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In the paper® entitled “ On Congruences ”’, the author has shown
pap! g

in the case of groups and rings the possibility and the way of
changing the definition of equality, a given group or a given ring
always remaining the same after the change; and a fundamental con-

ception of congruences has thereby been established. Further the author
has attacked some of the properties of rings and of ideals, which are

necessarily introduced in a discussion of congruence in a ring.
The present paper presents a further investigation of the pro-

1 These Memoirs, 2, 203 (1917).
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perties of rings and ideals, and of certain important relations existing
among the ideals of a ring,

For the sake of brevity the former paper is herein denoted by
“ Congr.”

Proper Ring.

§ 1. Definition. If a ring RN contains an element ¥ such that
R-U=R for every element R of R, it is called a proper ring.

In the usual definition of a number-ring, such as a ring of an
algebraic number-field defined by Hilbert! an “ Orduung” by Dede-
kind® or an “ Iutegrititsbereich” by Kronecker,® unity is an element.
So that it seems proper that an abstract ring also should be defined
so as to contain an element corresponding to I of a number-ring.
The author, however, in defining a ring abstractly in the former
paper’, omitted this condition, because, as seen there, it was more ad-
vantageous in several respects, and in particular called a ring which
contained an element corresponding to I a proper ring.

The present paper is limited in the main to a discussion of the
ideals of proper rings.

Let RU=R and RU'=R for every eclement R of a ring R. Then
if we put R=U" in the first equation. and R=U in the second, we
have

oUv=0,0U0 =U;
whence o=U.

_ This element U is called the wnit element® of the proper ring.
Let U be an unit element of . Then

(U+U+..nterms) R = UR+UR+ ... (nterms)
= R+R+... (nterms).
Putting
U+U+...(nterms) = z
we have
n+ R=R+R+... (nterms).

1 Hilbert, Jahresber, D, Math. Ver. 4, 237 (1894/95). The word field here is used
to mean the German Kgrper.

2 Dirichlet-Dedekind, Vorlesungen iiber Zahlentheorie, 4ed., % 170. .

3 Kronecker, Grundziige einer arithmetischen Theorie der algebraischen Gréssen, 4 5.

¢ Congr., 4 I.

£ Thus named because of corresponding to 1 of a number-ring.
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Therefore, without misunderstanding, we may denote the unit element
by “1,” and moreover may treat the elements

1,2,3 ...
like ordinary integers.

§ 2. Let A be a maximal ideal' of a ring RN. If RN is proper,
the quotient ring® R/A is a field?® If, espzcially, the order of R/A is
finite, it is a power of prime.* ,

N.B. The number of different elements of a ring, in this paper,
is called the order of the ring.

Multiplication of Ideals.
Ideals Prime to Each Other.

§ 3. The concept of multiplication of ideals is introduced for the
further investigation of important relations existing among the ideals
of a ring.

Definition® By the product AB of two ideals, ¥ and B, of a ring
is meant the aggregate of all possible elements, which are obtained,
if we multiply an element 4 of % by an element B of B and add an
arbitrary number of such products, i.e. the aggregate of all possible
elements of the form X AB.

As immediate consequence of the definition we have the following
propositions : '

The product of twe ideals of a ring N is also an ideal of N.

If A=A and B=Y’, then AB =A'YH’.

The three laws, commutative, associative and distributive, hold, viz.

AB = BY,
AB) € = A (BE),
X, B) € = (UC, BE),
where (2, 8B) denotes the ideal derived from % and B.°

The product AB is contained in both A and B, and consequent-
ly in their cross-cut.

-

Congr., 9, p. 214.

Loc. cit. p. 213.

Loc. cit. § 15.

Loc. cit. 3 18.

‘We adopted the definition as usually given for multiplication of ideals in a number-

IR SR

ring.

=3

Congr., § 10, p. 214
Loc. cit. p. 215.
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If A is an ideal of a proper ring R, then YR=9.

An ideal U is said to be divisible by another ideal B, if an ideal
€ can be chosen so that A=BE.

This ideal € is usually called the quotient of N by B, but it is
entirely different from the quotient ring defined by the author,' and of

course the notation %— never denotes the result of division (the in-

verse operation of multiplication) of % by 8. In this paper to avoid
ambiguity the word * quotient” is used to denote the quotient ring, as
defined, but never the result of division.

§ 4. Definition? Let A and B be two ideals of a proper ring
R, If A B)=R, the ideals A and B are said to be prime to eack
other.

THEOREM : Jf ideals Wy, s, ...... y W of a proper ving R are all
prime to another ideal B of N, their product U HN,...... N, is also prime
to B. (Some of the A’s may be equal.)

For, since (%, B)=R and (¥,, B)=NR, we have

Az, B) = (WA, RB) = (A, A, (A, B) B)
= (A, 2&23, B = (AU, %), B%)
= (QIIER’ %2) = (QII, %2)1 \

which shows that (3, A, B) contains ¥,, while containing B. There-
fore (A, B)="AR, viz. the product A, is prime to B.

Since 9; is prime to B, similarly we can show that the product
AW, is also prime to B; and so on. Finally we have the theorem.

Cor. If two ideals A and B of a proper ring are prime to each
other, their powers are -also prime to each other.

For, from (%A, B)=R it follows that (A™, B)=R, whence (A™,
B)=R.

THeOREM : If B is a maximal ideal® of a proper ving R, it contains
every ideal, except R, whick contains a power of P.

For, if an ideal B of a proper ring R is not contained in P, then
(B, B)=N and hence (P, B)=NR for every index e. Therefore B can
not contain a power of B unless B=NR; and the theorem holds true.

If, particularly, for a certain index e the power ¢ becomes the

1 Congr., 9.

2 If (U, B)=R, A and B have no common divisor except R, but the converse is not
necessarily true, as will be seen later. Hence the definition in this respect is somewhat
cxtended.

3 Congr, 49, p. 214.
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o-ideal, the ideal consisting of the element o alone, P contains all
ideals of 3 ; because every ideal contains the element o.

§ 5. THEOREM: If two ideals of a proper ving ave prime fo eack
other, their product is equal to their cross-cutt '

Proof. Let A and B be two ideals of a proper ring R, and D
the cross-cut of A and B. And moreover (A, B)=R. Then the
product AD is contained in the product AB, and the product BD
also in AB. Consequently the ideal (AD, BD) derived from the
products AD and BD is contained in AB. But -

UD,BD) = (U, B)D = RD =D.
Hence © is contained in %Y, while containing AB: so that
we have AB=D.

N.B. The last theorem evidently holds good also when one of
the ideals is the ring itself.

Cor. If two ideals % and B of a proper ring R are prime to each
other and moreover if their norms® under R are both finite, then the
norm of their product is equal to the product of their norms, viz.

7 (AB) = »n (U] - #(B).

For, let ® be the cross-cut of A and B, then AB=ID, and the
norm of ® is equal to the product of the orders of the quotient rings
R

o and % But % is of the same type as —?g—, since (A, B)=N

[Congr., § 11, Theorem]. Therefore the order of % is equal to that

of Z—;, which is the norm of 8. Hence we have
72 (AB) = 7 (D) = n (A) - = (B).

THEOREM : Lez Uy, Wy, .onne. , N, be n ideals of a proper ving RN
which are prime to one another. Then their product N; Ys...... W, is
equal to their cross-cut. ‘

Assume that the theorem holds true for any given value #—1.
Let @ be the cross-cut of #—1 ideals Ay, s, ...... , M.y, then we have

D =UNy e Ny,

which is prime to o, [§ 4, theorem]. Therefore the product A%,
...... A, =D'Y, is equal to the cross-cut of ®' and A, [by the last

1 Congr., § 10, p. 215.
2 Loc. cit, §9, p. 213.
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theorem], which is evidently the cross-cut of the # ideals. Thus the
theorem must hold true also for #  But it holds true for two ideals
prime to each other; therefore it is universally true.

Cor, The product of distinct maximal ideals of a proper ring is
equal to their cross-cut.

Cor. If ideals %, 2, ...... , A, of a proper ring are prime to
one another, the product WeaNe...... N, is equal to the cross-cut of
Wyt e, .o, 0n,

For, since the ’s are prime to one another, their powers are also
prime to one another: so that the Cor. follows from the last theorem.

§ 6. THEOREM: I[f two ideals N and B of a proper ving R are
prime to eack other, then

(€, A)E, B) = (6, UAB),
wherve © s an ideal of N.

For (6, A)(E, B) = (62, €, €3, AB)
= (€% € (A, B), AB) = (&, ER, AB) [, 8) = %R]
= (6, AB),

since 6R=GC, and 6? is contained in €.

The aggregate of all possible products which are obtained by
multiplying a given element p of a ring N by an element of R is an
ideal of R, which is completely determined by the element p. When
R is proper, according to the usual nomenclature and notation, we
call this ideal a principal ideal and denote it by (p). Moreover, the
product of two ideals (p) and % is denoted by pd.

Cor. If two ideals { and B of a proper ring R are prime to

each other, then
((10)- gl)((p): %) = ((10)’ 2['58)’

where p is an element of R.

It follows, from the theorem, that, if an ideal M of a proper ring
R contains the product of two ideals, A and B, of R prime to each
other, M also contains the product of two ideals ((#), ) and ((M),
B), where M is an element of M arbitrarily chosen. But the product
of two ideals prime to each other is equal to their cross-cut [§ s,
Theorem]; therefore the proposition may be rewritten as follows :

If an ideal WM of a proper ring R contains the cross-cut gf fwo
ideals, % and B, of N prime to eack other, M also contains the cross-
cut of two ideals (M), N) and (M), B), where M is an element of M.
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Ideals Containing the Square of a Maximal Ideal.

§ 7. Let P be a maximal ideal of a proper ring R. Then, as
shown in § 4, P contains every ideal containing a power of §§; and
hence evidently a chief-composition-series of R containing a power of
P as a term has P for the second term. ‘

As may be easily shown, there are two existent cases wherein
B? either does or does not coincide with P ; but we now suppose that
PB? is not equal to P.

Let % be an ideal of R, distinct from B, which contains P* and
consequently is contained in P. (Of course A may be P*; if there is
no ideal, except P and P? containing P’ we need only take A=P2.)
Then the product of any two elements of P must belong to % ; be-
cause it belongs to %?, which is contained in U.

We now proceed to find a complete set' of incongruent (mod. )
elements of the ideal ((7), %), where 7 is an element of P which
does not belong to 2. ‘

Every element of ((7), %) is given by the form zR+ A, where
R and A are elements of R and U respectively.

If an element 7R+A4 of ((m), A), and consequently 7R, belongs
to A, R must belong to P; and conversely. For if it were Rz=o
(mod. %), then, since R is proper and P is a maximal ideal of R,
we should have

(B), B)=R;

consequently two elements &, and 2 could be chosen from 9 and P

respectively so that
RR]_"‘P = 1.

Multiplying both sides of the last equation by 7= we have
T =7RR+7nP =0 (mod. A);

because 7R=0 (mod. ) by hypothesis, and 7#P=0 (mod. A). This
contradicts the assumption that n=z0 (mod. ); therefore if 7R+ A=o0
(mod. %), R=o0 (mod. PB). And the converse is evidently true.

1 Let © be a subring of a ring R [¢f. Congr,, § 6], and I an ideal of §f{ which is
contained in &. A set of elements of & is called a complete set of incongruent (mod. JR})
elements of &, when the elements of the set are all incongruent (mod. §i}) and every ele-
ment of & is congruent (mod. Ji}) to one element of the set. In other words, it is a set

of distinct elements of the quotient ring S ¢f. Congr,, ¢ 9].
q m g



120 Masazo Sono.

Next, if two elements 7R+ A4 and #R' +A4' of ((z), A), are con-
gruent (mod. o) to each other, viz.

TR+ A=nR+A4 (mod. XA),

then n(R—R)=o0 (mod. ) ;
whence R—R' =o0 (mod. P).
or R=FR (mod. R).

Conversely, from R=R' (mod. ) it evidently follows that 7R+
A=naR'+ A’ (mod. A). Therefore we have the

THEOREM : Let
: Pis Por -ee

be a complete set of incongruent (mod. P) elements of R. Then the

products
77-'.01; TTPss ceuy

being taken modulo N, form a complete set of incongruent (mod. A)
elements of ((m), W), that is, give the quotient ring ((7), A)A. (A and
7 are the said ideal and element).

Cor. There is no ideal of R, except ((z), A) and A, which is
contained in ((7), ¥) and contains .

For, if 8is an element of ((7), %) which does not belong to U,

then
B=mp (mod.N),

where p is a certain element of the set pi, g5 ...... , which is not
congruent (mod. P) to o. Since pzE0 (mod. PB), we have
(), B) = R.

Choosing two elements R and P from R and P respectively so that
pR+P=1, we get
= nmpR+7P = BR (mod. ).

Therefore the element 7, and consequently the ideal ((7), ), is con-
tained in the ideal ((5), %); and hence we have the Cor.

Particularly if the quotient ring R/ is of finite order, the two
quotient rings R/P and ((z), A)/A are of the same order.

§ 8 Let -
m; S’B) 2Il; g[Z.v ceey QInr %2
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be a chief-composition-series' of a proper ring R with the last term PR

And let p be an element of f which does not belong to PB;

13 T 2 qs s %{1 3
1y al ” 2[:I 8 ar2 ;
3 az L3 %[2 » 9‘[3 ’
2
» % ) %In ' S/B .

Then, by the last theorem, we have

A = ((aﬂ)! S'Bz):

WUy = ((an—l)’ %n) = ((“n—l)’ (a,,,), %2)
A = ((al): 912) = (((11)7 (‘12), veey (n), %2),
P = ((7[): g[1) = ((ﬂ): (al)’ (a2)’ seey (a")’ %2),
R = (o). B) = (o), (@), (1), -ur (@), BY),

And the quotient rings

I .
52{1) 9[2) b ] sBz

are of the same type, being no field [¢f. Congr., § 20].

If, especially, the quotient R/P is of finite order, the above
quotient rings are all of the same order as R/P; and the norm® of
B2 is equal to [#(P)]** .

Therefore of n(P)=[n(P)P, an ideal of R which contains P is
either P or P :

Powers of Maximal Ideals.

§ 9. Let ® be a maximal ideal of a proper ring R; and again
suppose that P? is distinct from P. Then there are two existent
cases wherein R either does or does not possess an ideal containing
$B? and distinct from both P and P> ’

In the second case we have

B = (=), ¥),
and Pr= ("), P+,

1 Congr. ¢13. p. 220.
2 Loc. cit. 9.




122 Masazo Sono.

where © is an element of P whick does not belong to B, and n is a
positive integer.
For, as seen in § 6,

B = ((ﬂ)’ T2,
Pr= (@), B) P = (=B, B)
= (= ((@), B, ¥ = ((=*), 7P, P*)
::((7[2), EBS)’
since #P* is contained in P*=((7), P )P =(=P’, P*). Next
P = (=), B) P = @P, T
= (@((m), $), B = ((=°), B*),

since #%P? is contained in P*=( (z?),P°) P2=(=*R* P°); and so on.
It may happen that among the powers

B, P2 P ...
there exist equal ones.
For example, let p and ¢ be two distinct prime numbers. Then
the p% integers

and

o, 1, 2, ..., (ff9—1),

being taken modulo g%, form a ring, say called R. And the pg
integers in RN

o ZP, srey (PQ—I)P,

also being taken modulo g%, form a maximal ideal of N, say called
P. It is easily seen that P* consists of the ¢ integers

o, % 2% ..., (g—1) 2

taken modulo g%, and that P? coincides with P2
If, on the contrary, for every index »

B,
R, B, P2, T2 ...

give a chief-composition-series of R, in the present case.
For, let @ be an element of $* which does not belong to P,
then '

" the successive powers

a = a"R+ P,

where P®Y is an element of Pt and R an element of R} which
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does not belong to P. Choose an element R, of R so that RR,=1
(mod. P), and we have '

eR, = (T"R+P ™) R, = n* (mod. L),

Therefore the element #°, and consequently the ideal ", is contained
in the ideal ((@), PBt"), a being an arbitrarily taken element of PL*
which is not contained in ™. So that there is no ideal of R con-
taining P+ and contained in P"; and hence the series is a chief-
composition-series of .

§ 10. THEOREM: Lot P be a maximal ideal of a proper ving R,
and assume that there is no ideal of R, distinct from both B and T,
which contains B and consequently is contained in B. Then every ideal
of R, except N, whick contains a power of P is a power of P,

Proof. Since, if P2="P, it is evident, we prove it under the sup-
position that P?==P, Let A be an ideal of R containing the power
PB*. Then A is contained in P [§ 4, 2nd theorem]. Therefore, if
A==P", there must exist a power of P such that it contains A, while
the next power does not. Let it be ®"%(s==1). That is to say, we
suppose that ¥ is contained in $"~* but not in P+,

Take an element @ of 3, which does not belong to PB***!, and
we have

Q=" R + P(n—-i+1)

where 7 is an element of B which is not contained in P? and R,
P®=1 are elements of R, P~ respectively ; because {7 =( (=",
Pr—#+1).  And moreover the element R does not belong to P ; because
R=0 (mod. P) would involve 7" R=0 (mod. P“**) and conse-
quently a=o0 (mod. P***), contrary to our assumption. Since thus
R=o (mod. P), we can choose two elements R and P respectively
from R and P so that RR'+P=1. And we have

VaRl= ﬂ-n—-iRR/_I_R/P(n—i-'-l)
= 1" (1 —P)+ R/ P,

whence
a1 — i lgR! 4 gl P RIpi—l pa—ith),

But 7P and R'7*-'P" Y are both contained in P*. Therefore

" t=o0 (mod. (@), B),

and consequently
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7' =0 (mod.N).

Hence 9 contains the ideal ((z*%), $*) =P

Since, by supposition, % is contained in P77, if 7=1, A must=
P~ If i>1, it is shown similarly that % contains P*2; and if
i=2, A=P"2. Repeating the process we finally have A=P", which
we require.

Cor. If »(B) is finite and moreover #(P*)=[n(P))?, every ideal,
except N, containing a power of P is a power of L.

Because, if #(B*)=[n(P)]’, an ideal containing P* is P or P[§ 8].

§ 11. The case where there is at least one ideal, distinct from
P and P? containing P:. It is here treated under the condition that
the ring N possesses a chief-composition-series with the last term P2
This again is divided into the two cases in which a chief-composition-
series of N with the last term P* consists either of four terms or of
more than four terms.

Beginning with the former, let

ROPB AP

be a chief-composition-series of a proper ring R with the last term
P, P being a maximal ideal of R.

Let 7 be an element of § which does not belong to %, and a an
element of A which does not belong to P2 Then, by §8, we have

B = ((7), (), ).
P = ((m), (@), T) P = (=P, P, B°)

= (@ (%), (2), B), « (=), (2), T*), B)

= (), (za), (@), B,
since the ideals 7%® and a¥P3* are contained in the ideal (7% aP?
F)=((@), (), B) P="

P = ("), (na), (), B P
= (=), (@), B*)B, 7aP).
maP = 7a ((z), (a), P) = ((7'a), (za), 7aP?),

and the ideals (7%), (7«®) and mafi® are contained in the ideals 7°3,
@B and P* respectively. Therefore we have the formula, which is
important in our theory :

And

But
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o B = (@), (o), B°) P.

There are to be considered the two cases in which the ideal

(@), (o), P®) is either equal or not equal to P’. The former will
be further discussed in the next article.

§ 12, Now, we suppose that

(@), (@), F7) = P~

Then, since the product 7a of the elements = and « belongs to I,
we have :
(@) Tq = TR+ &R+ P®,

where R, R, are elements of the ring R, and P® an element of P
Again, there are two cases to consider.
(1) Suppose that R and R, both belong to P, viz.

R=R =0 (mod. PB).
Then
ma =0 (mod. PP,
(@), B (@), B) = ((za), =P, P, P)
= ((na), ((7), (2), B*) )
= (7o), ) = %"
(2) The case in which at least one of R and R, does not be-
long to .
(i) Suppose R3=o0 (mod. F).

Since P is a maximal ideal of R, it follows, from supposition, that
((R), B) = %.

Hence, two elements R’ and P can be chosen from R and P respec-
tively so that

and

RR'+P=1.
Multiplying both sides of equation (@) by the element &' we have
noR' = n*RR'+ *R\R'+P® R’
= n*(1—P)+ FRR' + POR'
=+ aRR" (mod. P?),
or 2t =noR'— RyR' (mod. P?).
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Hence 7* is contained in the ideal ((wa), (¢?), FB).
But .
P = ((7), (wa), (o), T°),
and (@), B) P = («B, B°)
= ((m), (o), %), %)
= ((=a), (@), o, P)
= ((za), (), T),
since aff® is contained in . Therefore we have
P = (@), T°) P
(iiy If RysEo (mod. P), similarly we have
P = ((m), B P.

The ideal ((z), P?) is different from P; because otherwise P
would contain no ideal of R containing P?, except P and P? [by
§ 7, Cor.].

SuMMARY, If the set of ideals
R, T, A, P

grves a chigf-composition-sevies of the proper ving R, then
P = (=), (4, $°) B,

where w is an clement of P whick is not contained in YW, and a an
element of N whick is not contained in P

In case P = (=, (a), B°),

(1) of ma=o0 (mod. L),
B = (@), ) (@), $),

and (2) i nagEo (mod. L),
P= (), P) B,

wheve P is a certain element of P whuch does not belong to P

§ 13. The case wherein a chief-composition-series with the last
term P? consists of more than four terms. Let

RP, Ay Aoy o, Uy B (2= 2)
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be a chief-composition-series of a proper ring R with the last term

B2 And let
" 7 be an element of B which does not belong to ¥ ;
a; » A, ” D) PP
(i=1,2, ec,m—1);
a, » x, » P

Then by §8 we have
(1) P = ((717), (al)’ (aZ)’ ) (’Zn)’ ‘132)’

and
(2) P = ((). (@), (&), ..., (2,), B P
= (7B, &P, &P, ..., ¢, B, T°)
= (@), (ray), (t2), ..., (74),
(&), (1), +.., (02,),
(a50), vov, (a58,),

------------------

(2.), ¥
because 7%, o, J,...... @, I are all contained in .
Putting
5]]? = ((n2)’ (alg)' (a1a2): seey (alan)r
(a22)y Tty (aZan)J
(a.7), %)
we have )

P = (7a,P, 7a,P, ..., 72, P, MP).

e f = wa, (%), (@), ..., (¢,), B?) _
= (7 a, (a7, ..., (2;0,) 7, 7a, P ;

But

\

therefore the ideal 7a,§ is contained in the product IMP. And hence

we get the second important formula :

an B = MR,
where .
M = (=), (a), (1), ..., (1),
(a22)’ b (a"Zan)r

------------------

(@), B°).
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In this also are to be considered the two cases in which the ideal
M is either equal or not equal to P?. The former will be further
discussed in the next article.

§ 14. We now suppose that =P Then, since by (2)

o, =0 (mod. P¥) (F=1,2,...,7n),

we have
) ma, = TR+ &’ Ry + R + ... + 0,0, Ry, -
+ Ry + ... + 0, Ry
.
+ @ Ripn + P®,

(t=1, 2,...,n),

where the R’s are elements of the ring R, and the P®'s are elements
of P,
Again there are four cases to consider.
(1) Suppose that all the R’s of () belong to P.
Then by (&)
na; =0 (mod. P?) for every i=1,2,...,7;
and we get
((71.'), %2)((a1)1 (az): ce0y (an)’ 532)
= ((77.'(11), (ﬂa2)) eoey (nan)» 7TS~I32, a1$2’ a2§82» ene anS'ng %4)
= ((may), (7ay), ..., (wa,), (7), (@), (@), .., (@a), B*) B
= ((ra), (7a3), ..., (7a,), T
= .
The ideals ( (%), B?) and ((ay), ...... , (@,), P?) contain P* and are
contained in P; but evidently both™ are different from P and P? [

§ 7, Cor.].
(2), (i) Suppose that at least one of R, Ry, ...... , Ry (say Ry),

does not belong to P, viz. R=Eo (mod. P).

Then we have

and hence we can choose two elements R’ and P respectively from R

and P so that
RR'+P=1.

Multiplying both sides of equation (&) by this element &' we have
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ta, R = mRR'+PPR + 2 a0, Ry R’
iJ

= (1—P)+ AOR' + D) ¢;R R’ ;

or
n® = nay, R’ —-2 aoR LR (mod. PP),

which shows that a®is contained in the ideal ((way), (), (%1%), ...... s
(aa,), (@), «ouree G R , (20, ). We obtain a similar result
also when R;=Eo (mod. ), /=2, 3, ..... ., n; viz. 7% is contained in the
ideal, ((za,), (a?), (q,a), ++.... , (), (@9), ceeee. s (25,), cevnesy (@20, BP).
Therefore, if at least one of Ry, &, ...... , K, does not belong to %,
the ideal

, (may), (may), «..... (ma,),
(22), (1), ..., (@a,),

(e, ..., (0u0,),

(), )
contains the element 7°, and consequently becomes equal to P [of
§ 13, (2)], while being equal to the product

((al)) (az): b (an)’ %2) ('B
282 = ((al)’ (a2)v thrs (an>’ SB?) S'B

So that

The first factor of the right side is equal to A,; which, of course,
is distinct from . , ) ‘ . ‘

(i) If the coefficient RyzE0 (mod. PB), the element af, as is
shown similarly, belongs to the ideal

(=), (7ay),
(210), (485), -+, (042,),
(a5, (ays), ..., (0aty),
(agd), ..., (13a,),

(2, B%-

Therefore, if at least one of the 7 coefficients Ry, Rgpry eeees , R
does not belong to P, the ideal
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( (@), (may), (7ag), ceeeunrannns , (7ay,),
(aya5), (ay0), ..., (y,),
(a22)) (a2a8): reey (’12%),
(ag), ..., (az1,),
(2., B9

must contain the element a%, and consequently becomes equal to %,
while being equal to the product

(), (35), (3), -y (am), B P.
B = (), (), (@), -+ (a), B P.

The first factor of the right side is evidently distinct from P [¢f.
§ 7, Cor.].

Similarly, if at least one of the 7 coefficients Ry, Ry, covvee y Ry
does ot belong to P, then

So that

S‘Bz = ( (n')) (al): v (aj—l)’ (aj+l): vy (a")’ %2) E’B»
the first factor of which is also different from .
(3) Lastly, suppose that all of R; and Ry; (7, /=1, 2, ...... , %)

belong to P, but at least one of the other coefficients R's (734)
does not belong to P.

Then equations (4) become

T, = oty Rye + i Rys + oo + a1, Ry
+ o R+ .o + 032, R0,

+ ty 40, Ry 0y, n - (mod. PP),
(F=1,2, ..., n),

And hence all the products ey, 7a,, ...... , Ta, are contained in the
ideal

((a,25), (ay25), .-, (@gta),

(aﬂas); “eey (az"n), N

(an——la'n 3 g'BS)I
which we denote by R. But

((”)! (al)’ (a-')’ e (an—l): s‘Bz) ((a2): (as), crty (a,,), %2)
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=((Tag), (M), vvvvvneniernnennienianaenn. , (may,), TP,
(@35), (@1g)y wevvvvrvnnierniinninnnns y (), B2,
(@), (05), «ovrevnrinineiniiannnn, , (a1, . %,

(25 U , (@), 2,02,
....................................... ,

(@ -1)s (Cnsy@n), uiP,
, B, B
= ((ma), (wag), ..., (7an), (@7), (35), -+, (@is), W) [by § 13, (1)]
= ( (azg), (‘132), seoy (azb—l)’ ),

since all ma/s G=1, 2, ...... , #) are contained in N. And similarly

(@, (@), -+, (@), B (@), (@), (2), -vv, (20), B
= ((a22): (af), seey (aiq), ,SR)

Therefore we have
(@), (@), (@), ++es (@) B (@2), (@), -2 (20), B
= ((a), (), +++s (@), B (%), (22), (25), -+, (), BD).

These four ideals are different from one another, and all are con-
tained in P and contain P2
For, since

((a2)’ (03)1 reey (an)y %2) = aI2

as shown in §8, if we put

((al)’ ((12)’ ey (an_l),'$2) = %:

the last equation may be rewritten as follows :
(=), B) A = B ((x), L)

But ((7),8)=A: or B would involve P=A, or A; respectively;
((m), B)=((7), Ay) would involve P=((x), A,), and consequently A,=P
or Ay [by §7, Cor.]; A=9B would involve A;=%U,; W==( (7), A;) by
hypothesis; B=((7), *;) would involve P=3,. Therefore the four
ideals are all different from one another.

§ 15. SUMMARY. If the set of sdeals
NP, A, A, ., W, P2 (= 2)
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grves @ chief-composition-series of a proper ring N with the last term

B2, we have
=M,

M = (7%, (&), (0,25), ..., (a1a,),
(@), ..o, (aua,),

where

(a’n2)’ %3)’
and © and the o's denote the same as in §13.
If M=%, there holds good at least onme of the jfollowing four
equations :

(1) R = (@), B (), (@), -, (@), B
(2), (i) P = (@), (@), ..., (2,), B) B
(if) B = ((7), (@), -rs (@), (Fj42)s -+, (@), B B3
(3) (%), (ar)s (@2), ++s (@), BT (@), (25), -ov, (@), B
= ((a), (az); cres (@ns), B ((7), (@), (a5), -+, (@4), P*).

Ideals of a Proper Ring in which every Ideal, Distinct from
the O-ideal, is of Finite Norm. Resolution of an
Ideal into Factors Prim to Each Other.

§ 16 Thfoughout the present and the subsequent articles (§§ 16—
30) we assume that a ring to be treated is such that the norm of
every ideal of it, which is not the o-ideal’, is finite.

THEOREM : Let
N, Ay, Wy ooey, Ay (2= 2)

be a c/zz'eﬁcomposz'tzbn-serz’es’ of a proper ving R with the last term N,.
If any one of the quotient vings

€A A, T A,

devived from the series is a field®, the ideal N, may be expressed as the
product of two ideals prime to eack other.

1 The ideal consisting of the elemeat o alone.
2 Cf. Congr. § 13,
3 The term fe/d is used to denote the German Kirper.
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Temma 1. If in a ring § of finite order the product of any two
elements of it is not o, unless at least one of the factors is 0, the ring
% must be a field.

For, let
(1) £, Fy ..., F,
be the distinct elements of §§. Taking out an element Z, not equal
to o, of ¥ and multiplying each one of the series (1) by it, we get

(2) FF, KF, ..., FF.

'l"hese. products are all distinct, while' belonging to §. For, since
Fe0, FF=FF would involve F;=ZF;, contrary to our assumption.
Therefore, series (1) and (2) are identical, except as regards the
sequence in which the terms occur. And, corresponding to every '
element F; of (1), there exists in § one and only one element F; such
that

FF =F,
Therefore § is a field [Congr., p. 205].

Lemma 2. Let 8 be an ideal of a proper ring N which is con-
tained in another ideal 9. If the quotient A/B is a field, B is equal
to the product of % and an ideal prime to .

Here % is assumed to be distinct from 9.

Since the quotient R/B is never a field,! there exist in R at least
two elements (say, called R, and R,), such that their product is con-
gruent (mod. B) to o, while they are both incongruent (mod.®B) to
o [by lemma]. If it happen that one, say R, of the elements R,
R, belongs to 9, we take &; and denote it by .S. Since A/B is a
field, R, does not belong to A. On the contrary if every product
which we obtain by multiplying an element, not belonging to B, of
A by an element, not belonging to B, of R is incongruent (mod. B)
to o, we take any one of R, R, and denote it by S. Then the
elements X of 9 which satisfy the condition

SX=o0 (mod. B)

form an ideal (say, called &) of M. & necessarily contains all the
elements of B and also contains certain elements not belonging to ¥,
while containing no element, not belonging to B, of A; because A/B
is assumed to be a field. Therefore the ideal & is distinct from
B and contains B for the cross-cut with 9.

1 Congr., 3 9.
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If & is prime to %, our theorem has already been proved. On
the contrary, if not, the process may be repeated with the ideals (¥,
®) and & as follows:

Since the cross-cut of 3 and & is B, the quotient (A, R)/K is
simply isomorphic with the quotient /3 [Congr., § 11, Theorem] and
consequently is a field. Therefore it can be proved similarly that there
exists an ideal (say, called &) such that ®; is distinct from & and
contains & for the cross-cut with (3, &). But the cross-cut of & and
Y, R) is &, and that of & and U is B; hence the cross-cut of &, and
A is B. If, therefore, & is prime to (A, &) and consequently to A,
the theorem has already been proved. If 8 is not yet prime to (3,
R), the process may be repeated with the ideals (2, &) and &, viz.
there may be obtained an ideal &, distinct from &;, such that the
cross-cut of & and (%, &) is &, and consequently that of & and U
is B; and so on. Then, since the norm of every ideal (J=0) of N is
assumed to be finite, eventually we shall obtain an ideal (say, called
M) which is prime to A and contains B as the cross-cut with .
And then B=AM [by §5, 1st theorem).

Returning to the subject in question, if ,_,/3, is a field, by

lemma 2 we have
' %I” = 9In—l SR)

M being an ideal prime to A, what is to be proved.
We now suppose that 3,/ is a field, but all of

Nir Wiro p) -~

%[H-z ’ 2[¢+3 T A,

are not fields. Then the product of two elements of 2, is con-
tained in M,y (7==1) [¢f. Congr., §20].

First we prove that %;,, may be resolved into the product of

two ideals prime to each other. Since U/, is a field, by lemma 2

A, may be expressed as the product of UA; and an ideal, say M,

prime to U, viz.

(< n—1)

9[i+1 = Q[i m,

where (%;, M)=R. But W, is contained in W, If W, =A%, =

2%, 9A,,, has already been resolved into two factors prime to each
other ; because from (¥, M)=N follows (A%, M) =R, none of % and
M® being N [§ 4, theorem]. '

If not, a finite number of elements
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Py, Py .o, P
can be so chosen that

g[¢+2 = (W0 (P, (Bz)» ey (P LL))= (9139322, @),

where
€ = ((A) (B vy (A);

because, since the norm of every ideal (5=0) of R is finite and (%,
MH=R, neither of A%, M* being the o-ideal, we have =)=
n( W) n (M) [§ 5, Cor.], and hence the order of the quotient Ao/ e
is, of course, finite. And, since (¥, M)=R, we have

Wepe = (M2, €) = (AL, €)(Di%, €) [by § 6, theorem].

But since the ideal € is contained in %,,,, evidently it is contained in
A, and M; hence the ideal (A%, €) is contained in A, and the ideal
(M?, €) in M. Therefore A, can be resolved into factors prime to

each other, none of which is ®; and, if /+2=n, the theorem has
been thereby proved.

If i+2 <, put
U, €)= g,
(W, €) =

But %,,; contains A%, which is the product of the two ideals 22 and
M2 prime to each other. If M, =A%, =L M? A5 is equal to the
product of two ideals €% and M,* which are prime to each other and
none of which is R ; because (&, M)=R, and £, M, are contained
in %A, and M respectively. If not, in the same way as before we have

Wit = (91¢+2r @1) ( SME, @1) >
because the quotient ,o/A%,, is of finite order. And then
’ %Li+3 = '(212: @1)((’1)}12» @1)-

Since €, is contained in .5 evidently the ideals (&7 €,) and (M2,
@,) are contained in &, and M, respectively. And, moreover, these
are prime to each other; because (2, M)=NR. Therefore N, can be
resolved into factors which are prime to-each other and none of whict
is R: so that, if {4+ 3=#», the theorem has already been proved. T
7+ 3 is not yet equal #, repeat the process, and eventually we shal
reach the result which we require.

§ 17. The converse of the theorem also holds true, viz.
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THEOREM : [f an ideal W of a proper ving N may be resolved into
the product of two tdeals prime to each other, the set of quotient vings
derived from a chief~composition-series of N with the last term W con-
lains at least one field besides the first quotient.

For, suppose that

where € and M are two ideals prime to each other. Let P and D
be maximal ideals of N, respectively containing € and M. Then P
and Q must be distinct; because otherwise the ideal (2, M) would be
contained in B, contrary to the assumption (2, M)=NR. Since ()
is finite and the product PO, being the cross-cut of P and L, contains
A, we can choose a chief-composition-series of R containing P and
PO, and having A as the last term. Let '

R, B, BQ, ..., A

be such one. Then the quotient B/PL is of the same type as /O
[Congr., § 11, Theorem], which is a field [§ 2].
§ 18, Let
N, Ly, Wy oee, A,

be a chief-composition-series of a proper ring K. If none of the
quotient rings '
A A A,
*0' AW T A

is a field, ¥, contains a power of the maximal ideal ;. Conversely
if A, contains a power of U, (say, %), none of the quotient rings is
a field. For, if any one of the quotient rings were a field, A, would
be resolvable into two factors prime to each other. Suppose that U,=
2M, where (& M)=R. Since (L, M)=R, the maximal ideal %, would
be prime to at least one'of € and M ; suppose (A;, L)=R. Then (¥,
=R would involve (A, L)=R [§4], and consequently (A,, &)
=R, while A,=M would involve (A,, €)=8 Therefore ¥, can
not be resolved into two factors prine to each other; hence none
of the quotient rings is a field. Therefore the last two theorems,
being summed up, may be rewritten as follows:

An ideal of a proper ving can or can not be resolved info two
Jactors prime to eack other, according as it does not or does contain a
power of maximal ideal.
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It is clear that no ideal can contain two powers of distinct
maximal ideals; because powers of distinct maximal ideals are prime
to each other; and also that no ideal containing a power of maximal
ideal is contained in two distinct maximal ideals. [¢f. § 4]

§ 10 THEOREM : Fovery ideal which contains no power of maximal
ideal may be expressed as the product of a finite number of ideals which
contain powers of distinct maximal ideals rwespectively ; and this can be
done in only one way.

Let A be an ideal of a proper ring R, which contains no power
of maximal ideal of R. Then by the last proposition % can be re-
solved into two factors prime to each other. Suppose that A=,
where (&, M)=R. If both factors & and M contain powers of
maximal ideals, these two maximal ideals must be diétinct; because
otherwise & and M would be contained in the same maximal ideal
[§ 4, 2nd theorem], contrary to (8, M)=NR. And hence the resolution
has already been effected. If not, the process mdy be repeated, viz.
either € or M or both may be resolved into two factors prime to
each other, and so on. It is clear that evéntually no further resolu-
tion will be possible; because if A could be resolved into the product
of an infinite number of ideals prime to one another, none of which
is R, the norm of A would be infinitely great, contrary to our as-
sumption [¢f. § 5, 1st Cor.]. And ¥ is finally reduced to the form

QI = %lglguo 9,[\4,

where %, Uy, ......, Av are ideals respectively containing powers of
distinct maximal ideals. :
Next a maximal ideal containing 9 must contain one of %, %A,

...... , v, For, let P be a maximal ideal containing A. If P contain-
ed none of A, A, ...... , Ay, it would be prime to all of them and
consequently to their product %; %, ...... Av=% [§ 4], contrary to the

assumption that B contains . Therefore Y must contain one of 2,
912,' ceseeey Ao, . .

.~ So that if two resolutions are possible, the maximal ideals, each
of which contains one of the factors, are the same in both. And
hence the only admissible supposition is

A=A, ... A =AU WY,

where 9(; and ¥/ are ideals containing powers of the same maximal
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ideal P,, GG=1, 2, ...... , v). Since ¥/ contains a power of Py, it is
prime to all of W, Az ...... , Av and consequently to their product
[§ 4]; similarly 9, is prime to the product %A/ A ...... Ay'. There-
fore

oA, A .. W) = A, Wi ) =,
(9/[1, %1, 2[1, 9«[2’---2[\)’) = g[ll (9[1, 2[2’ 2[3’..-%\1 ,) = %[1’,
while 2,9, ...... Av=A/U/ ...... A/. So that A=Y/ Taking U,

for A, similarly we can prove %;=%,/: so that the two resolutions
are identical.

§ 20. Let By, Pay ......, Bv be the distinct maximal ideals of a
proper ring R which contain a given ideal A of R. Then U can be
resolved into factors as follows:

A=AA ... A,

where Ay, Wy, ...... , Ay are ideals containing powers of Py, Py, ...... R
Vv respectively. ‘
Now take a chief-composition-series of N

’ ER: ﬂsi» EB!‘I; EBGB; s, 2[4

having U, for the last term, and the quotient R/P; is a field, but the
others L./ Bis, Bir/Pags ovevee are not fields, viz. T, By, .ovent are contain-
ed in Py, Pig, +eeeee respectively [§ 18]. Muiltiplying each term of the
series by the product % ...... A, we have the series of ideals

9'[1%[2 vee 211;_1, 2112[2 v 9[1:—1%" 2[1%2 res QIi_]_ SB.,;D 9[1%2 "o QI,;_]gBig,
veey 2[12[2 vee g[i-—l 2[,;.

The quotient A, ...... L) FIPTD. ) PR AP, is a field; because
it follows from (AAs ...... Wiy, Pi)=R [by Congr., § 11, theorem].
But (A; ...... WeaPBe)?, (A2 ... Ay Bar)? eenee evidently are con-
tained in %, A, ...... Wory P, Wy Ay oo Wiy Pizy wevenn respectively.

Therefore if we take a chief-composition-series’ of R such that it
contains the ideals

S'131’ S'Bll’ SEI‘.Z, seey QID
9IIS'BZv QIIS'SEI) 91121522» crey %lmb
g[]_%[g%;;, 9«[19«[2%31, 2[1%2%32, ceey 9112[29[3,

1 Such a series{evidently exists.
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..... D L T

WMo WPy, Myore WyBory My oo Moy Bugy ooy Ay o2y,

and has ¥ for the last term, then the set of quotient rings derived
from it contains just v fields ’

m/EBl’ 2[1/%15'32' 9[1%2/2I12[2$3) ceey
\ Qg oee W)/ oo A B,
But two chief-composition-seties with the same last term lead to two
sets of quotient rings which are identical [Congr., § 13, theorem].
herefore we have the
THEOREM :  The number of the maximal ideals of a proper ring N
which contain a given ideal W of R is equal to the number of the fields

whick arve contained in the set of quotient vings derived from a chief-
composition-series of R with 'the last term N.

®-Function: Fermat’s Theorem.

§ 21. The function ®(A). Let A be an ideal of a proper ring
R, and
Ry Ry ooy R,

a complete set of incongruent (mod. A) elements of K. The number
of the elements of the set which are prime' to ¥ is denoted by the
symbol®> @) as a number dependent on A; and let ®(A)=1 for
A=R.

1.° First to determine the ®-function of an ideal containing a
power of maximal ideal, we suppose that 9 is an ideal of a proper
ring N which contains a power of a maximal ideal . Then B con-
tains 9, and an element of N which does not belong to P is prime
to A. [§4]). Now let

(I) ‘01) 1021 sy low (ﬂ=n(§B)) '
be a complete set of incongruent (mod. P) elements of R, and
(2) Ty Ty weey Ty,

~a complete set of incongruent (mod. ¥) elements of P. Then the
nm elements

1 The phrase that an element R is prime to Y is used to denote that the principal
ideal (&) is prime to .
2 As in the case of ideals in algebraic number-fields.
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(3) 0+ 7; (e=1,2, 0,25 j=1,2, ..., m)

evidently form a complete set of incongruent (mod. %) elements of
N, and the number of the elements of (3) which do not belong to P
is ®(A)

But if p;=o0 (mod. ), p;+m=0 (mod. P) for every j=1, 2,
...... , m; conversely if o+m=0 (mod. B), p,=0 (mod. ). And
there exists in (1) just one element which belongs to B. Therefore
the number of the elements of (3) which do not belong to P is

1 \

nm—m = nmn [\’I - —) = n(ﬂl)(l ——”—(;a—‘)—) .

”n
And hence we have

@ (A =7252I(1———I )
@ = w1k
2.° Next suppose that two ideals 9 and B are prime to each
other. Then the cross-cut of ¥ and B is equal to the product AB
[§ 5, 1st theorem], and ‘

(o]

7 (AB) = n(A) - (B) [§35, Cor.].
Let
4) ) ay, Gy, oesy Gy,
(5) :81’ 482: cey ABV

be complete sets of incongruent (mod. AB) elements of A and B respec-
tively. Then, as shown in Congr., § 11, the elements of (4) being
considered for elements of (A, B)=N and being taken modulo B form
a complete set of incongruent (mod. ¥B) elements of R. And hence
the number of the elements of (4) which are prime to B is ® (B).
Similarly the number of the elements of (5) which are prime to ¥ is
D(A).

Since (U, B)=N, an element of N is expressed in the form A+ B,
where A4 and B are elements of A and B respectively, while 4 and
B are given by the forms a;+2' and §;+D" respectively where 2V,
D" denote elements of AB. Therefore every element of N is express-
ed in the form «,+ 8,4+ D, where D is an element of AB. But two
sums a;+f3; and a,+f, are congruent (mod. AB) when, and only when,
a;=a, and §;=5, (mod. AB) simultaneously. Therefore the pv sums

(6) o+ B, F=1,1,., 05 7=1,2,...,v)

form a complete set of incongruent (mod. UAB) elements of N.
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But by §6, Cor. we have

(o485, AB) = (2, +B;), W) ((2;+B;), B)

= ((8), W) (@), B).
Therefore a;+f; is prime to AB when, and bnly when,
(8, %) = %
and ((a), B) = R

simultaneously. The number of the elements of (3) which are prime
to 9 is ®(Y), and that of those of (4) which are prime to B is ©(B),
as shown above. Hence the number of the elements of (6) which are
" prime to AB is equal to D(A)-P(B); so that
@ QAB) =2 () - @ (),

if (%, B)=R. .

3°. Lastly let A be an ideal of R, and let Ly, By, ...... , Py be
the different maximal ideals of ¢t which contain €. Then, as shown

in § 19, A may be resolved into the product of ideals prime to one
another as follows :

% = Q’Ilgrz e QIV,

where %, %A, ...... , Ay are ideals containing powers of Py, By, ......
By respectively. Since the factors are prime to one another, from 1°
and 2° we have

D) = D) DA ... D)
- n@m(l_@) n@xz)(l._@lz_)) (@)1~ n(_;g:)_)

= n(N) (I_n(illsl) )(I-n(illsg) ) (I—@) ,
since 7 (A) = 7 (%) # (Wp)...n( W) [§5, Cor.].

Thus we have the formula:

) = Yn @0 (I—n(ﬂls,) )(I-—n(%z) ) (I—n@ﬁ) ,

where By, Bo, ceeen , By are all the different maximal ideals whiéh
contain 2.

§ 22. Fermat's theorem. Zet W be an ideal of a proper ving R,
and p any element of R whick is prime to N, then the congruence
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e =1 (mod. %)
holds good.

Lemma. If an element p of N is prime to U, then every element
X of R for which
pX=o (mod. )
is congruent (mod. %) to o. .
For, if pX =4, A being an element of A, we have

((:(’X): X)) = ((A)’ Xg[);

and evidently ((4), XQI) is contained in 9. Therefore (X) is contained
in 9.

Reterning to the theorem let

(I) 01, P25 29, Pp. (p:‘b(m))

be a set- of the incongruent (mod. ) elements of R which are prime
to U, and p an element of (1). Then the g products

while

(2) PP1s PP ++5 PP

are incongruent (mod. %) to one another; because pp;=pp; (mod. )
would involve p,=p; (mod. A) [by lemma]. Moreover they are all
prime to ¥ [¢f. §4]. Therefore set (2), each term being taken modulo
N, is identical with (1) except as regards the sequence. So that

P10y -ev pup* = 0101 oo pp (mod. ),
or 01z ve pp(p¥—1) =0  (mod. A).

Whence it follows by lemma that
pt—1=o0 (mod. %),
Since Py, P2y cveres , pv. and consequently their product are prime to .

Divisibity of Ideals.

§23. Let A and B be two ideals of a proper ring R; let Py,
Po, ..., v be the distinct maximal ideals of ¢ which contain A, and
Q4 Qy, «»+, Yy those which contain B. And suppose that

%1 = Dfp SB.’. =DZ: ceey q;)\—_—-a)\ (léy’ ,l)’

but that no others are equal, viz. that the 4 ideals P, B, ..., Po are
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the maximal ideals which contain both % and 8. Then % and B
may be expressed in the forms
A=A ... X,
B=9,95... By,
where %, ..., %, By, ..., By are ideals which contain powers of Py, ...,
By, Dy, o0, Qp respectively. Again they may be rewritten as follows:
QI = %1%2 ren 9«[)\%[,
% = %1%2 voe %)\Qy,

where

A =R or 9[)‘.(.12[)\.*_2 ves g[);
according as A=y or <,
and ‘ B'=R or 58)@.1%)\_*_2...5\,3@

according as A= p or < g Then evidently

(&,8) =R,
and O, B8, ... B)) = R.

By successive use of § 6, theorem we have

Q& B) =, B,B; ... 6,38
= (A, BB, ... B )N, B)
= (UL, ... LW, BB, ... B)
= (2.2, B8, ... )W, B,B; ... B))
= U ... %, B85, ... B,)
= U, ... ), B, ... A, ByBs ... By)
= (A, BOAY; ... Xy, By, ByBs ... B, ... Ay, BB ... /)
= (Ay, BYAYL, ... Xy, BsBs ... By).
Similarly
(s ... W, ByBs ... Br)
=, B)Ys ... W, Bs ... Br);

and so on. Finally we have the
THEOREM :
&, B) = (911; 2}1)(2[2, %2) (mm %A)-

§24. We now suppose that ¥ contains 8. Then A=y =g, and
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A= (ﬂI: %) = (2[1: '%1)(9'[21 %2) (g[vr %v)’
while A = AN, ... A,

Theréfore by § 19, theorem we have

(911, %1) = Slrl; (%2, %2) = 2[2; veey
%, 8,) = %,.

Namely A, A,, ..., A, contain By, By, ..., By respectively.
If moreover #(P2)=[#(P;)]?, the ideals A; and B, are powers of
B, [§ 10. Cor.], while ; contains B,. And hence ¥, divides B,.

Therefore we have the
TreorEM: ZLet Py, By, ooy Py e the maximal ideals of a proper
ving R whick contain a given ideal N of R. If

() = [P

Jor eack i=1,2,...v, W divides every ideal of N whick is contained in .

Cor.1. A maximal ideal P of a proper ring R, for which
n(P?)=[#(P))?, divides every ideal of R which is contained in P,

In other words, if an ideal % of N is not divisible by a maximal
ideal %, for which #(P)=[~(P)]’, A is prime to P, ie, (A, P)=R.

Cor. 2, Under the same assumption for P as in Cor. 1, if an ideal
oA is- contained in P° but not in P, then

A =P or P,

where (M, P) = N.

For, P is the only maximal ideal containing 93¢, and hence P°
divides 9 which is contained in it [by the theorem]: so that %=L°M,
If MWE=R, (M, P) must=R; because otherwise M would be divisible

by 9B [by Cor, 1], and consequently A would be divisible by P+,
contrary to the assumption that 9( is not contained in et

Cor. 8. Under the same assumption for P, if the product of two
ideals is divisible by %, at least one of the factors is divisible by PB.
For, if AB = PO, then evidently
AB, P) = P (Q, A).

Hence, if 8 is not divisible by B, (B, P)=N [by Cor. 1], and conse-
quently
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A= PO, A),

which shows that ¥ is divisible by .

§ 25. Consider a proper ring R of which every maximal ideal
B is subject to the condition

n(P) = (PP

In R an ideal divides all ideals which are contained in it [by the last
theorem]. The ideal (%, B) derived from two ideals % and B divides
both % and B, while being divisible by each of the ideals which con-
tain both % and B: so that (¥, B) is a common divisor of A and B,
while being divisible by any other common divisor.

Also the cross-cut ® of % and B is a common multiple of A and
B, while dividing any other common multiple of % and B.

Moreover between (¥, B) and D the relation

,B)D =98
holds good.
For, put :
A=A BW, B=(9B)Y.
Then

ABA B =AB =A' B,
and hence (¥, B) A’ B’ is contained in both A and B, and consequently

in ©. Therefore the product AB = (A, B) A’ B’ is contained in
(%, B) D, while containing (A, B) D: so that AB = (%, B) D.

Composite and Prime Ideals.

Condition for the Unique Resolvability' of an Ideal
into Prime Factors,

§ 26. Every ideal % of a proper ring R, which is different from
R, has at least two distinct divisors, namely R and N. If it has no
other divisors distinct from these, it is called a prime ideal: if other-
wise, it is said to be composite.

Let P be a maximal ideal of a proper ring R. Then there are
four cases to consider.

1 If an ideal can be expressed as the product of a finite number of prime ideals, and
moreover if this can be done in only one way, the ideal is said to be uniguely resolvable
into prime factors.

Convention: When Pe=a+1, P being a prime ideal, the ideal Jo is considered as
not uniquely resolvable, even if divisible by no other prime ideal than .
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(1) Suppose that P? = B. Then P apparently seems composite,
but here is considered as prime, because having no other divisors dis-
tinct from R and P. And evidently i divides eack ideal of R whick
s contained in it. For, if an ideal A is contained in P, A is divisible
by an ideal containing a power of P [§ 19]. But, since L=, the
latter coincides with 8. Therefore ¥ is divisible by .

(2) The case in which 2 = the o-ideal.

In this case all ideals are contained in P [§ 4, 2nd theorem], and
the product of any two of them is the o-ideal. Hence e ideals,
except the o-ideal, are all prime.

(3) Suppose that P*= 0, and that there are ideals of R, distinct
from B and P?, which contain B? viz. that = (B > [# (P)} {¢  § 8]

Take an ideal ¥ of ‘N, which is distinct from §* and contains P°.
If A were composite, all its divisors would contain % and consequently
B2 So that they would be contained in B [§ 4, 2nd theorem], and’
the ideal o, which is the product of them, would be contained in P2,
contrary to assumption. Therefore every ideal of N, which is distinct
Jrom B and contains B* is prime.

Next let M be an ideal contained in P, and

SR’ SB’ §I§1, S’BZ’ sy %m m

a chief-composition-series of R with last term M. If any one of the
quotient rings

LB B

—?';, E—, ceey ED(}

is a field, M may be resolved into two factors prime to each other
[§ 16, theorem], and hence is composite. The contrary case will be
left for future investigation,

(4) Lastly we suppose that there is no ideal, distinct from P
and % which contains $? and consequently is contained in . This
is equivalent to the supposition that #(P?) = [#(B)], [ §8].

Then B is prime, but every ideal of R whick is contained in B is
compostte.

For, since #(P)=[#(P)], B must be prime; and every "ideal
contained in P is divisible by P [§ 24, Cor. 1].

§27. TueoreMm: Let N be a composite ideal of a proper ving R,
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and By, Poy oo, Py e distinct maximal ideals' of R whick contain N.
1° If '
(i) = [P (for every i=1,2,...,),

N can be resolved into the product of a finite number of prime ideals ;

2° ¢
) = (Y (Jor e =),

Sor every exponent e

this can be done tn only one way.
For % may be expressed in the form

91 = 9119[2 coe eg,

where %, U, ..., A, are ideals which contain powers of Py, By, ..., B,
respectively [§ 19, theorem]. But #(P2)=[~(P,)]* for every i. There-
fore the maximal ideals are all prime [§ 26] and moreover ¥, is equal
to a power of P;[§10,Cor.]. And hence U can be resolved into
prime factors, as

A = PaPsz ... Pyov.

Taking up the second it is clear that a prime ideal dividing A
must be one of P, By, ..., Py, and also clear that if two resolutions
are possible the same prime factors must occur in both; otherwise
Cor. 3 of §24 would be contradicted: so that the only admissible
supposition is

BierPore ... Pyov = P’ Por' ... By,

where none of the exponents ¢/s and ¢'’s is zero. Then, by §.19,
theorem, we have

Pyoo = %{'ﬁ (z: I,2,...,Y),
whence by hypothesis
[P = [#(B] (=12, ...,9),

and hence
& = ¢€; (i=1,2,..., v);
because #($;) > 1. So that the two resolutions are identical.

§ 28. Let R be a proper ring subject to the conditions :

1 N.B.. The number of the maximal ideals which contain a given ideal is always

finite, as shown already.
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1. The product of two elements.of R is not equal to o, unless
at least one of the factors is equal to 0; ‘

2. Every ideal of R, distinct from the o-ideal, is of finite norm.

THEOREM : [n order that every composite ideal of the ring R can
be vesolved into prime factors always and in only one way, it is neces-
sary and sufficient that for every maximal ideal P of R and for every
exponent ¢ the equation

AP = [}

should hold.

It is clear by the last theorem that the condition is sufficient for
unique resolvability. Hence we need only show that it is necessary.

Let § be a maximal ideal of R. Then, by condition (1), P* is
never the o-ideal, and consequently is of finite norm. And moreover
PB? must be distinct from P; because otherwise the resolution of a
power of P would not be unique by our convention [p. 145]. Therefore

() = [(P)]",

where # is 0 or a finite positive integer [, §§ 7,8].

If » == 1, there are ideals, distinct from ¢ and P?, which contain
% and consequently are contained in 9 ; and they are all prime [§ 25].
And hence we see from the results obtained in §§ 11~15 that the
powers P? or P° may be resolved into prime factors in at least two
ways. Therefore, in order that a composite ideal may be uniquely
resolvable into prime factors, it must be that #(%) = (#(P)]%, viz.
there is no ideal, except P and P2, which contains P2

Next $° must == Pt for every exponent ¢; because otherwise
P can be resolved into prime factors in .more than one way according
to our convention

Therefore, as shown in § 9, R and the powers

R, B, B, B, ...

must give a chief-composition-series of R: so that #(P) must =
[2(R)] for every index e.

§29. Let % be an ideal containing a power of a maximal ideal
B, for which #(P*)=[#(P)]*. Then A is equal to a power of P, and
therefore suppose that A=P=.

If P° 3= Pt for every index ¢ =, A is uniquely resolvable into
prime factors.

If, on the contrary, = P**' for a certain index ¢=n, the
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resolution ot 9 is not unique according to our convention [ p. 145,
foot note]. If, however, we regard 9 as uniquely resolvable also in
the latter case, the condition for the unique resolvﬁbility requires to
be changed and stated as follows:

() = [#(P)]!
for each maximal ideal of the ring.

§ 30. It would be of interest to find all possible resolutions of
an ideal resolvable into prime factors in two or more than two ways;
but this problem must be left for future investigation, with the mere
statement that, by application of the theorem of § 19 and a few others,
the problemi may be reduced to an investigation of resolutions of ideals
which contain powers of a maximal ideal {5 for which #(P2)> [2(R)]%

Novembér, 1917.




