditions. When λ be a j-ple root of the characteristic equation, he showed that the equation has j-I integrals of the form

$$
\frac{T_{1}}{t^{\lambda}}, \frac{T_{2}+T_{1} \log t}{t^{\lambda}}, \cdots \frac{T_{j}+T_{j-1} \log t+\ldots+\frac{1}{(j-1)!} T_{1}(\log t)^{i-1}}{t^{\lambda}}
$$

t being eliminated and $T_{1}, \ldots T_{j}$ being holomorph. But, according to this book, nothing is said, explicitly, as to whether $a_{11}, \ldots a_{n n}$ are constants or unit functions; and reference to his original papers is for me impossible, since his literature is not at my hand. Mr. Dulac treated the case of two independent variables and said in his memoir ${ }^{2}$ that his method and that of Mr. Bendixson are applicable for the general

[^0]case of n variables in so far as the characteristic equation has a root of any order.

Now to find the solutions of the epuation (IO), § II is easy. We consider first the following simple equation

$$
\begin{equation*}
Z f=\zeta_{1}(z) \frac{\partial f}{\partial z_{1}}+\zeta_{2}(z) \frac{\partial f}{\partial z_{2}}+\ldots+\zeta_{h}(z) \frac{\partial f}{\partial z_{h}}=0 \tag{I}
\end{equation*}
$$

where

$$
\begin{aligned}
& \zeta_{1}(z)=a z_{1} \\
& \zeta_{2}(z)=a_{21} z_{1}+a z_{2} \\
& \ldots \ldots \ldots \\
& \zeta_{h}(z)=a_{h 1} z_{1}+a_{h 2} z_{2}+\ldots+a z_{h}
\end{aligned}
$$

Using h relations of the forms

$$
\begin{aligned}
& Z\left(z_{1}\right)=\zeta_{1}(z), \\
& Z\left(z_{2}\right)=\zeta_{2}(z), \\
& \cdots \cdots \cdots \\
& Z\left(z_{h}\right)=\zeta_{h}(z),
\end{aligned}
$$

we can easily prove that the equation (I) has $h-\mathrm{I}$ solutions of the forms

$$
\begin{gathered}
f_{1}=\frac{z_{3}}{z_{1}}+\alpha_{1} \log z_{1}, \\
f_{2}=\frac{z_{3}}{z_{1}}+\beta_{1} \frac{z_{2}}{z_{1}} \log z_{1}+\beta_{2} \log z_{1}+\beta_{3}\left(\log z_{1}\right)^{2}, \\
\ldots \ldots \ldots \\
f_{h-1}=\frac{z_{h}}{z_{1}}+\gamma_{1} \frac{z_{h-1}}{z_{1}} \log z_{1}+\ldots+\gamma_{h-2} \frac{z_{2}}{z_{1}}\left(\log z_{1}\right)^{h-2}+\gamma_{h-1} \log z_{1}+\ldots \\
\\
\quad+\gamma_{2 h-3}\left(\log z_{1}\right)^{h-1} .
\end{gathered}
$$

The equation (I), § $£ 1 \mathrm{I}$ is a mere combination of ν equations like as (i). Hence after this lemma, it is clear that the equation (io), § II has

$$
\left(n_{1}-1\right)+\left(n_{2}-1\right)+\ldots+\left(n_{v}-1\right)=n-\nu
$$

solutions of the form stated above. Moreover since $\lambda_{1}, \lambda_{2}, \ldots \lambda_{y}$ are different from each other, this equation has $\nu-1$ integrals:

$$
y_{1}^{-\frac{1}{\lambda_{1}}} y_{n_{1}+1^{\frac{1}{\lambda_{2}}}, y_{1}-\frac{\mathrm{I}}{\lambda_{1}}}^{y_{n_{1}+n_{2}+1^{\frac{1}{\lambda_{2}}}}, \ldots y_{1}-\frac{\mathrm{I}}{\lambda_{1}}} y_{n-n_{v}+1^{\frac{1}{\lambda_{2}}} .}
$$

Thus, adding them up, our equation has $n-1$ independent solutions, and
hence our proposed equation (1), § 1o has $n-1$ independent solutions, $n-\nu$ of which contain, in general, logarithmic function; and the problen of Poincaré is completed.

In the following we shall consider system of partial differential equations such as treated by Poincaré, and try the extension of Poincaré's theorem about a complete system.
13. In the first place, let us consider two partial differential equations under certain conditions. Now, let $X f$ and $Y f$ be, as above

$$
\begin{aligned}
X f & \equiv \xi_{1}(x) \frac{\partial f}{\partial x_{1}}+\xi_{2}(x) \frac{\partial f}{\partial x_{2}}+\ldots+\xi_{n}(x) \frac{\partial f}{\partial x_{n}}, \\
Y f & \equiv \eta_{1}(x) \frac{\partial f}{\partial x_{1}}+\eta_{2}(x) \frac{\partial f}{\partial x_{2}}+\ldots+\eta_{n}(x) \frac{\partial f}{\partial x_{n}} .
\end{aligned}
$$

The functions $\xi_{i}(x), \eta_{i}(x), i=1,2, \ldots n$ commence with terms of first order. The matrices formed with the coefficients of terms of first order are A and B. Then we obtain by the composition of $X f$ with $V f$, an expression of the same type,

$$
(X Y) f=\sum_{i=1}^{n}\left(X \eta_{i}-Y \xi_{i}\right) \frac{\partial f}{\partial x_{i}},
$$

and let C be the corresponding matrix with respect to this, then we see easily that $C=B \cdot A$. Therefore, when $(X Y) f \equiv 0$, or using the words of Lie, when the inifnitesimal transformations Xf and Yf are permutable, then the substitutions A and B must be also permutable. We shall consider this case alone.
When A is possible of transformation into a multiplication, then B also must be so. Hence we assume, from the beginning, that

$$
\begin{aligned}
& \xi_{i}(x)=\lambda_{i} x_{i}+\ldots, \\
& \gamma_{i}(x)=\mu_{i} x_{i}+\ldots, \quad i=\mathrm{I}, 2, \ldots n,
\end{aligned}
$$

where the dotted parts stand for terms of higher order. If $\lambda_{i}(i=1,2$, $\ldots . n)$ satisfy Poincare's conditions, then, by the transformation given by

$$
X y_{i}=\lambda_{i} y_{i}, i=1,2, \ldots n,
$$

$X f$ will be transformed into

$$
X^{\prime} f \equiv \lambda_{1} y_{1} \frac{\partial f}{\partial y_{1}}+\lambda_{2} y_{2} \frac{\partial f}{\partial y_{2}}+\ldots+\lambda_{n} y_{n} \frac{\partial f}{\partial y_{n}} .
$$

Yf will be transformed into

$$
Y^{\prime} f \equiv \sum_{i=1}^{n} Y y_{i} \frac{\partial f}{\partial y_{i}} .
$$

But since $(X Y) f$ is invariant for the transformation of variables, it must hold that

$$
\left(X^{\prime} Y^{\prime}\right) f=\sum_{i=1}^{n}\left\{X^{\prime}\left(Y y_{i}\right)-Y^{\prime}\left(\lambda_{i} y_{i}\right)\right\} \frac{\partial f}{\partial y_{i}} \equiv 0 .
$$

For that we must have
or

$$
\begin{aligned}
& X^{\prime}\left(Y y_{i}\right) \equiv Y^{\prime}\left(\lambda_{i} y_{i}\right), \quad i=\mathrm{I}, 2, \ldots n, \\
& X^{\prime}\left(Y y_{i}\right) \equiv \lambda_{i} Y y_{i},
\end{aligned}
$$

i.e., $Y y_{i}$ must be the solution of the evuation

$$
X^{\prime} f=\lambda_{i} f
$$

As we have said before, the solution of this equation is of the form

$$
A y_{i} .
$$

But, by calculation we know that

$$
Y_{y_{i}}=\mu_{i} y_{i}+\ldots,
$$

and therefore

$$
V y_{i}=\mu_{i} y_{i}, \quad i=1,2, \ldots n .
$$

Thus when two differential expressions $X f$ and $V f$ are such that $(X Y) f \equiv 0$, and the coefficients $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ of the former satisfy Poincare's conditions, then by the transformation given by

$$
X y_{i} \equiv \lambda_{i} y_{i}, i=1,2, \ldots n
$$

both expressions may be transformed into

$$
X^{\prime} f=\sum_{i=1}^{n} \lambda_{i} y_{i} \frac{\partial f}{\partial y_{i}}, \text { resp. } Y^{\prime} f=\sum_{i=1}^{n} \mu_{i} y_{i} \frac{\partial f}{\partial y_{i}} .
$$

The inverve is also true. In this theorem, whether $\mu_{1}, \mu_{2}, \ldots \mu_{n}$ satisfy Poincare's conditions or not is of no concern; hence the result follows;

The necessary and sufficient condition of existence of $n-1$ algebroidal solutions of the equation $V f=0$, is that there gives an equation of the same form $X f=0$, such that $(X Y) f \equiv 0, \lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ satisfying Poincaré's conditions. This is Lie's theorem at singulality.
14. Next consider a system of r equations which are permutable with one another,

$$
\begin{aligned}
& X_{1} f \equiv \xi_{11}(x) \frac{\partial f}{\partial x_{1}}+\xi_{12}(x) \frac{\partial f}{\partial x_{2}}+\ldots+\xi_{1 n}(x) \frac{\partial f}{\partial x_{n}}=0 \\
& X_{2} f \equiv \xi_{21}(x) \frac{\partial f}{\partial x_{1}}+\xi_{22}(x) \frac{\partial f}{\partial x_{2}}+\ldots+\xi_{2 n}(x) \frac{\partial f}{\partial x_{n}}=0
\end{aligned}
$$

$$
X_{r} f \equiv \xi_{r 1}(x) \frac{\partial f}{\partial x_{1}}+\xi_{r 2}(x) \frac{\partial f}{\partial x_{2}}+\ldots+\xi_{r n}(x) \frac{\partial f}{\partial x_{n}}=0,
$$

where, writing only the first term.

$$
\xi_{i j}(x)=\lambda_{i j} x_{j}+\ldots, i=\mathrm{I}, 2, \ldots r ; j=\mathrm{I}, 2, \ldots n ; r<n,
$$

and suppose that $\lambda_{11}, \lambda_{12}, \ldots \lambda_{\text {in }}$ obey Poincare's conditions. Then, by the theorem stated above, this system may be transformed into

$$
\begin{aligned}
& X_{1}^{\prime} f=\sum \lambda_{1 i} y_{2} \frac{\partial f}{\partial y_{i}}, \\
& X_{2}^{\prime} f=\sum \lambda_{2 i} y_{i} \frac{\partial f}{\partial y_{i}}, \\
& \ldots \cdots \cdots \\
& X_{r}^{\prime} f=\sum \lambda_{r 1} y_{i} \frac{\partial f}{\partial y_{i}} .
\end{aligned}
$$

When $X_{1} f, X_{2} f, \ldots X_{r} f$ and hence $X_{1}^{\prime} f, X_{2}^{\prime} f, \ldots X_{r}^{\prime} f$ are independent, the rank of the matrix

$$
\left|\begin{array}{llll}
\lambda_{11} & \lambda_{2} & \ldots & \lambda_{1 n} \\
\lambda_{21} & \lambda_{22} & \ldots & \lambda_{2 n} \\
\ldots & \ldots & \cdots & \cdots \\
\lambda_{r 1} & \lambda_{r 2} & \ldots & \lambda_{r n}
\end{array}\right|
$$

must be r. Suppose the determinant made by first r columns does not vanish, then if the function

$$
f=y_{1}^{m_{1}} y_{2}^{m_{2}} \ldots y_{n}^{m_{n}}
$$

satisfy the system of equations, there follows

$$
\lambda_{11} m_{1}+\lambda_{12} m_{2}+\ldots+\lambda_{1 r} m n_{r}+\ldots+\lambda_{1 n} m m_{n}=0
$$

$$
\begin{aligned}
& \lambda_{21} m_{1}+\lambda_{22} m_{2}+\ldots+\lambda_{2 r} m_{r}+\ldots+\lambda_{2 n} m_{n}=0, \\
& \quad \ldots \ldots \ldots \ldots \ldots \\
& \lambda_{r 1} m_{1}+\lambda_{r 2} m_{2}+\ldots+\lambda_{r r} m_{r}+\ldots+\lambda_{r n} m_{n}=\mathrm{o}
\end{aligned}
$$

whence we have

$$
\begin{aligned}
& m_{1}=k_{11} m_{r+1}+k_{12} m_{r+2}+\ldots+k_{1 n-r} m n_{n}, \\
& m m_{4}=k_{21} m_{r+1}+k_{22} m_{r+2}+\ldots+k_{1 n-r} m_{n}, \\
& \ldots \ldots \ldots \ldots \ldots \ldots \\
& m_{r}=k_{r 1} m_{r+1}+k_{r 2} m_{r+2}+\ldots+k_{r n-r} m n_{n},
\end{aligned}
$$

where $k_{i j}$ are constants. Hence our complete system has $n-r$ independent solutions

$$
\begin{gathered}
f_{1}=y_{1}^{k_{11}} y_{2}^{k_{21}} \ldots y_{r}^{k_{r 1}} y_{r+1}, \\
f_{2}=y_{1}^{k_{12}} y_{2}^{k_{22}} \ldots y_{r}^{k_{r 2}} y_{r+2}, \\
\ldots \ldots \ldots \\
f_{n-r}=y_{1}^{k_{1 n-r}} y_{2}^{k_{2} n-r} \ldots y_{r}^{k_{r n-r}} y_{n} .
\end{gathered}
$$

Thus a complete system made with $X_{1} f=X_{2} f=\ldots=X_{r} f=0$, where $\left(X_{i}, X_{j}\right) f \equiv 0,(i, j=1,2, \ldots r)$ and n coefficients of terms of first order in $X_{1} f$ satisfy Poincare's conditions, has $n-r$ independent solutions.

This is an extension of Poincare's research. When we go to the general complete system, we must consider some device. If the system has holomorphic solutions, Jacobi's method is sufficient. In the following I give a lemma, and next prove the general theorem.
15. Let us consider a system of m partial differential equations of the form:

$$
\begin{align*}
& X f_{1}=F_{1}\left(x_{1}, x_{2}, \ldots x_{n} ; f_{1}, f_{2}, \ldots f_{m}\right), \\
& X f_{1}=F_{2}\left(x_{1}, x_{2}, \ldots x_{n} ; f_{1}, f_{2}, \ldots f_{m}\right), \\
& \ldots \ldots \ldots \tag{1}\\
& X f_{m}=F_{m}\left(x_{1}, x_{2}, \ldots x_{n} ; f_{1}, f_{2}, \ldots f_{m}\right),
\end{align*}
$$

where

$$
X f \equiv\left(\lambda_{1} x_{1}+\ldots\right) \frac{\partial f}{\partial x_{1}}+\left(\lambda_{2} x_{2}+\ldots\right) \frac{\partial f}{\partial x_{2}}+\ldots+\left(\lambda_{n} x_{n}+. .\right) \frac{\partial f}{\partial x_{n}},
$$

$\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ satisfying Poincaré's conditions, and $F_{i},(i=1,2, \ldots m)$ are holomorphic functions of $x_{1}, x_{2}, \ldots x_{n}$ in certain convergent circles about the origin and also of $f_{1}, f_{2} \ldots f_{m}$ in certain convergent circles whose
radii, without loosing the generality, are unity about $f_{1}=f_{2}=\ldots=f_{m}=0$. Adding to them, $F_{i},(i=1,2, \ldots m)$ have the following forms:

$$
\begin{array}{r}
F_{i}(x ; f)=\theta_{0}{ }^{(i)}(x)+\sum_{s=1}^{m} \theta_{s}{ }^{i}(x) f_{s}+\sum_{s, t=1}^{m} \theta_{s, t}^{(i)}(x) f_{s} \cdot f_{t}+\ldots, \tag{2}\\
i=1,2, \ldots m
\end{array}
$$

where, since $F_{1}, F_{2}, \ldots F_{m}$ are holomorphic functions, all $\theta^{\prime} s$ are holomorphic functions, and we assume that they commence at least with terms of first order.

To prove the existence of holomorphic solutions of this system, we transform as usual these equations by the n solutions given by

$$
X y_{i}=\lambda_{i} y_{i}, i=\mathrm{I}, 2, \ldots n,
$$

then the differential expression $X f$ will become

$$
\lambda_{1} y_{1} \frac{\partial f}{\partial y_{1}}+\lambda_{2} y_{2} \frac{\partial f}{\partial y_{2}}+\ldots+\lambda_{n} y_{n} \frac{\partial f}{\partial y_{n}}
$$

and the hypothesis made upon $F_{i}(i=1,2, \ldots n)$ will also be fulfilled. Therefore, we assume from the beginning that $X f$ has already been reduced to this form. We take for initial values of $f_{1}, f_{2}, \ldots f_{m}$:

$$
\left(f_{i}\right)_{0} \equiv f_{0}^{(i)}=0, i=1,2, \ldots m
$$

Next differentiate the equation (1) by x_{1} and put $x_{1}=x_{2}=\ldots=x_{n}=0$, then we have

$$
\lambda_{1}\left(\frac{\partial f_{i}}{\partial x_{1}}\right)_{0}=\left(\frac{\partial \theta_{0}^{(i)}(x)}{\partial x_{1}}\right)_{0}, i=1,2, \ldots m
$$

while all the others vanish, since for example,

$$
\left.\begin{array}{c}
\sum_{s, t, \ldots u-1}^{m}\left(\frac{\partial \theta_{s, t, \ldots u}^{(i)}(x) f_{s} f_{t} \ldots f_{u}}{\partial x_{1}}\right)_{0} \\
=\sum_{s, t, \ldots u=}^{m}\left\{\left(\frac{\partial \theta_{s, t}^{(i)}, \ldots u}{\partial x_{1}}(x)\right.\right. \\
)_{0}
\end{array}\left(f_{s} \cdot f_{t} \ldots f_{u}\right)_{0}+\left(\theta_{s, t}^{(i)} \ldots u(x)\right)_{0}\left(\frac{\partial\left(f_{s} f_{t} \ldots f_{u}\right)}{\partial x_{1}}\right)_{0}\right\}=0 .
$$

The same is true for the remaining variables; and therefore we have the equations:

$$
\left(\frac{\partial f_{i}}{\partial x_{1}}\right)_{0}=\frac{\left(\frac{\partial \theta_{0}^{(i)}(x)}{\partial x_{1}}\right)_{0}}{\lambda_{1}},
$$

$$
\begin{aligned}
\left(\frac{\partial f_{i}}{\partial x_{2}}\right)_{0}= & \frac{\left(\frac{\partial \theta_{n}^{(i)}(x)}{\partial x_{2}}\right)_{0}}{\lambda_{2}}, \\
& \cdots \cdots \cdots \\
\left(\frac{\partial f_{i}}{\partial x_{n}}\right)_{0} & =\frac{\left(\frac{\partial \theta_{0}^{(i)}(x)}{\partial x_{n}}\right)_{0}}{\lambda_{n}} ; \quad i=1,2, \ldots m .
\end{aligned}
$$

From these conditions, the coefficients of all the terms of first order in $f_{1}, f_{2} \ldots f_{m}$ are determined uniquely. In general, if we differentiate both sides of (I) p_{1} times with respect to x_{1}, p_{2} times with respect to $x_{2}, \ldots p_{n}$ times with respect to x_{n} and put $x_{1}=x_{2}=\ldots=x_{n}=0$, we obtain from the left-hand side

$$
\left(p_{1} \lambda_{1}+p_{2} \lambda_{2}+\ldots+p_{n} \lambda_{n}\right)\left(\frac{\partial^{p_{1}+p_{2}+\ldots+\hat{p}_{n}} f_{i}}{\partial x_{1}^{p_{1}} \partial x_{2}^{p_{2}} \ldots \partial x_{n}^{p_{n}}}\right)_{0} \quad i=\mathrm{I}, 2, \ldots m .
$$

But in the right-hand side, the differential quotients of order $p_{1}+p_{2}$ $+\ldots+p_{n}$ are given in the following manner:

$$
\begin{gathered}
\sum\left(\frac{\partial^{p_{1}+p_{2}+\ldots+p_{n}} \theta_{s, t, \ldots}^{(i)}(x) f_{s} f_{t} \ldots f_{n}}{\partial x_{1}{ }^{p_{1}} \partial x_{2}^{p_{2}}}\right)_{0} \partial x_{n}^{p_{n}} \\
=\sum\left[\left(\theta_{s, t, \ldots u}^{(i)}(x)\right)_{0}\left\{\left(\frac{\partial^{p_{1}+p_{2}+\cdots+p_{n}} f_{s}}{\partial x_{1}^{p_{1}} \partial x_{2}^{p_{2}} \ldots \partial x_{i u}^{p_{u}}} f_{t} \ldots f_{u}\right)_{0}+\ldots\right\}+\text { lower orders }\right] .
\end{gathered}
$$

Since all θ^{\prime} s vanish at $x_{1}=x_{2}=\ldots=x_{n}=0$, the left-hand side give no differential quotients of order $p_{1}+p_{2}+\ldots+p_{n}$. But the coefficients $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ obey Poincare's conditions, the coefficient $p_{1} \lambda_{1}+p_{2} \lambda_{2}+\ldots+p_{n} \lambda_{n}$ don't vanish, and therefore all the values

$$
\left(\frac{\partial^{p_{1}+p_{2}+\ldots+p_{n}}}{\partial x_{1}{ }^{p_{1}} \partial x_{i}{ }^{p_{2}} \ldots \partial x_{n}{ }^{p_{n}}}\right)_{0} \quad i=\mathrm{I}, 2, \ldots m
$$

may be calculated gradually.
Next we prove the convergency of the integrals. Let ε be a positive value such that for any positive integers $p_{1}, p_{2}, \ldots p_{n}$ which satisfy
we have

$$
p_{1}+p_{2}+\ldots+p_{n} \geq \mathrm{I}
$$

$$
\varepsilon \leq\left|\frac{p_{1} \lambda_{1}+p_{2} \lambda_{2}+\ldots+p_{n} \lambda_{n}}{p_{1}+p_{2}+\ldots+p_{n}}\right|
$$

and, assume that all $\theta^{\prime} s$ are holomorphic in circles with radius a about $x_{1}=x_{2}=\ldots=x_{n}=0$, and M be the common maximum value of their absolute values, then

$$
\operatorname{all}\left|\theta_{s_{3, t}^{(i)} \ldots u}(|x|)\right| \leq \frac{M}{1-\frac{\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right|}{a}}-M .
$$

Consider the following system of equations:

$$
\begin{gather*}
\varepsilon\left(x_{1} \frac{\partial v_{i}}{\partial x_{1}}+x_{2} \frac{\partial v_{i}}{\partial x_{2}}+\ldots+x_{n} \frac{\partial v_{i}}{\partial x_{n}}\right)=\left(\frac{M}{1-\frac{x_{1}+x_{2}+\ldots+x_{n}}{a}}-M\right) \\
\times \frac{1}{\mathrm{I}-\left(v_{1}+v_{2}+\ldots+v_{m}\right)}, \quad i=\mathrm{I}, 2, \ldots m . \tag{3}
\end{gather*}
$$

The right-hand side may be written

$$
\equiv \theta_{0}{ }^{(i)}(x)+\sum_{s=1}^{m} \theta_{s}^{(i)}(x) v_{s}+\sum_{s, t=1}^{m} \theta_{s, t}^{(i)}(x) v_{s} v_{t}+\ldots,
$$

all the coefficients in $\theta^{\prime} s$ are positive. Moreover

$$
\text { all }\left|\theta_{s, t, \ldots u}^{(i)}(|x|)\right| \leq \theta_{s, t, \ldots u}^{(i)}(|x|) ;
$$

whence the function standing on the right of (3) is a fonction majorante of each F_{i}. On the other hand the coefficient of $\left(\frac{\partial^{p_{1}+p_{2}+\ldots+\not n_{n}} v_{i}}{\partial x_{1}^{p_{1}} \partial x_{1}^{p_{2}} \ldots \partial x_{n}^{p_{n}}}\right)_{0}$ is $\varepsilon\left(p_{1}+p_{2}+\ldots+p_{n}\right)$. This is, by the assumption upon ε, less than $\left|p_{1} \lambda_{1}+p_{2} \lambda_{2}+\ldots+p_{n} \lambda_{n}\right|$. Therefore, taking for $v_{i}, i=1,2, \ldots m$, an initial value $\frac{M}{\varepsilon \alpha}$ which is greater than the absolute values of the initial values of $f_{i}, i=1,2, \ldots m$, we have always

$$
\left|\left(\frac{\partial^{p_{1}+p_{2}+\ldots+p_{n}} f_{i}}{\partial x_{1}^{p_{1}} \partial x_{2}^{p_{2}} \ldots \partial x_{n}^{p_{n}}}\right)_{0}\right|<\left(\frac{\partial^{p_{1}+p_{2}+\ldots+p_{n}} v_{i}}{\partial x_{1}^{p_{1}} \partial x_{2}^{p_{2}} \ldots \partial x_{n}^{p_{n}}}\right)_{0} \quad i=\mathrm{r}, 2, \ldots m .
$$

Hence the integrals of (3) may be taken as a fonction majorante of the solutions of (I).
Now we have to prove the existence of integrals of (3). For which put

$$
x_{1}+x_{1}+\ldots+x_{n}=u
$$

then by the symmetry, it is sufficient to consider the equation

$$
\varepsilon u \frac{d v}{d u}=\left(\frac{M}{\mathrm{I}-\frac{u}{a}}-M\right) \frac{\mathrm{I}}{\mathrm{I}-m v}
$$

This equation has a holomorphic solution of the form

$$
v=\frac{M}{\varepsilon a} u+\ldots
$$

about the origin. Therefore our proposed equation (I) has a system of m solutions $f_{1}, f_{2}, \ldots f_{m}$ which are holomorphic about and vanish at $x_{1}=x_{2}=\ldots=x_{n}=0$.

If we want to obtain such a system of solutions $f_{1}, f_{2}, \ldots f_{m}$ that

$$
f_{i}(\mathrm{o}, \mathrm{o}, \ldots \mathrm{o})=f_{0}^{(i)}, i=\mathrm{I}, 2, \ldots m
$$

where $f_{i}^{(0)},(i=1,2, \ldots m)$ are arbitrary constants but the points $f_{i}^{(0)}$, $(i=1,2, \ldots m)$ lie in the convergent circles of $F_{i}(x ; f),(i=1,2, \ldots m)$; then we put

$$
\varphi_{i}=f_{i}-f_{0}^{(i)}, i=\mathrm{I}, 2, \ldots m
$$

We have

$$
\begin{aligned}
X f_{i} & =X\left(\varphi_{i}+f_{0}^{(i)}\right)=X \varphi_{i} \\
& =F_{i}\left(x_{1}, x_{2}, \ldots x_{n} ; \varphi_{1}+f_{0}^{(1)}, \varphi_{2}+f_{0}^{(2)}, \ldots \varphi_{m}+f_{0}^{(m)}\right), i=1,2, \ldots m .
\end{aligned}
$$

Since the points $f_{0}^{(i)},(i=1,2, \ldots m)$ lie in their convergent circles, we may expand the Functions:

$$
\begin{array}{r}
F_{i}\left(x, \varphi+f_{0}^{()}\right)=\tau_{0}^{(i)}(x)+\sum_{s=1}^{m} \tau_{s}^{(i)}(x) \frac{\varphi_{s}}{b_{s}}+\sum_{s, t=1}^{m} \tau_{s, t}^{(i)}(x) \frac{\varphi_{s}}{b_{s}} \frac{\varphi_{t}}{b_{t}}+\ldots, \\
i=1,2, \ldots m,
\end{array}
$$

where $b_{1}, b_{2}, \ldots b_{m}$ are the radii of convergent-circles of $F_{i}\left(x ; \varphi+f_{0}^{()}\right)$, $(i=\mathrm{I}, 2, \ldots m)$, with respect to the variables $\varphi_{1}, \varphi_{2}, \ldots \varphi_{m}$. Since all the functions $\theta^{\prime} s$ commence at least with terms of first order of $x_{1}, x_{2}, \ldots x_{n}$, all the new functions τ^{\prime} s also fail to contain any constant terms, and moreover are holomorphic about $x_{1}=x_{2}=\ldots=x_{n}=0$. Now put

$$
\frac{\varphi_{i}}{b_{i}} \equiv \psi_{i}, \quad i=1,2, \ldots m
$$

then the new epuations take the forms of the equations (I). From these we conclude that our equations have a system of solutions f_{1}, f_{2}, ... f_{m}, such that

$$
f_{i}(\mathrm{o}, \mathrm{o}, \ldots \mathrm{o})=f_{v}^{(i)}, i=\mathrm{x}, 2, \ldots m
$$

where $f_{0}^{(i)},(i=1,2, \ldots m)$ are integration constants and that

$$
f_{i}=f_{0}^{(i)}+\sum_{s=1}^{n} f_{s}^{(i)} x_{s}+\sum_{s, t=1}^{n} f_{s, t}^{(i)} x_{s} x_{t}+\ldots, \quad i=\mathbf{1}, 2, \ldots m,
$$

where $f_{s}^{(i)}, f_{s, t}^{(i)} \ldots,(i=1,2, \ldots m)$ are constants.
16. The system of equations (i), $\S 15$, cannot have such solutions

$$
f_{i} \equiv 0, i=1,2, \ldots m
$$

in so far as all $\theta_{0}^{(i)}(x),(i=1,2, \ldots m)$ are identically zero. Conversely when all $\theta_{0}{ }^{(t)}(x),(i=\mathrm{I}, 2, \ldots m)$ are identically zero, all solutions f_{i}, $(i=1,2, \ldots m)$ which are zero at $x_{1}=x_{2}=\ldots=x_{n}=0$ must vanish identically. The proof is easy. In the proof of the last theorem, we saw that all values of differential quotients of order m at $x_{1}=x_{2}=\ldots=x_{n}=0$ are given by certain linear homogeneous functions of the coefficients of the functions $\theta_{0}{ }^{(i)}(x),(i=1,2, \ldots m)$ and of the values of differential quotients of order lower than m, at $x_{1}=x_{2}=\ldots=x_{n}=0$. This fact shows that all the coefficients of the solutions $f_{i},(i=1,2, \ldots, n)$ are linear homogeneous functions of the coefficients of the functions $\theta_{0}{ }^{(i)}(x),(i=$ $1,2, \ldots m$). Therefore, when
then

$$
\theta_{0}{ }^{(t)}(x) \equiv 0, i=\mathrm{I}, 2, \ldots m
$$

$$
f_{i}(x) \equiv 0, i=1,2, \ldots m ;
$$

i.e., when at least one of the functions $\theta_{0}^{(i)}(x),(i=1,2, \ldots m)$ does not vanish, then at least one of the functions $f_{i},(i=1,2 \ldots m)$ does not vanish.
From this remark, it follows that the system of solutions $f_{i},(i=1,2, \ldots m)$ which become $f_{0}^{(i)},(i=1,2, \ldots m)$ respectively at $x_{1}=x_{2}=\ldots=x_{n}=0$ is unique.
17. Now there is given a complete system of r equations

$$
\begin{align*}
& X_{1} f \equiv \xi_{11}(x) \frac{\partial f}{\partial x_{1}}+\xi_{12}(x) \frac{\partial f}{\partial x_{2}}+\ldots+\xi_{1 n}(x) \frac{\partial f}{\partial x_{n}}=0, \\
& X_{2} f \equiv \xi_{22}(x) \frac{\partial f}{\partial x_{1}}+\xi_{22}(x) \frac{\partial f}{\partial x_{2}}+\ldots+\xi_{2 n}(x) \frac{\partial f}{\partial x_{n}}=0, \tag{I}
\end{align*}
$$

$$
X_{r} f \equiv \xi_{r 1}(x) \frac{\partial f}{\partial x_{1}}+\xi_{r n}(x) \frac{\partial f}{\partial x_{2}}+\ldots+\xi_{r n}(x) \frac{\partial f}{\partial x_{n}}=0
$$

where all the functions ξ^{\prime} 's are holomorphic about $x_{1}=x_{2}=\ldots=x_{n}=0$, and have the forms

$$
\xi_{i j}(x)=\lambda_{i j} x_{j}+\ldots, \begin{aligned}
& i=1,2, \ldots r, \\
& \\
& j=1,2, \ldots n
\end{aligned}
$$

the dotted part meaning terms of higher order.
We assume that $\lambda_{11}, \lambda_{12}, \ldots \lambda_{1 n}$ satisfy Poincare's conditions; moreover, the rank of the matrix

$$
\left\|\begin{array}{cccc}
\lambda_{11} & \lambda_{12} & \ldots & \lambda_{1 n} \tag{2}\\
\lambda_{21} & \lambda_{22} & \ldots & \lambda_{2 n} \\
\ldots & \ldots & \ldots & . \\
\lambda_{r 1} & \lambda_{r 2} & \ldots & \lambda_{r n}
\end{array}\right\|
$$

is r. It the rank be less than r, multiplying certain constants into $X_{1} f, X_{2} f \ldots X_{r} f$ and adding, we have the equation

$$
\bar{\xi}_{1}(x) \frac{\partial f}{\partial x_{1}}+\bar{\xi}_{2}(x) \frac{\partial f}{\partial x_{2}}+\ldots+\bar{\xi}_{n}(x) \frac{\partial f}{\partial x_{n}}=0
$$

whose coefficients $\overline{\bar{\xi}}_{i},(i=1,2, \ldots n)$ commence at least with terms of second order. Such an equation has not yet been treated generally. In the following we shall prove that this system has $n-r$ solutions.

Since $X_{1} f, X_{2} f, \ldots X_{r} f$ form a complete system, such relations hold

$$
\begin{equation*}
\left(X_{i}, X_{j}\right) f=\sum_{s=1}^{r} C_{i j s} X_{s} f, \quad i, j=\mathrm{I}, 2, \ldots r \tag{3}
\end{equation*}
$$

where $C_{i j e}$ are holomorphic functions; for Lie's group these are constants. Between the functions $C_{i j s}$, there hold such relations:

$$
\begin{equation*}
\dot{C}_{i j s}+C_{j i s}=0, i, j, s=1,2, \ldots r . \tag{4}
\end{equation*}
$$

Take any three of $X_{i} f,(i=1,2, \ldots r)$, then we have, after Jacobi,

$$
\left(X_{k},\left(X_{i}, X_{j}\right)\right) f+\left(X_{i},\left(X_{j}, X_{k}\right)\right) f+\left(X_{j},\left(X_{k}, X_{i}\right)\right) f \equiv \mathrm{o}
$$

Therefore we know, after some easy calculations, that

$$
\begin{align*}
& \sum_{s=1}^{r}\left(C_{i j s} C_{k s t}+C_{j k s} C_{i s t}+C_{k i s} C_{j s t}\right) \tag{5}\\
& +X_{k} C_{i j t}+X_{i} C_{j k t}+X_{j} C_{k i t} \equiv 0, \quad i, j, k, t=1,2, \ldots r .
\end{align*}
$$

Now consider the following $r-1$ alternants

$$
\begin{align*}
& \left(X_{1}, X_{2}\right) f=\sum_{k=1}^{r} C_{12 s} X_{8} f \\
& \left(X_{1}, X_{3}\right) f=\sum_{8=1}^{r} C_{13 s} X_{s} f \tag{6}
\end{align*}
$$

Put

$$
\left(X_{1}, X_{r}\right) f=\sum_{s=1}^{r} C_{1 r s} X_{s} f
$$

$$
\begin{equation*}
Y_{i} f=X_{i} f+\sum_{j=1}^{r} R_{i j}(x) X_{j} f \tag{7}
\end{equation*}
$$

where $R_{i j}(x),(j=1,2, \ldots r)$ are yet unknown functions; then we have by (6)

$$
\begin{aligned}
\left(X_{1}, Y_{i}\right) f & =\left(X_{1}, X_{i}+\sum_{j=1}^{r} R_{i j}(x) X_{j}\right) f \\
& =\left(X_{1}, X_{i}\right) f+\sum_{j=1}^{r} R_{i j}\left(X_{1}, X_{j}\right) f+\sum_{j=1}^{r} X_{1} R_{i j} X_{j} f, \\
& =\sum_{s=1}^{r} C_{1 i s} X_{s} f+\sum_{j=1}^{r} R_{i j} \sum_{s=1}^{r} C_{1 j 8} X_{s} f+\sum_{j=1}^{r} X_{1} R_{i j} X_{j} f, \\
& =\sum_{s=1}^{r}\left\{C_{1 i s}+\sum_{j=1}^{r} R_{i j} C_{1 j s}+X_{1} R_{i s}\right\} X_{s} f .
\end{aligned}
$$

Therefore, to have the relation

$$
\left(X_{1}, Y_{i}\right) f \equiv 0
$$

we must take $R_{i j},(j=1,2, \ldots r)$ such that

$$
\begin{equation*}
X_{1} R_{i s}+C_{1 i s}+\sum_{j=1}^{r} C_{13 s} R_{i j}=0, \quad s=\mathrm{I}, 2, \ldots r . \tag{8}
\end{equation*}
$$

This is a system of r partial differential equations. When the functions $C_{i s},(s=\mathrm{I}, 2, \ldots r)$ are not all zero and all the functions $C_{1 j s},(j, s=$ $\mathrm{I}, 2, \ldots r$) commence at least with terms of first order, then, by the theorem of § 15 , this system of equations has r holomorphic solutions $R_{i 1}, R_{i 2}, \ldots R_{i r}$ which do not contain any constant terms.
By this system of solutions, we have

$$
\left(X_{1}, Y_{i}\right) f \equiv 0
$$

When all $C_{14 s},(s=\mathrm{I}, 2, \ldots r)$ are zero, then put $X_{i} \equiv Y_{i}$ and the result is the same. By the property of $R_{i j},(j=1,2, \ldots r)$, we have

$$
Y_{i} f=\left(\lambda_{i 1} x_{1}+\ldots\right) \frac{\partial f}{\partial x_{1}}+\left(\lambda_{i:} x_{2}+\ldots\right) \frac{\partial f}{\partial x_{2}}+\ldots+\left(\lambda_{i n} x_{n}+\ldots\right) \frac{\partial f}{\partial x_{n}},
$$

and moreover

$$
\begin{equation*}
X_{i} f=\left(\mathrm{I}+R_{i i}\right)^{-1}\left(Y_{i} f-\sum_{j=1}^{r} R_{i j} X_{j} f\right), \tag{IO}
\end{equation*}
$$

where, in the summation $\Sigma^{\prime}, X_{i} f$ is excepted. Thus $X_{i} f$ can be expressed linearly in terms of $X_{1} f, \ldots X_{i-1}, Y_{i} f, X_{i+1} f, \ldots X_{r} f$. Moreover from (IO), we have

$$
\begin{aligned}
&\left(X_{1}, X_{k}\right) f=\sum_{s=1}^{r} C_{1 k s} X_{s} f \\
&=\sum_{s=1}^{r} \prime \\
& r i k s \\
& X_{s} f+C_{1 k i}\left(\mathrm{I}+R_{t i}\right)^{-1}\left(Y_{i} f-\sum_{j=1}^{r} R_{i j} X_{j} f\right) \\
& \equiv C_{1 k 1}^{\prime} X_{1} f+\ldots+C_{1 k i}^{\prime} Y_{i} f+\ldots+C_{1 k r}^{\prime} X_{r} f .
\end{aligned}
$$

Thus we see that when the functions $C_{1 k s},(k, s=1,2, \ldots r)$ don't contain constant terms, then the functions $C_{1 k s}^{\prime},(s=1,2, \ldots r)$ also don't contain any constant terms. Now operate this process for $X_{2} f, X_{3} f, \ldots X_{r} f$ successively and replace our complete system (i) by the complete system
where

$$
\begin{equation*}
Y_{1} f \equiv X_{1} f, \quad Y_{2} f, \ldots Y_{r} f \tag{II}
\end{equation*}
$$

$$
\begin{array}{r}
Y_{i} f=\left(\lambda_{i 1} x_{1}+\ldots\right) \frac{\partial f}{\partial x_{1}}+\left(\lambda_{i 2} x_{2}+\ldots\right) \frac{\partial f}{\partial x_{2}}+\ldots+\left(\lambda_{i n} x_{n}+\ldots\right) \frac{\partial f}{\partial x_{n}}, \\
i=1,2, \ldots r
\end{array}
$$

$$
\left(\begin{array}{l}
\left.Y_{1} Y_{i}\right) f \equiv 0, i=2,3, \ldots r . ~ \tag{I2}
\end{array}\right.
$$

But in general

$$
\left(Y_{i}, Y_{j}\right) f=\sum_{s=1}^{r} C_{i j s}^{\prime} Y_{s} f
$$

Since

$$
\begin{equation*}
C^{\prime}{ }_{1, j 8}=-C_{i 18}=0, \tag{I3}
\end{equation*}
$$

and

$$
C_{i t s}=0, \quad i, j, s=\mathrm{I}, 2, \ldots r
$$

we may prove that all the remaining functions $C_{i j s}$ are also zero. For apply the formula (5), then we have

$$
\begin{aligned}
& \sum_{s=1}^{r}\left(C_{i j s}^{\prime} C_{k s t}^{\prime}+C_{j k s}^{\prime} C_{i s t}^{\prime}+C_{k i s}^{\prime} C_{j s t}^{\prime}\right) \\
& +Y_{k} C_{i j t}^{\prime}+Y_{i} C_{j k t}^{\prime}+Y_{j} C_{k i t}^{\prime} \equiv 0, \quad i, j, k, t=1,2, \ldots r .
\end{aligned}
$$

Put $k=\mathrm{I}$, then by virtue of (13),

$$
Y_{1} C_{i j t}^{\prime}=0, \quad i, j, t=1,2, \ldots r .
$$

But since $C_{i j t}^{\prime}$ is not a constant, we must have

$$
\text { all } C_{i j t}^{\prime}=0
$$

or

$$
\left(Y_{i}, Y_{j}\right) f \equiv 0, \quad i, j=1,2, \ldots r
$$

Thus our new system is permutable.
We remark that under the condition that the matrix (2) has the rank r, it follows that all $C_{i j s}$ can not contain constant terms. For otherwise, putting

$$
C_{i j s}=c_{i j s}+\ldots
$$

where $c_{i j s}$ is the constant, since in

$$
\left(X_{i}, X_{j}\right) f=\sum_{s=1}^{r}\left(X_{i} \xi_{j s}-X_{j} \xi_{i s}\right) \frac{\partial f}{\partial x_{s}},
$$

$X_{i} \xi_{j s}-X_{j} \xi_{i s},(s=\mathrm{I}, 2, \ldots r)$ don't contain terms of first order, hence in $\sum_{s=1}^{r} C_{i j 8} X_{s} f$ it must be so, i.e., we must have

$$
\sum_{s=1}^{r} c_{i j s} \lambda_{s t}=0, \quad \begin{aligned}
i, j & =1,2, \ldots r \\
t & =1,2, \ldots n
\end{aligned}
$$

Hence the rank of the matrix (2) must be less than r; which is contrary to our assumption. Thus $c_{i j s}(i, j, s=\mathrm{I}, 2, \ldots r)$ must be zero.

Now, by the theorem of § 14 , our new complete system has $n-r$ solutions, hence the result:

A complete system of r partial differential equations

$$
X_{i} f=\xi_{i 1}(x) \frac{\partial f}{\partial x_{1}}+\xi_{i 2}(x) \frac{\partial f}{\partial x_{2}}+\ldots+\xi_{i n}(x) \frac{\partial f}{\partial x_{n}}=0, \quad i=1,2, \ldots r
$$

where

$$
\xi_{i j}(x)=\lambda_{i j} x_{j}+\ldots, \quad i=1,2, \ldots r, j=1,2, \ldots n
$$

and $\lambda_{11}, \lambda_{12}, \ldots \lambda_{1 n}$ satisfy Poincare's conditions, and the rank of the matrix

$$
\left\|\begin{array}{cccc}
\lambda_{11} & \lambda_{12} & \ldots & \lambda_{1 n} \\
\lambda_{21} & \lambda_{22} & \ldots & \lambda_{2 n} \\
\ldots & \ldots & \ldots & . \\
\lambda_{r 1} & \lambda_{r 2} & \ldots & \lambda_{r n}
\end{array}\right\|
$$

is r, alvays has $n-r$ independent solutions.
This theorem is an extension of Poincare's theorem given in his thèse, as well as Lie's method of integration.

Many thanks are due to Mr. Kuwaki, Prof. of Kyushu Imp. Univ. who has kindly lent me the Thèse of Poincaré.

[^0]: 1 Tome II, vol. 3. Fasc. I, pp. 49-5I.
 2 Jour. de L'école poly., 9, pp. 50-59 (1904).

