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Introduction.

Briot and Bouquet were the first to study in a general way the
solution of the differential equation of the form

xﬂ = ax+by+...,
dx

at its singular point x=o0, y=0. Afterwards Picard and Poincaré found,
at the same time, the form of solutions which are not holomorph. On
this occasion, Poincaré treated in his 7/ese, the solution of the partial
differential equation of the form
£.() 7;’;1 +2,(x) j_;} +E(2) % ~ o,

where &(x), (%), ...5,(#) are holomorphic functions of 7 variables 3,
Xz, +..%, about the origin (0, 0,...0), and each function begins with
terms of first order of x, x,, ...x,. Under certain conditions he found
7—1 solutions of the equation. Afterwards, by several mathematicians,
the exceptional cases were studied, for the ‘case of two variables, rather
as an ordinary differential equation. The literature on the study is
given by Painlevé in Eucyclopédie d. Sc. Math., (Tome II, vol. 3); but
researches upon the partial differential equation are comparatively rare ;
and the problem is extremely difficult. I will, at first, repeat the
discussion of the foregoing equation and next discuss the solutions of
complete systems.

1. There is given a partial differential equation of first order
between 7 independent variables x, 43, ...#, such that
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XF=&(2) f+<() /. +,n(x)ﬁ§=o

k2

where £,(x), &x(x), ...5,(#) are functions of these » variables. By the
symbol X, we always mean the operation of the form

El(x) +§(x)——+ A€

’IL

exerted upon a function f(#) of the variables xy, 2, ...%,.

To find the solution of this equation, consider two equations of
the form

80 L+t f{; et L = (),
and

&) 2L +62(> e yrio) 7. = R (),

where F(f) and F(f;) are functions of f; resp. f; alone. If we find
the solutions f£; and f, then, putting

& _ &, _
J = 0 [ = 00,

X007 = 1. X0f) = 1.

Hence the difference 6,(f,)—0./:) is a solution of our equation
Xf=o.

By this method, Poiacaré' proved the existence of z—1 solutions
of the partial differential equation

we have

W=t L+t Li.4i@L=o ()
where
§(x)=Ax+...,
§(2) = bt ...,

The functions &,(%), § (), ...5,(x) are holomorphic about (0,0, ...0) and
the dotted parts are terms of higher order than the first. To solve

1 Poincaré, These (Paris, 1879) and Acta Mathematica 13 (1890), Sur le prodiéme des
trois corps... .
Picard, Traité D'analyse, IIL.
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this equation, take for Z(A), the form 4,/ For the existence of a
holomorphic solution of the equation

£ U e oF =N 9 _
Xf = £(x) a—l+¢2(x)—()72+ e+ 5(%) o = S, (2)

Poincaré gave the following conditions between the cosfficients 4;, 4,
voody, namely :

1°, the relations

Mprthapet v A pi— D)+ i+, =0, 7 =1,2,..7,

ave not satisfied by any positive integral valuss of pu, Pay o P, provided,

Prrpet P =25

2° #f we denote A, dy, ..A, by the points on a plane, then we can
trace a comvex polygon in whick these n points lie but which does not
contain the origin; or we may say that this is a straight line througl
the origin, on one side of which all the n points lie.

Let us, in the following, call these two conditions, Poincaré's con-
ditions, for simplicity.

For the equation (2), the conditions for 7=2, 3,...% are unnecessary.
Now differentiating the equation (2) p, times with respect to x, 2,
times with respect to i, ...p, times with respect to x, and putting
H=tx=...=x,=0, we have the value of

(A pr—1)+ 4 0.+ ... +1npn)(

6]51 +2ot... +Pnj-
Ox 20572 052" |

expressed by the values of partial derivatives lower than p,+,+...
+¢, at xy=x,=...=x,=0. Under Poincaré’s conditions, the coefficient
of the derivative is not zero, moreover the quotient

AW p— D+ hapt o+ 2,5,
L= 1+ ot oot

is greater than a certain number e >0, for any gy, #s, ...#,. Using Mr.

Picard’s notations, put
f= A/‘f1+7),

where A is an arbitrary constant. Then the equation (2) becomes

0 ) d
. lel—()%+22x2%%z+...+2nx,L 5%—75121=
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_ 0o ov dv .
=¢ oxl+gogo—x+...+¢,, oxn+g;, (3)

2

where the functions ¢y, ¢,, ...¢, and ¢ commence at least by terms of
second order. Let 4/ be the maximum modulas of ¢, ¢, ..., and ¢
in the convergent circles with radius @, about the origin. Then the

equation
Vv, oV ar_ )
e(xl—d;l-l-lz—dz+...+xn—d?“ 14
M —M-M rtunt.oota,
= I_x1+x~)+--.+xn a
a
ov ol or
——t—F...
% < ()x1+ 01, * ()xn+1)

give a horomorphic solution V(2) commencing at least by terms of
second order. This function V{(z) serves as fouction wmajorante of the
solution #(%) of the equation (3). Hence the equation (2) has a holo-
morphic solution of the form

S = Ax+v(2).

For the details, we refer to Mr. Picard’s book.

2. When we differentiate both sides of the equation (3), § 1, 2
times with respect to =, p, times with respect to x,,...p, times with
respect to x;, and put #=x,=...=x,=0, then from the left-hand side,

we obtain

()7"1+/’2+ vt P 7
-— 2 Pa “ee ] ; *
(Al( pl I) + 12‘?“ + + " pn) ( 0.,&7]/)1()A’gfg e ()Xn})”) N

The right-hand side is a Jinear Jomwgencons function of

()/’1+1>2+ 20 ¢
D302, . 000"
0

and

f)ql+{72+...+yu7}
,
( O, 10x,72...0x] ) (
where
O=g1=p, 0=@, =2, ...0==¢q, =2,

2 é 41+q:+ sne +gn < ﬁ1+p'.’+"' +Plu
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since the functions ¢, ¢s,... ¢, and ¢ contain no terms lower than second

order and #(x) commences also with terms of second order at least.
Therefore

( gLttt tpn

— "\ is a linear homogencous function of (
0x21027"...0x, f’") °

()g1+y2...+...gn7/
and ( —_

ox T 0x 2. .ox "
HCHCC for p1+Pz+---+Pn =2,

] .
(W)O 5,y =12,..mn,

are linear homogeneous functions of

7 ) L
<W o L, ] =1,2,...7

For g+ p,+... +p,=3, all derivatives of third order at z=rn=...=
x,=0, are linear homogeneous functions of

&F¢ < v ) ..
_t d —_— k=1,2,..mn,
( 0x,f)xj0xk)o an N\ ox0x; Jo’ b b "

and hence they become linear homogeneous functions of

g 0% .
k=
( dxidx,{)xk)o’ ( 0x,0x; )0 ’ b 1,2, ...n

Proceeding in this way, all the derivatives of 2(x) at =1, =...=x,=0
are linear homogeneous functions of some number of derivatives of ¢
at x;=1,=...=x,=0. But a derivative of a power-series at a point,
divided by a certain positive integer, becomes a coefficient of the power-
series. Hence we can enunciate the above result as follows. A #he
coefficients of the expaunsion of v(x) at m=x,=..=x,=0 are certain
linear homogeneous jfunction of some number of coeﬁfcz'em‘s of the power
sevies P(x).

If we compare equations (2) and (3), § 1, we see that

(7)) = —A&(2)—4xw).

That is, all the coefficients of ¢(x) are multiplied by 4. Whence we
know that all the coefficients of »(x) are linear homogeneous functions
of A4, or put

0?1"‘1’2---“‘}% ¢
0xf’loxf2...0xnzm)o

), where ¢, ¢», ..., obey the above conditions.
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() = Aw(x),

then z(x) is independent of A. Therefore the solution of the equation
(2), § 1 becomes

f = Ax+o(x)
= At (of2)
= 412,
where A = x+w(x),

and clearly fi(%) is a fwlomorphic solution af the preceding equation and
its coefficients have no arbitrarity. ‘

This solution fi(#) is unique, for if not, the equation (3), § 1,
would have two solutions, say v(x) and w5(%), therefore z(x)—2y(x)
should satisfy the equation

A £+12x2 Jz +oot Az, ﬂ—e A
0x, 0z, ox,
ov 0 07
= —_ "t Oy —— ‘e —_—.
1 0x & 0x, tot g 0z,

But in this equation, the function ¢ is absent, therefore by the result
just obtained, it must follow that

v(x)—vx) = o.

This is against our assumption; hence #he solution fi(x) is unique.
Hence any holomorphic solution such as

JS=Axr+...
can be written in the form

f = AA(%).

3. Returning to the former, under Poincaré’s conditions, we find

the holomorphic solutions

Ji =+ ...

Jo =4+
of the equations

Xi=htv Xe=Af,

X 1 I 1
respectively. Hence, log fi\—log f37,, and therefore ;™% f, % is a
solution of the equation (1), § 1. Proceeding in this way, the proposed
equation has #—1 solutions of the form
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I I I I I

I
fi MAR A M . fi M fn

If in the equation, some number of A, 4,, ...4, be equal, say 4,=4,,
put
S = Ax+ B+ 2(x),
then

¢ =—A(§(x) - Ax) — BELx)—Ax).

Then all the coefficients of (%) are linear homogeneous functions of A4

and B. Putting at first A=1, B=0 then A=0,B=1, we obtain two
solutions

ﬂ=x1_+ cen
So=x+ ...,
and any other holomorphic solution of the form
S = Ax+ Br,+ ...

can be written in this way

S = Af(x)+ Bfx).

The case where more than two Ms are equal may be treated in the
same way.

4, The partial differential equation

AN

Xf = El(x)%+52(x)%+ i@l =0 ()

is equivalent to the system of ordinary differential equations

dv, _ dx, _ dax,

§(x) T & T & ©)

where, as before, writing only the first terms,

51(—15) == llx1+ erey

E_)(x) = Z_)Jlfz‘{"... ’
s,,(l) - )'mxn'*-
When 4, 4,. ...4, don’t satisfy Poincaré’s conditions, but w/hen 4y, 4, ...,

(v < n) satisfy the conditions and morecver the conditions that the equality
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Mpi+dopotoocthupy =4, i=v+1,..n
Sor Pt oty =2,

cannot be satisfied, then the solutions x,, 1y, ...%, of the equation (2),

equated to iji, can be expressed as power-series of #M, %, ...¢v and

converge, provided the moduli of these quantities are sufficiently small.
To prove this Mr. Picard transformed the equations (2) by

), A A
J/l:'tl,yzztz, ...J/y=tv.

Considering #;, #;, ...#, as functions of g, ,, ...,, the transformed equa-

tions are
"0 0 0
11y1£+22y2—d-j7:+...+2v}", dji = §(x) = A+ ...,
0z, - 0x, ox, £
Ay 244y, =24 ... F+A, P =6(1) = ha, + ...,
N 0]1+ 2 Y2 dy2+ Ay 7, (%) 2%y (3)
0x, oz, ox,
2 T Ay Yy e F Ay, 2 =€, () = At
11 ()]/1+ 2 V2 0]_"*‘ + 4 0le E (x) X, +

Since the coefficients 4,4, ...4, satisfy Poincaré’s conditions and the
other just mentioned, this system of partial differential equations has
n holomorphic solutions (), (%), ... n(»). For the detail, we
refer to Mr. Picard Book.

5. The preceding system of partial differential equations can be
obtained from another point of view, i.e.

Ta determine the substitution

A = 01(J/1v 2y oo Vul
X = 070 Por - 20),
Xy = 01L(J’1) 21 "'J/‘J)

oy which the differential expression

- | e of - of
X==5(0) L re,) Y ... 48,
Xr (x) ()xl+cz(x) 0x..7+ +&.(2) o

is to be veduced to the differential expression
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Y= n(») %ﬁ 7:() oo (2)

where Ny, Yy oo Y, @re any functions of Yy, Ys -+« Iy
Now by this substitution, we have

= P,
)
= z 74) 2 "oz, :)j
0 of
= g ; W) 5, 0z,

This is identical with the differential expression Xf. Hence, equating
the coefficient of d—ﬁf, i=1,2,...7n, we have

£21
2(7) ‘)’“m(y) 0"1+ 47, ””' = (%),
() 22 ) ‘)’"+ +7(y) 08 0"2 =&, ()
/I(J’) ‘*‘9 (J’) = &,(¥).

The » solutions x=0,(»), x=0.y) ... 2,=0,(y) are the required
substitions.

If we take for the arbitrary functions

N=hon =Dy G = AP

this system of equations (3) coincides with the system given by Mr.
Picard. If we put for #,%,, ..., some holomorphic functions com-
mencing by terms 4 1, 4, 7., ... 4y, respectively, under the conditions
written in the last section between A4, 4, ... 4,, the system of partial
differential equations (3) has always #» holomorphic solutions 6,( ),
0 5), .- 0u( 2)-

6. Before the proof of the existence-thcorem of the system of
equations (3) of the last section, some remarks should be given about
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the system of equations (3), § 4, whose existence-theorem is given by
Mr. Picard.

Suppose, at first, all s are different from one another, then the
solutions of the system of equations (3), § 4. take the form.

Ay = ‘91(.7) = ‘Zl.yl+01,(y)’
7 = 0y) = a; 9.+ 0,/(y),

(1)
x, =0(y) = ‘lvj’v','ﬁv,(.]/),

Ayp1 = 6v+1( )’) ,

where 6/, 6,....0,, and 0,,,,... 0, are power series of 3y, %, ... », which
don’t contain terms of first order and a4y, @,, ... @, ‘are arbitrary con-
stants not zero. Hence we have

0(xy, 25, ovn V) :|
= L = a. . ... Qy 0.
[0(_1/1:.3’2, "‘J/V) 0 ' : :t:

Therefore, from the first v equations of (1), we can find 3y, s, ... ¥, as
functions of xy, a3, ... 2y :
=N CAE- NN SR

Y2 = Yo (xp Koy wee l’v),

Py =2y (3, 2 o0 3).

Substituting these values of gy, 94, ...y, in the remaining 7—» equa-
tions (1), we obtain 72— cohditions between x, 13, ... %,:

Wl(xl) 2T ;L‘n) = 0,
Uy(x,, 2y ve 7,) = O,
......... 3)

Vo (2, 2p...27) = O.

When some number of 4,4, ...4, are equal, by the remark of last
paragraph of § 3, similar systems of equations as (2} and (3) will de
obtained. Now by the substitution (1), there holds the identity Y/ = A7,
in the full expression
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)
1)/1,(_}[__‘.}23/‘ gf

+...+ zv}’v df

=4 +59(x) s ()

n

Therefore any solution #( 3y, 9, ... 3,) of the equation

Y)'[: Aly15§+zzy) f+ LA Ay Py (f = 0,

by aid of the transformation (2) and the conditions (3), must satisfy
the equation

X =&)L+ an) Lt o+ 8) f—o @)

The former equation, as we have seen, has v—1 solutions

X I 1 1 1 1

L 2 _r
o Mot g Mo gy g

Substituting the values (2), we arrive at the result :

When the constants 4y, Ay, ... A, satisfy Potncarés conditions and no
velation hp,+hpy+ + ...+ A=A, i=v+1,...n, hold, provided p,+p,
+otpy =25 then the equation (4) has v—1 solutions of the form

1 I I 1 1

7 M /W TN g e o,
and the variables 1, %, ... x, satisfy the conditions (3).
7. We shall apply this result to the problem of § 1.

When 4, 4, ... 4, satisfy Poincaré’s conditions, let us consider the
following system of # equations

0x, 0x ox; -

2 1+Z 2 l+ +2n n 1: [~ Jf,

a2 . gy, = 0
0x, 0x; 04 -

)IJ/I 1-+1 _j/2 d;’—*" ]nyn 0;; = C‘_’(x) (I)
x, ox ox, .

gy gy, Dny gy O = )

1. dy1+ g2 dy:+ + 20 2 O a(2)

This system is quite analogous with the system (3), § 4. Moreover
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if we write 7 for v, Mr. Picard’s proof of the existence-theorem may
be applied, term by term, and give » holomorphic solutions

r = 01<J/1!.y'3' "']/n))
Fo = 02(5/1'3/‘2' "'yn): (2)

Xy = ﬂn(]’lv_yb "'J/n)-
The inverse functions are

Y= Xl(xly iy vee xn)!
V2 = faoH, Ly oes H)s

......... (3)
J/n = Zn(xh Koy oo 1’,,,,),
I I
and, by the theorem of the last section, the #—1 functions y,~ % y,%,

1 I I 1
Vi MPshs, .. Y My, are solutions of the equation

Xf= E(x) +E( )

where between , 2, ... 4, no further relation exists,
Since Xf and Yf are equivalent, we see at once that each

s = Yol Xy o ), 1==1,2, .07,

is a holomorphic solution of the equation

= 4@ Lt Lt (L = 1S, i= 1,2,
Le., the differential expression Xf, transformed by the n holowmorphic
solutions (3) of Xf=AJ, i=1,2,...0n, will take the form

f+) y’>0jf+ +/1Lyn (;f

=2
74 11 o > 05,

We shall often meet this transformation in the future.
8. Now let us return to the proof of the existence-theorem of
the system of equations

() 1+,2<y> Bt () ”’1 = 2,9,
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01, 0%,

) 52 +>72(y) + +>7v(3/)—'“=5(x) (1)

()x” - h
dj/v o C”(;L)'

where the 7, 7,,...7, are holomorphic and commence with terms 4, g,
Ay ¥y ooe Ay 9, tespectively. This system is not escentially different from
the system (3), § 4 which Picard has used. For, as we have just
seen, our system (1) will be transformed by the v solutions z;,7=1,2, ...
of the equations

dz, ()z

() ’+77(J/) z+ e

=g, i=1,2,.%, (2)

into the form

D PP, OB s, R = £, (),

()31 = 03: ) ()Zv

2131 025.3 + 10 2 0;':’ +oo+ Avay ()xi = E:’. (1‘),
21 L2 0zv
07, 0, 0z,

2131 [)xl + 2232 dx +.. +ZVZV —0_— = 'n(x)

The existence of holomorphic solutions of this system as well as equa-
tions (2) are already known. Hence the systen (1) has 7z holomorphic
solutions. The arbitrary choice of 7%,%;...%, in the problem of the
reduction of § 5 serves us nothing

At the end of the section, we remark that the system (1) is an
extended case of the problem of § 1, and hence the proof of the ex-
istence-theorem should go parallel with each other.

Poincaré’s conditions, are not necessary conditions for the existence
of solutions; but there are infininitely may equations in which Poin-
caré¢’s conditions are not satisfied. This case will be considered in the
future, and enter into the problem where the first terms of the func-
tions &,(x), &%), ... £,(#) consist from linear homogeneous functions of
the variables.

9. Being given the equation

Xf = El(x) A +¢q(:c) (3f + +:,l(x)/ - =0,
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where E(x) = Ayt o A, L,
Ez(ff) = hait Aty t oo F byt e,

En(x) = lmﬁh + lnixl + oo + znn’rn + el

in which only the terms of first order are written, we try to transform
these terms of first order in the simplest forms by the transformation

of variables
H= autitanyt .oty Y

X = llﬂ_j/l‘*' (Zgg_yg'i_ ses + ﬂgnyn,

X = [an.yl+an2y2+"'+ﬂnnyn'

Let L and A mean the matrices formed of Ay, A, ... Apyy oo Ayyy and
Aty iy oo Qi ooe Ay, Tespectively, then the matrix formed of the coeffi-
cients of first order of the wvariables 4, ..., in the transformed

equation, is
AT LA.

When the # roots A, 4,, ... 4, of the characteristic equation of L

Ay—4 A A1
AR RS S T
an Zn.’ Znn x

are different from each other, then by suitable choice of A, the matrix
can be transformed in a multiplication (4, 4;...4,). This case is treated
in the preceding sections,

The case where the characteristic equation has multiple roots was not
treated by Poincaré. Whether this case has been treated by other
mathematicians, I don’t know. In this, by the theory of substitutions,
we can so find a matrix A that the transformed matrix of L, i.e.,
A7LA will take the form, the number of the multiple roots being v,

Lo ...0
o L, ...o
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where L;,7i=1,2,...v is itself a matrix whose diagonal elements are
all 2,¢=1,2,...v, a multiple root of the preceding characteristic equa-
tion, and the elements over the diagonal are all zero. We remark that
when the matrix L belongs to a group of substitution of finite order,
it can be transformed into a multiplication.

10. Suppose that the equation has been already transformed and
is given in the form

M=h) Lot L+t 0L

dl’/ll

+ .+ & (x (‘)Zn =0, (1)

where, writing only the terms of first order

El(ﬂf) = 21x1+--. y
S(x) = bam+hmpt ...,

E}ll(JC) = Anllﬁfl + 2711212 + .04 )llxlll + ey,
Em+1(x) = A1+,

The matrix L wmade of the cocfficients of terms of first order of the -
variables 4y, 43, ... %, has a normal determinant |Z]|, the elements over
the diagonal are all zero. The vanishing of certain elements under
the diagonal elements is not at present necessary.

In the following, we investigate whether the successive calculation
of the differential equation

Xf=AF (3)

is possible or not and then search for a holomorphic solution.

If we differentiate the equation (3) p, times with respect to x, £,
times with respect to a4, ... g, times with respect to x, and then put
f=1r=...=%,=0, we will obtain an equation between several differ-
ential coefficient at x=x=...=x,=0. Put p+p,+...+ 2, = m, then
the highest derivatives are of order 2, in which the derivative

o f -

——— ) appears; but in general this is not the only de-
( oxtioxf... ox? ”)0 PP ’ o
rivative of order m. Therefore, to obtain the values of derivatives of
mth order at x,=x,=...=x,=0, we must solve a system of simulta-

neous equations of first order. The following shows that ke determi-
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nant made with the cocfficients of devivatives of 1w order in this system
of simultaneous equations is a normal detcrminant.

To prove this, let us introduce some abbriviations and definitions.
a. Let us write, for simplicity

()/‘i+/'j+...+1’1f N

(xFiz... xP = (
! ()xipi ()xfj 02V = my= =y =0,

where the order of the suffizes are so fixed that
=< y< ... <I=n,

and call this new expression the dyferential quotient or quotient of ( p,+ p;
+ ...+ p,)th order, often omiting the order.
b. With two quotients of the same order

@). (@t ), 1=a<b<..<h<..=n,
D). g2zt 2., 1=Se<f< . <p< .. =n,
Where pa+pb+"'+z>h == ga+q{3+"'+q7]’

if £, and 1% be such in the first pair, lying in the same place

counted from the left, that

==y, or pi=gqs and L =y

When % < 7, let us say that the quotient (I) is of Aigher stage than
the quotient (II), or simply, (I) is Azg/eer than (II); or the latter is lower
than the former, when Z=7 yet p,>gs, we also say that the quotient
(1) is Zigher than the quotient (II), and the like.

c. Now take the quotient (x;7... x2"x7%) of ( pi+ ... +p,+2u)th order.
If 4+1 =4, then with respect to (x7%.. x7" 4441 we say that

I -1 . . .
(i xfn 2™y s neat higher than (%, e 200 2y Ort).

If i+ 1 <4, then with respect to (/... x7*2{%), we say that

P —1I . .
(x,l0n 2,20 24y 3,20 ) is mext higher than (vl 200 n? ®).

Thus we could give a definite stage to each differential gnotients of
mth order at x=i,=...=x,=0; and, according to this definition,
(2,™) is of the lowest and (2,") is of the highest stage.
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Now differentiate the equation

=Y A en)-Y —2
Xf = &(x) 0z, +&,(2) 0@"‘---"‘%(3’) ox, 1/, (3)
p; times with respect to x, ... g, times with respect to ..., where

pit .ot pp+...=m, and put xy=1,=...=2x,=0, then we obtain a linear
equation containing the quotient (#7%..x%*...). The remaining quo-
tients of mth order in the equation must be of lower stage than
(xf‘x,f") For, in general, with respect to the suffix %4, the co-
efficients &,(x), §(%),...£,1(#) don’t contain the variable z, in their
terms of first order. Therefore any quotient, the exponent of whose
variabie , is less than p, and whose other variable before x; is greater
than that of (x7%...z7"..) cannot appear, ie., any quotient higher
than (x7%... 27%...) cannot appear in that equation.

The number of the simultaneous linear equations is equal to the
number of the derivatives of order ». It is given by the coefficients
of mth order in the expansion of (1+x+2*+...+ ™" Now arrange
all the linear equations in such an order that, when any two consecu-
tive equations are ‘taken, the highest quotient in the one is next kigher
(or next lower) than the highest quotient in the other, the equations
containing the quotient (1) and (z,) standing at both ends. The
equation which contains (x,”) as the highest cannot contain any quotient
of mth order. Thus the determinant made with the coefficients of all
the quotients of mih ovder in the simultaneous linear equations, arvanged
in the ovder stated above, is a normal determinant,; and hence, in each
solution of a [linear equation containing one unknown, all the quotients
of mth ovder wmay be calculated successively, from a lower to a higher
Stage.

Iet us again take up the differential equation (3);
Ve Lt vr =
() dxl‘*'fﬂ(x) 0x2+"'+g”(x) oz = S (3)

Differentiate this equation by xy, x,, ... x, respectively and put =2,

=...x,=0, then we know that there is no contradiction provided

and (i{;)o: arbitrary.
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Let us fix so that

of\ _
(G (@)
Now write the equation (3) as follows :
9 J
| llxl ?L +) 1Xe 0f0+ +21x”1 0];1'*‘ oot van af —Alf
g )
=@ f+so_0£+ -+ f , (5)

where the function ¢;, (/=1, 2, ... #) is obtained by replacing the func-
tion §(x), (=1, 2, ... ) except the term containing the first power of
#(f=1, 2, ... ) from the left-hand side to the right-hand side.
Differentiate the equation (5) p, times with respect to i, #, times with
respect to 1, ... p, times with respect to #, and put 1, =x,=...=x,=0,
then on the left-hand side, there remains the term

{(i— 1)+t e F2u) At oo+ (o F 2 (82 227,

The right-hand side is a homogeneous linear expression between quo-
tients of orders lower than py+g.+...+p, and of stages lower than
(xf1xf 2, 27 ™). Now assume that 4, 4;, ... 4, satisfy Poincare’s condi-
tions. Then we can find a definite positive number e such that

ez | (B—1+pt Hpn)hit .+ D)

= ,  (6)
Pr—1 ottt it pn

for all positive integral numbers g, #,, ... p, which satisfy the relation
Dt patoetpn = 2.

Therefore, the coefficient of (xfﬂ el x? ™) does not vanish; and hence,
for the reason stated above, @/l differential quotients of any ovder at
H=H=...=2%,=0 can be calculated successively, the initial value being
given 6y (4).

On the other hand, it is always possible to determine # positive
numbers &, &, ... &, which are djfferent from one another and satisfy the
following inequalities

<e =23, .07 (7)

> et+¢
4 <g < !
2 2

For, take a positive number ¢ less than e, then it satisfies the inequ-
alities
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5 E+¢&
_._1<_____1._<5,
2 2

. £ g &€
and we can insert between - and ST
2 2

, #—1 positive numbers &,

€5...8,, Which are different from one another and from e,.
These inequalities show that

a. 28; > &, i=2’3’ ceefl, (8)

and also
285 > &y, 72,3, el

Adding these two inequalities and dividing by 2, we have
§+¢ > e, 4,7=2,3, .7 9)
By (8) and (9) it follows that
—¢& et passt... F 28 > O,

for any positive integral values p,, 2, ... 2, (zero inclusive) satisfying
the relation
ﬁg+p3+...+pn2 2,

whence it follows tnat, since ¢, ¢, ... ¢, are all positive,
(p— D+ posa+ ... +2,6, >0
for any positive integral values gy, p,, ..., (zero inclusive) such that
Dot et py = 2.

Thus the n constants &, ¢, ...&, satisfy Poincaré’s conditions.
b. The inequalities (7) show that

g <e i=1,2, .17 (10)
moreover that
26, < eteg, or —¢gt2 <e i=23,..7 (11)
and also
—e+2¢ < g 7 =2,3 ..

Adding these two inequalities and dividing by 2, we obtain
—gtete <e 4, 7=23 .7 (12)

By (10), (11) and (12), we have
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(pr— Dttt +pa<(p—1+p+. +2,)8

provided .
Htpat . P =2

whence it follows that

(pr—1)e+ ot oo+ 228, <e
Pl_ I +p2+ see +pn

Comparing this inequality with the inequality (6), we see that

(pl— I)51+ﬁ282+ cee - Pufa< l(ﬁl—l Ry 2% SR +p”1)21 + "‘+("' +pn)lvl'
(13)

Now consider the equation

0 0 )
514'1B%+62x_» -0—£+...+s,,x,,—0£;—elf
o o o (14)
— r Y g4 A
= ox, te 0x, HERRA D 0x,

where the modulas of each coefficient of ¢,(¢f=1, 2, ...#) is the corres-
ponding coefficient of ¢,/ (=1, 2, ...n).

Now take for initial values, the values given by (4), then from (14) all
values of differential quotients of any order at x=1,=...=2,=0 can
be calculated successively, and moreover they are all positive. Since
the laws of calculation of the values of differential quotients at x=ux,
=...=x,=0 from the equations (5) and (14), comparing the constants
in (5) and (14), and noticing the inequality (13), we conclude that &Z
the absolute values of diffcvential quotients of any ovder at x,=x,=...
=x,=0, calculated from the ecquation (5) are less than the values of
corvesponding differential quotients at y»y=x,=...=x,=0 calculated from
the equation (14).

Since the determinant made with the coefficients of terms of first
order in ay, a3, ...2, in (14) is a normal determinant whose diagonal
elements are g, &,...5,, the roots of the characteristic equation corres-
ponding to the determinant are ¢, &, ..., and they are all different
one from another. Therefore by § 9, the equotion (14) may be trans-
formd into the form;

9 o . o _
(e +...) _0)_/;+(€zﬁ+m) 7}/—2+"'+(b"]}"+'“)—0y—n =&/, (15)

where the dotted parts mean terms of higher order than first. Now
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&y, &, ...&, satisfy Poincaré’s conditions, and this equation has a holo-
morphic solution as stated in § 1. Therefore tke cquation (14) lhas a
holomorplic solution by the initial conditions (4), since in transforming
the equation (14) tnto (15) the vastable x, does not change, ie., x5 =y,
Therefore by the preceding paragraph, owr proposed equation (s), i.c.,
(3) kas a holomorphic solution suck as

_fi = x1+..- N

writing only the term of first order.

11. Next we search for a holomorphic solution of the differential
equation ‘

X = Af+ A/ ([)

or, writing as equation (5), § 10, and using the functions ¢, ¢, ...¢,,

o o o
3 A e -
T 7, + Az, o, + . AvZn dxn 21 f
0 i) i) (@)
=¢ —— f +¢'2 f + Ao, df + Ay 7.

In calculating the values of derivatives at x, =a,=...=x,=0, we may
take the following initial conditions

(,gf;:)()_l = (%) 1=1,3, 4, ... 2. (3)

Thereby consider the equation as in (14), § 10, using the functions
991' 503,' .. Spnly

&1 0f+ £, §£+ e, f —e,f
) 9

=g Lvgs Lo, e S SIS (4)
0 013 ‘

where |1,| means the absolute value of 4, and the coefficients of /i are
the absolute values of the corresponding coefficients in fi. Now differ-
entiate the equation (4) by # and put 4;=2,=...=x,=0, then between
the quotients of first order we have the equation

Eg(xl)—el(x1)= [Zn](x_))'l' [131 l (x;;)"" R Ilp_x i .

Assume (x;) =0, /=3, 4, ...n, then we have
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& — &
X)) = 1
( 2) l'{’ll (

We may take, without any contradiction against the inequalities (7),
§ 10, so that e,>¢. Hence as the initial condition we must take

(if;) :___zllill >0
dx/o & &

(%)0_1 =(§£) 0, I=3,4, .. (5)

under these initial conditions, we see easily that the solution calculated
from the equation (4) has all positive coefficients and serves as a
Sonction tnajorante of that calculated from (2).

To prove the existence of a holomorphic solution under these initial

conditions, put
2|2y |

&—g

n+anto,

f:

then since ¢,/ does not contain any term of first order, while ¢/ has
|4 |#, we have the following equation

& % —g% +51Xz—g—%+-..+€nxn gg_slv
1 2 n
R () 0 dv +0n g +0

where

0, _fpz—llnlin 0——‘2 l(f1 —.1’)+ , "1!1 — "+.8,,

O, =¢/, i=1,3.4,..1n

and 6 does not contain terms of first order. Now by the transforma-
tion of variables, as considered in the foregoing section, this equation
may be transformed into the form

0
(52.7’1"‘---) '071+(€11/2 ) ——+ +(€n_yn
40

wehre y does not contain tevins of first order. Compare this equation
with the equation (3), § 1. In our case ¢ will increase by y. But
for proof of the existence of the integral, it is enough that the func-
tion ¢ does not contain terms of first order. Hence our equation, also
has a holomorphic solution z( ) with no terms of first order. Conse-
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quently the equation (4) has a holomorphic solution under the initial
conditions (5). Hence our proposed equation (2), i.e., (1) has a holo-
wiorphic solution under the initial conditions (3), a solution suck as

Jo = x5+

Specially when 2,,=o0, the equation (2) will be identical with (5), § 10.
If we replace x, for a3, we have also a holomorphic solution f.

The preceding considerations are quite general, and we arrive at
the result: There exist n, holomorphic solutions fi, foy .. fny of the differ-
ential equations

X = M/,
Xy = mel"'llfzv
......... (6)
Xfon, = Ing i+ A2 ot oo+ Ay,
where, writing only the terms of first oder
f; = :t‘1+
S =0+
..... )
ﬁtl = A’,‘n1+ vee

Since there are » multiple roots, proceeding as in the foregoing, we
can prove the existence of v—1 groups of holomorphic solutions as (7),
each group corresponding to the multiple root A, 4;, ... or, 4.

Let us take these z holomorphic solutions as new independent
variables such that

J"l 2]‘;’
y: =/

w, = fn,, and the like;

and transform the differential expression Xf of the equation (1), § 10,
then we obtain

Yf=9{y) f+v(y)af+ 7, (y) + A9 - ')f (3)

n

where
W) = ko, '
(7)) =dun+ 4 s,
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7”1(1/) = Zﬂll y1+27212y2+ P )‘l,’V"I'

and the like. This transformation is a more general case of that

in § 7.
Thus the problem of the differential equation

X =o - (9)
is reduced to the problem of the differential cquation
Y=o (10)

12. According to the ZEncyclopédiet (loc. cit.), Mr. Bendixson
solved, after Poincaré, the system of differential equations

dx, dx,

aynt apt,+ ... +ayx, A+ Aptot .o+ Aanty
dx,
. (1)

y
A+ BpaXy+ oo+ BunXn

for the case where the characteristic equation

—2
402) = Gh @1z Ayn = o,
s Qay— 2 ve Ay
an1 Apo s Apn A

has multiple roots and satisfy Poincaré’s conditions. When 4 be a
J-ple¥root of the characteristic equation, he showed that the equation

has j—1 integrals of the form

o I o A
n TaTioge Dt Talogtte+ ot Tllog sy
23 Zh

y eee

£h

¢ being eliminated and 7;,...7; being holomorph. But, according to
this book, nothing is said, explicitly, as to whether @y, ...a,, are con-
stants or unit functions; and reference to his original papers is for me
impossible, since his literature is not at my hand. Mr. Dulac treated
the case of two independent variables and said in his memoir® that
his method and that of Mr. Bendixson are applicable for the general

1 Tome II, vol. 3. Fasc. 1, pp. 49-51.
2 Jour. de L’¢cole poly., 9, pp. 50-59 (1904).
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case of # variables in so far as the characteristic equation has a root
of any order.

Now to find the solutions of the epuation (10}, § 11 is easy. We
consider first the following simple equation

Z7=e@) Lt Lttt L=o
where
Ci(2) = aay,
52(3) = ans a8,

C/L(Z) = a,,131+tl,,g.2'2+ oot asgy,.
Using /% relations of the forms
Z(Zl) = CI(Z)y
Z(Zz) = 62(3)’

Z(zh) == Ch('g)’

we can easily prove that the equation (1) has Z—1 solutions of the
forms

&2
Si="=+4a,log =,
3

fr= "2 -{-‘81 log 2.+ B; log 2 + Bs(log 2%,

f;t._ = ‘——‘+T h—l ]OU Zl+ +/h..2~—— (100' g )h ~+7’h 1 IOG Zl+
I
+ 7215 (log Zl)lt
The equation (10), § II is a mere combination of v equations like
as (1). Hence after this lemma, it is clear that the equation (10),

§ 11 has
(m—D)+(—1)+...+(n,—1) = n—v

solutions of the form stated above.. Moreover since 4y, 4, ...4, are
different from each other, this equation has v--1 integrals:

1 1 I

[ -t

1 I

-~

2

A 2 \ b3 A IS
Wi 1 J/,,IH 2, 1 y}ll+772+l y e 1 ! yﬂ—ﬂv+l '

Thus, adding them up, our equation lias n—1 independent solutions, and
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kence our proposed equation (1), § 10 has n—1 independent solutions,
n—v of which contain, in geneval, logarithmic function ; and the pro-
blens of Poincaré is completed.

In the following we shall consider system of partial differential
equations such as treated by Poincaré, and try the extension of Poin-
caré’s theorem about a complete system.

13, In the first place, let us consider two partial differential
equations under certain conditions. Now, let Xf and ¥f be, as above

X = El(x)—gf—+ &(2) %Jr +5"(,,)00_£,

31

— A o N4
W—‘ 71(1’«') 0x1+77~2(x) ox2+"'+7"(j’) 0/15”,'
The functions &%), 7(#),¢i=1,2,...2 commence with terms of first
order. The matrices formed with the coefficients of terms of first order
are 4 and B. Then we obtain by the composition of Xf with Y/ an
expression of the same type,

(xv)f = n-v) L,

=1
and let C be the corresponding matrix with respect to this, then we
see easily that C=B-A. Therefore, when (XV)f= 0, or using the
words of Lie, when the inifimitesimal transformations Xf and Yf arve
permutable, then the substitutions A and B must be also permutable.
We shall consider this case alone.
When A is possible of transformation into a multiplication, then B
also ‘must be so. Hence we assume, from the beginning, that

5,,’(-17) = lixi.*-"' y
7{x) = i+ ..., i=1, 2, .1,

where the dotted parts stand for terms of higher order. If 4,(i=1, 2,
...} satisfy Poincaré’s conditions, then, by the transformation given by

Xy, =4y i=1,2, ...1,

Xf will be transformed into

X'f= 12 Ly A, Y, .
i 1 n 2 7 J 9
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YF will be transformed into

Vif= 2 vy, L o

el

But since (XV)f is invariant for the transformation of variables, it must
hold that

X'V f = ; L)~y L=

For that we must have

X (Yyp)y=Y'(Ay) i=1,2,..1
or X' (Vy)=4Yy,

ie., Yy, must be the solution of the evuation
Xf =4[
As we have said before, the solution of this equation is of the form
Ay,

But, by calculation we know that

Yyi =yt ..o,
and therefore

V= tys i=1,2,..m

[y

Thus when two differential cxpressions Xf and Yf are such that

(XY)f=o0, and the coefficients Ay, Ay, ...A, of the former satisfy FPoincaré's
conditions, then by the transformation given by

Xyi= 4y, 1=1,2, 0m,

both expressions may be transformed tnto

X'f = ZZLJ@ Syo fesp VU= 2/&%0

=1 =1

The inverve is also true, In this theorem, whether gy, g, ...p,, satisfy
Poincaré’s conditions or not is of no concern; hence the result follows ;

The necessary and sufficient condition of existence of z—1 alge-
broidal solutions of the equation ¥f=o0, is that there gives an equation
of the same form JXf=o, such that (XV)/=0,4,4,...4, satisfying
Poincaré’s conditions. This is Lie’s theorem at singulality.
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14. Next consider a system of » equations which are permuta-
ble with one another,

4
= 0,
0%,

X f = &) g% +&p(2) % + o+ ()

.IYgf_:_ 521(.25) %"'Eg:(ﬂf) %““-..‘*‘Ez”(ﬂf} % = O,
X.f= (%) _gé +E,4(4) _31;_ bt En(2) Fiji ~o,

where, writing only the first term,
Ei(®) = Ajm+.o., i=1,2,..7; J=1,2,..m; r <,

and suppose that 2,4y, ...4, obey Poincaré’s conditions. Then, by
the theorem stated above, this system may be transformed into

XS =2 s % y

When X\f, X.f, ...X,./ and hence X/F, XJf,...X,)f are independent,
the rank of the matrix

must be .  Suppose the determinant made by first » columns does
not vanish, then if the function

no Win

F=3" 9™ o g
satisfy the system of equations, there follows

A+ Agmts + oo+ A+ .+ Am, = O,
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A2y Aogtrty + oo b Doty + oo A2, = 0O,

Attty F Aty + oo+ At S+ oo+ A1, = O,
whence we have

My = fptityart Byt oot By, ity
Wty = Fyitysy -+ Roghttya b oo By p 0,

My = Kplpyy+ Rt pat oo Ry _102,,

where £; are constants. Hence our complete system has #—# inde-

pendent solutions
ku b

4,
L= 27 Y

£12 £99
Jo= J’lel' P e e Yo,

£ n—r 22 p—r ‘/t’r n-7

Yu e 7 Vn-

Thus a complete system made with X, f=X:f=...=X,f=0, wlhere
(Xo X)) S=0, (4,7/=1, 2, ...7) and n coefficients of terms of first order in
XS satisfy Poincaré's conditions, las n—r independent solutions.

This is an extension of Poincaré’s research. When we go to the
general complete system, we must consider some device. If the system
has holomorphic solutions, Jacobi’s method is sufficient. In the follow-
ing I give a lemma, and next prove the general theorem.

15. Let us consider a system of » partial differential equations
of the form:

X1 = Fi(xy, %y ooy S0, S0 oo )
Xfs = Ffxy, %oy X5 Sro S oo fm)s

......... (D
X.f;n = m('rl: x?y "-xn ) ﬂ’f:l’ oo fm)y

where

af A o

X = )uz’l«‘ e ———+ l-/’l«’o""--- —‘+..-+ )‘nxn'l'-v -

7= Aot )dxl (A2 )dx2 ( )()x,,’

Ay, Ay, ook, satisfying Poincaré’s conditions, and £, (=1, 2,...m) are
holomorphic functions of x, 4, ..., in certain convergent circles about
the origin and also of /£, .../, in certain convergent circles whose
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radii, without loosing the generality, are unity about /4 = f=...=/,=0.
Adding to them, £, (=1, 2, ...72) have the following forms:

Ffz; /) =16 (”(x)+2 0, (x)fs+2 05() fo St - @)
8 t=1 2

i=1,2,...m,

where, since £, 5, ...F, are holomorphic functions, all #’s are holo-
morphic functions, and we assume that they commence at least with
terms of first order.

To prove the existence of holomorphic solutions of this system,
we transform as usual these equations by the #» solutions given by

Xy, =4y, t = 1,2, .1,

then the differential expression Xf will become

i o of
A <L Ay An Vu )
1 1 0J/1 + Ay — 7 toee + 42 ayn

and the hypothesis made upon Fyi=1, 2, ...n) will also be fulfilled.
Therefore, we assume from the beginning that X/ has already been
reduced to this form. We take for initial values of fi,/;, ... /!

(f=/P =0,i=1,2,

Next differentiate the equation (1) by 2y and put x;=1=...=x,=0, then
we have

(()ﬁ ) - (000(")(1')

e py )0, 1=1,2,...m,
1 1

while all the others vanish, since for example,

é ( 0057, ..u (-gl{iﬁ ---fu)o

2,21 {(&a_‘v_)) (o fo oo Sudo+ (05, _(®))o (’7(f J:;J; fu))o}

The same is true for the remaining variables; and therefore we have

the equations :

’

(L) - ("5,

()x1 0 11
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| 30 ) )
0

( %)0: (”_ox—

01, Ay

< ')fa) - (%)o

LAy = NP IO i =1, 2, ...
0x,/0 Ay

From these conditions, the coefficients of all the terms of first order
in f, /s ... fm are determined uniquely. In general, if we differentiate
both sides of (1) p; times with respect to x, p, times with respect to
Xy, 0op, times with respect to x, and put x,=x,=...=x,=0, we obtain
from the left-hand side

r)Z’l +?2+...+;‘nf:i
0,2t 0x,22... 0,2

(plxl+pzxz+...+p,,zn)( ) i=1.2..m
0

But in the right-hand side, the differential quotients of order p,+ .
4+...+ 2, are given in the following manner:

2( Jlrtirt . +tn 0% (x)f:?ﬁfn)
0z, 0x22.. 0z ’

0P1+]52+ . +1’nf

8 f...fu> +...}+lowar orders].
0x 2! 02,22 . .0x 2" ‘ 0

= [ .

Since all #’s vanish at x=x,=...=x,=0, the left-hand side give no
differential quotients of order p,+g+...+2,. But the coefficients
A, A ...4, obey Poincare’s conditions, the coefficient pi,+ pho + ... + 2.4,
don’t vanish, and therefore all the values

0}’1+ﬁ2+... +ﬁnf;: .
=1,2,..
( oz, ax/2...ax,/n)o’ ’

may be calculated gradually.
Next we prove the convergency of the integrals. Let ¢ be a positive
value such that for any positive integers gy, 9y, ... . Which satisfy

Dt et =1,
we have i

e S Plll +p'.7}2+"'+pnzn
Lttt P
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and, assume that all #’s are holomorphic in circles with radius a about
n=1=...=x,=0, and M be the common maximum value of their
absolute values, then

) M
all [0, . (lx l = -
o (l I) I — I:L‘1[+|x7|+...+|xn|
a
Consider the following system of equations:
0y, 07, ov;\ __ M _
6(2‘1 dxl+x15}:+.+xu ()JL’,,)_ (I—x1+xz+.”+xu M
a
X ! ., 1=1,2,..m. (3)
I—(7Jl+7/2+...+7/m) ’

The right-band side may be written

= 6,9 (x)+ > 6,9(x) v+ ) O Do+ ..,

§=1 8, ¢=1

all the coefficients in &’s are positive. Moreover

all

08 o (1) | = 665,12

whence the function standing on the right of (3) is a fonction majorante

. ()p1+/52+...+17n,y. Ny

of each F,. On the other hand the coefficient of ( & )
()xfldxfﬁz...dxf” 0

is e( p1+ pat...+p,). This is, by the assumption upon ¢, less than
| phy + pohst ...+ 2,4, Therefore, taking for v,,7=1, 2, ... 7, an initial

value -2 which is greater than the absolute values of the initial values
ca

of f;,i=1, 2,... m, we have always

‘( a/’1+]";2+...+ﬁnﬁ ) ) ie1 2 -
. , ) 2, a0 2.

( ()Pl +pat ... +;>n7}i
05,2 o2 .0x,2"

0x 20272 .02,

Hence the integrals of (3) may be taken as a jouction majorante of
the solutions of (I).
Now we have to prove the existence of integrals of (3). For which put

X+t tx, =,

then by the symmetry, it is sufficient to consider the equation
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eu—dl'=( M —M)———I '

du 1 L—mv

a

This eqﬁation has a holomorphic solution of the form
= —j,{ 72 TN
ea

about the origin. Therefore our proposed equation (1) has a system
of m solutions £, /3, .-- f» Which are holomorphic about and vanish at
X =x=...=%,=0,

If we want to obtain such a system of solutions £, /3, ... /» that
JH0,0,...0) =49, i =1,2,..m,

where f, (¢=1,2,...m) are arbitrary constants but the points £,
(=1, 2, ...m) lie in the convergent circles of Fx;f), (=1, 2, ...m);
then we put

=fi—P i=1,2,..m

We have
Xy = X(ps+/iD) = Xy,
= Fx, 22 oo X3 Q16D oD, e+ ™), 1=1,2, ... 2.

Since the points £, (=1, 2, ... ) lie in their convergent circles, we
may expand the Functions:

Flx, o +0) = To(”(ff)+2 () %+ 2 T“)(x) Ps 9ﬁt+

§=1

1=1,2,...m,

where &y, &y, ... &, are the radii of convergent-circles of Ffx;¢+/ "),
(=1, 2, ... m), with respect to the variables ¢, ¢, ... ¢,,. Since all the
functions #’s commence at least with terms of first order of x4, xy,...2,,
all the new functions 7's also fail to contain any constant terms, and

moreover are holomorphic about xy=a,=...=x,=0. Now put
i =y i=1,2,...m,
&;

then the new epuations take the forms of the equations (1). From
these we conclude that owr equations have a system of solutions fi,f.,
oo Sy Suck that

7£0,0,...0) =, i=1,2,..m,
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where 13, (i=1, 2, ... m) are intcgration constants and that

f;)(z)+2f(i)x+2f(i)isxt y 1=1,2,...m,

g=1 38y te=l

where 1,9, fS} veer (=1, 2, ... m) are constants.
16. The system of equations (1), § 15, cannot have such solutions

fi=o0,i=1,2,..m,

in so far as all 6,(x), (z'=1, 2, ...m) are identically zero. Conversely
when all 6,%(x),(i=1, 2, ... m) are identically zero, all -solutions £,
(=1, 2, ... m) which are zero at 4;=x,=...=x,=0 must vanish identic-
ally. The proof is easy. In the proof of the last theorem, we saw
that all values of differential quotients of order # at x;=1,=...=x,=0
are given by certain linear homogeneous functions of the coefficients
of the functions 6,(x), (=1, 2, ... m) and of the values of differential
quotients of order lower than s, at x, =2,=...=x,=0. This fact shows
that all the coefficients of the solutions f;, (=1, 2, ... 7) are linear -
homogeneous functions of the coefficients of the functions 6,%(x), (7=
1,2,...m). Therefore, when

00“)(.15) = o, 7 = I,2,...m,
then
fxr)y=o0,i=1,2,..m;

i.e., when at least one of the functions 0 “)(x) (¢!.=1, 2, ... ) does not
vanish, then at least one of the functions f;, (/=1, 2. ... 72) does not
vanish.
From this remark, it follows that the system of solutions f;, (=1, 2, ... )
which become /£, (=1, 2, ... ) respectively at z=x=...=x,=0 is
unique.

17. Now there is given a complete system of » equations

X f= su(x).gf%em( )()f FoetE(®) f)f ~o,
Xf= (o) e +,m(x)%+...+eg,,(x)% =0, (1)

..................

Yof= €, (0L Of +\,_() +...+5,‘,,(x).(%f_= ,

n
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where all the functions &s are holemorphic about #=m=...=x,=0,
and have the forms
i=1,2,..7,

Eij(x) = ]ij Xt

JF=1,2,..n,

the dotted part meaning terms of higher order.
We assume that A, Ay, ... 4, satisfy Poincaré’s conditions; moreover,
the rank of the matrix

| 2)

is ». It the rank be less than #, multiplying certain constants into
X.f, Xof... X, f and adding, we have the equation -

£.(7) -%—1+§._,(x) (%2+ e+ E(2) 7%— =0,

whose coefficients §,((=1,2,...n) commence at least with terms of

second order. Such an equation has not yet been treated generally.

In the following we shall prove that this systerm has z—# solutions.
Since X, f, Xof, ... X.f form a complete system, such relations hold

(X X)f =) CuXofs 47=1,2,.07, (3)
=1

where (), are holomorphic functions; for Lie’s groyp these are con-
stants. Between the functions (;,, there hold such relations:

Ciust Cpis =0, 4,7,5 = 1,2,... 7. (4)
Take any three of X, f, (=1, 2, ... 7), then we have, after Jacobi,
(X, (Xoy XS+ (X, (X5 X)) S +H(X, (X, X)) f=o.
Therefore we know, after some easy calculations, that

2 (C;js Gcst"‘ C;‘lcs C‘ial + C‘kis C?jst) . (5)

&=1

+Xka;t+XzC7kt+X16MtEor l.,j.,k,tz 1,2,_...7'.

Now consider the following »~1 alternants
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X %) £ = Go Xot,

(X, X) f =) G XS, (6)

X X)f =) G X

=1

Put
Y f=X.f+ 2 R(2) X/, (7)

i1

where R(#),(=1,2,...7) are yet unknown functions; then we have by (6)

X, 70/ = (X, X+ Ry() X) f

G=1

= (X, X)f + 2 Ry(Xo X)) f+ 2 XiRyX, f,

=i =1

=3 Goxf + RS Guxrr S xR

&=1 J=1 gl =
=2 {Cm +2 -Rijc‘lja'*')(lk,u} X, /-
g1 Goml

Therefore, to have the relation
(/YU Yi)fE 0,

we must take Ry, (7=1, 2, ...7) such that

.
XiR;+ Ciyy +2 CuRiy =0, s=1,2,..r (®)
J=1 )

This is a system of 7 partial differential equations. When the functions
Cuy (5=1,2,...7) are not all zero and all the functions Cyn (7, 5=
I,2,...7) commence at least with terms of first order, then, by the
theorem of § 15, this system of equations has » holomorphic solutions
Ry, Ry, ... Ry which do not contain any constant terms.

By this system of solutions, we have

(X, Y)f =o.

When all Cy,, (s=1, 2, ... 7) are zero, then put X; =¥, and the result
is the same. By the property of Ry (/=1, 2, ...#), we have
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V. f= (Ailx1+...)%+(zﬁx2+...)%+...+(/L,,x,.+...) :,{; , (9)

and moreover
LN 4
Xof = (1+ R (YVif~ D) Ry X, f ) (10)
Gl
where, in the summation 2, X f is excepted. Thus X,/ can be ex-

pressed linearly in terms of X f,...X,,, Vif, Xipi/; ... X, /. Moreover
from (10), we have

(X, X0 f =) CuXof

8m=t

r r /
=DV CuXf + Cul1+ R Yif— D) RyXif)

=1 J=1
= Cu X+ +CGu Yift...+ Gy X f.
Thus we see that when the functions C,, (£, s=1, 2, ...7) don’t contain
constant terms, then the functions C'y,, (s=1, 2, ...7) also don’t con-
tain any constant terms. Now operate this process for X, /, X3/, ...X,. [
successively and replace our complete system (1) by thc complete system

=X/ Yf .Y/ (11)
of
ox,’

i=1,2,..7

where

a
V,f= (z,.lx1+...)—d£-+(zﬂxz+...)%+ cet Qi+ .00
1 2

(Y, Y)f=o0,i=23,..7 (12)
But in general

(Y, ¥)f =2 G VLS.
Since -
Cllja = - QIa = 0, (I3)

and Cis =0, 1,7,8§=1,2,..7

we may prove that all the remaining functions C;, are also zero. For
apply the formula (5), then we have

2 (C‘u; Cio+ C;L: Cia+t Cuis C,,:)

3==1

+VCh+ Y, Cu+ Y, Ch=o0, i7,kt=1,2 .7
Put £=1, then by virtue of (13),

Yl G}tzol 2.:]-)t= 1,2,...7.
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But since (j;, is not a constant, we must have

all C;;, = O,
or
(Yo Y)f=o0, 4, 7=12...7.

Thus our new system is permutable,
We remark that under the condition that the matrix (2) has the
rank 7, it follows that all (j; can not contain constant terms. For

otherwise, putting (
C‘ii.,:qjs +... y

where ¢, is the constant, since in

(X, X)f =2 (X G X,6) L,

8re=l
X.6,—X;6,,(s=1,2, ...r) don’t contain terms of first order, hence in
r
2 CiisX, f it must be so, i.e., we must have
o=l

r L7=1,2,...7
2 Cijs 2.st = 0, f=1.2 "
=1,2, .7

§==1
Hence the rank of the matrix (2) must be less than »; which is con-
trary to our assumption., Thus ¢, (7,7, s=1, 2, ...») must be zero.
Now, by the theorem of § 14, our new complete system has n—7
solutions, hence the result:
A complete system of v partial differential equations

X,f = Eu(#) gf;’l+s“(x> %;Jr et () ;’% =0, i=1,2 .7

where

() =y m+..., i=1,2,..7, j=1,2,..n,

and Ay, Ay, ... Satisfy Poincaréd’s conditions, and the vank of the matrix

211 112 lm
121 Ay eee l‘.’n
z7'1 Z7-‘2 . Zﬂn

is 7, always has n—r independent solutions.
This theorem is an extension of Poincaré’s theorem given in his
thése, as well as Lie's method of integration.

Many thanks are due to Mr. Kuwaki, Prof. of Kyushu Imp. Univ.
who has kindly lent me the Thése of Poincaré.



