On Congruences. II.

By

Masazo Sono.

(Received Dec. 26, 1917).

CONTENTS.

- şş
- 1, 2 Proper ring.
- 3-6 Multiplication of ideals: ideals prime to each other.
- 7, 8 Ideals containing the square of a maximal ideal.
- 9, 10 Powers of maximal ideals, (the case in which there is no ideal, distinct from \Re and \Re^2 , which contains \Re^2).
- 11-15 (The case in which there are ideals, distinct from B and B², which contain B²).
- 16—20 Ideals of a proper ring in which every ideal, distinct from the o-ideal, is of finite norm: resolution of an ideal into factors prime to one another.
- 21, 22 Φ -function: Fermat's theorem.
- 23-25 Divisibility of ideals.
- 26-30 Composite and prime ideals: condition for the unique resolvability of an ideal into prime factors.

In the paper¹ entitled "On Congruences", the author has shown in the case of groups and rings the possibility and the way of changing the definition of equality, a given group or a given ring always remaining the same after the change; and a fundamental conception of congruences has thereby been established. Further the author has attacked some of the properties of rings and of ideals, which are necessarily introduced in a discussion of congruence in a ring.

The present paper presents a further investigation of the pro-

¹ These Memoirs, 2, 203 (1917).

perties of rings and ideals, and of certain important relations existing among the ideals of a ring.

For the sake of brevity the former paper is herein denoted by "Congr."

Proper Ring.

§ 1. Definition. If a ring \Re contains an element U such that $R \cdot U = R$ for every element R of \Re , it is called a *proper* ring.

In the usual definition of a number-ring, such as a ring of an algebraic number-field defined by Hilbert,¹ an "Ordnung" by Dedekind² or an "Integritätsbereich" by Kronecker,³ unity is an element. So that it seems proper that an abstract ring also should be defined so as to contain an element corresponding to I of a number-ring. The author, however, in defining a ring abstractly in the former paper⁴, omitted this condition, because, as seen there, it was more advantageous in several respects, and in particular called a ring which contained an element corresponding to I a *proper* ring.

The present paper is limited in the main to a discussion of the ideals of proper rings.

Let RU=R and RU'=R for every element R of a ring \Re . Then if we put R=U' in the first equation and R=U in the second, we have

whence

$$U' U = U', UU' = U;$$

 $U = U'.$

This element U is called the *unit element*⁵ of the proper ring.

Let U be an unit element of \Re . Then

$$(U+U+...n \text{ terms}) R = UR+UR+... (n \text{ terms})$$
$$= R+R+... (n \text{ terms}).$$

Putting

$$U+U+\dots(n \text{ terms}) = n$$

we have

$$n \cdot R = R + R + \dots (n \text{ terms}).$$

¹ Hilbert, Jahresber. D. Math. Ver. 4, 237 (1894/95). The word *field* here is used to mean the German Körper.

² Dirichlet-Dedekind, Vorlesungen über Zahlentheorie, 4ed., § 170.

³ Kronecker, Grundzüge einer arithmetischen Theorie der algebraischen Grössen, § 5.

⁴ Congr., § 1.

⁵ Thus named because of corresponding to I of a number-ring.

Therefore, without misunderstanding, we may denote the unit element by "I," and moreover may treat the elements

1, 2, 3, ...

like ordinary integers.

§ 2. Let \mathfrak{A} be a maximal ideal¹ of a ring \mathfrak{R} . If \mathfrak{R} is proper, the quotient ring² $\mathfrak{R}/\mathfrak{A}$ is a field.³ If, especially, the order of $\mathfrak{R}/\mathfrak{A}$ is finite, it is a power of prime.⁴

N.B. The number of different elements of a ring, in this paper, is called the *order* of the ring.

Multiplication of Ideals. Ideals Prime to Each Other.

§ 3. The concept of multiplication of ideals is introduced for the further investigation of important relations existing among the ideals of a ring.

Definition.⁵ By the product \mathfrak{AB} of two ideals, \mathfrak{A} and \mathfrak{B} , of a ring is meant the aggregate of all possible elements, which are obtained, if we multiply an element A of \mathfrak{A} by an element B of \mathfrak{B} and add an arbitrary number of such products, i.e. the aggregate of all possible elements of the form ΣAB .

As immediate consequence of the definition we have the following propositions :

The product of two ideals of a ring \Re is also an ideal of \Re .

If $\mathfrak{A} = \mathfrak{A}'$ and $\mathfrak{B} = \mathfrak{B}'$, then $\mathfrak{A}\mathfrak{B} = \mathfrak{A}'\mathfrak{B}'$.

The three laws, commutative, associative and distributive, hold, viz.

$$\mathfrak{AB} = \mathfrak{BA},$$

 $(\mathfrak{AB}) \mathfrak{C} = \mathfrak{A} (\mathfrak{BC}),$
 $(\mathfrak{A}, \mathfrak{B}) \mathfrak{C} = (\mathfrak{AC}, \mathfrak{BC}),$

where $(\mathfrak{A}, \mathfrak{B})$ denotes the ideal derived from \mathfrak{A} and \mathfrak{B} .⁶

The product \mathfrak{AB} is contained in both \mathfrak{A} and \mathfrak{B} , and consequently in their cross-cut.⁷

6 Congr., § 10, p. 214.

¹ Congr., § 9, p. 214.

² Loc. cit. p. 213.

³ Loc. cit. & 15.

⁴ Loc. cit. § 18.

 $^{^5}$ We adopted the definition as usually given for multiplication of ideals in a numberring.

⁷ Loc. cit. p. 215.

If \mathfrak{A} is an ideal of a proper ring \mathfrak{R} , then $\mathfrak{AR}=\mathfrak{A}$.

An ideal \mathfrak{A} is said to be *divisible* by another ideal \mathfrak{B} , if an ideal \mathfrak{C} can be chosen so that $\mathfrak{A}=\mathfrak{BC}$.

This ideal \mathfrak{C} is usually called the quotient of \mathfrak{A} by \mathfrak{B} , but it is entirely different from the quotient ring defined by the author,¹ and of course the notation $\frac{\mathfrak{A}}{\mathfrak{B}}$ never denotes the result of division (the inverse operation of multiplication) of \mathfrak{A} by \mathfrak{B} . In this paper to avoid ambiguity the word "quotient" is used to denote the quotient ring, as defined, but never the result of division.

§ 4. Definition.² Let \mathfrak{A} and \mathfrak{B} be two ideals of a proper ring \mathfrak{R} . If $(\mathfrak{A}, \mathfrak{B}) = \mathfrak{R}$, the ideals \mathfrak{A} and \mathfrak{B} are said to be *prime to each other*.

THEOREM: If ideals \mathfrak{A}_1 , \mathfrak{A}_2 ,, \mathfrak{A}_n of a proper ring \mathfrak{R} are all prime to another ideal \mathfrak{B} of \mathfrak{R} , their product $\mathfrak{A}_1\mathfrak{A}_2$ \mathfrak{A}_n is also prime to \mathfrak{B} . (Some of the \mathfrak{A} 's may be equal.)

For, since $(\mathfrak{A}_1, \mathfrak{B}) = \mathfrak{R}$ and $(\mathfrak{A}_2, \mathfrak{B}) = \mathfrak{R}$, we have

$$(\mathfrak{A}_{1}\mathfrak{A}_{2},\mathfrak{B}) = (\mathfrak{A}_{1}\mathfrak{A}_{2},\mathfrak{R}) = (\mathfrak{A}_{1}\mathfrak{A}_{2},(\mathfrak{A}_{1},\mathfrak{B})\mathfrak{B})$$
$$= (\mathfrak{A}_{1}\mathfrak{A}_{2},\mathfrak{A}_{1}\mathfrak{B},\mathfrak{B}^{2}) = (\mathfrak{A}_{1}(\mathfrak{A}_{2},\mathfrak{B}),\mathfrak{B}^{2})$$
$$= (\mathfrak{A},\mathfrak{R},\mathfrak{B}^{2}) = (\mathfrak{A}_{1},\mathfrak{B}^{2}),$$

which shows that $(\mathfrak{A}_1 \mathfrak{A}_2, \mathfrak{B})$ contains \mathfrak{A}_1 , while containing \mathfrak{B} . Therefore $(\mathfrak{A}_1 \mathfrak{A}_2, \mathfrak{B}) = \mathfrak{R}$, viz. the product $\mathfrak{A}_1 \mathfrak{A}_2$ is prime to \mathfrak{B} .

Since \mathfrak{A}_3 is prime to \mathfrak{B} , similarly we can show that the product $\mathfrak{A}_1\mathfrak{A}_2\mathfrak{A}_3$ is also prime to \mathfrak{B} ; and so on. Finally we have the theorem.

Cor. If two ideals \mathfrak{A} and \mathfrak{B} of a proper ring are prime to each other, their powers are also prime to each other.

For, from $(\mathfrak{A}, \mathfrak{B}) = \mathfrak{R}$ it follows that $(\mathfrak{A}^m, \mathfrak{B}) = \mathfrak{R}$, whence $(\mathfrak{A}^m, \mathfrak{B}^n) = \mathfrak{R}$.

THEOREM: If \mathfrak{P} is a maximal ideal³ of a proper ring \mathfrak{R} , it contains every ideal, except \mathfrak{R} , which contains a power of \mathfrak{P} .

For, if an ideal \mathfrak{B} of a proper ring \mathfrak{R} is not contained in \mathfrak{P} , then $(\mathfrak{P}, \mathfrak{B}) = \mathfrak{R}$ and hence $(\mathfrak{P}^e, \mathfrak{B}) = \mathfrak{R}$ for every index *e*. Therefore \mathfrak{B} can not contain a power of \mathfrak{P} unless $\mathfrak{B} = \mathfrak{R}$; and the theorem holds true.

If, particularly, for a certain index e the power \mathfrak{P}^e becomes the

¹ Congr., § 9.

² If $(\mathfrak{A}, \mathfrak{B}) = \mathfrak{R}$, \mathfrak{A} and \mathfrak{B} have no common divisor except \mathfrak{R} , but the converse is not necessarily true, as will be seen later. Hence the definition in this respect is somewhat extended.

³ Congr., § 9, p. 214.

0-ideal, the ideal consisting of the element 0 alone, \mathfrak{P} contains all ideals of \mathfrak{R} ; because every ideal contains the element 0.

§ 5. THEOREM: If two ideals of a proper ring are prime to each other, their product is equal to their cross-cut.¹

Proof. Let \mathfrak{A} and \mathfrak{B} be two ideals of a proper ring \mathfrak{R} , and \mathfrak{D} the cross-cut of \mathfrak{A} and \mathfrak{B} . And moreover $(\mathfrak{A}, \mathfrak{B}) = \mathfrak{R}$. Then the product \mathfrak{AD} is contained in the product \mathfrak{AB} , and the product \mathfrak{BD} also in \mathfrak{AB} . Consequently the ideal $(\mathfrak{AD}, \mathfrak{BD})$ derived from the products \mathfrak{AD} and \mathfrak{BD} is contained in \mathfrak{AB} . But

$$(\mathfrak{AD},\mathfrak{BD})=(\mathfrak{A},\mathfrak{B})\mathfrak{D}=\mathfrak{RD}=\mathfrak{D}.$$

Hence \mathfrak{D} is contained in \mathfrak{AB} , while containing \mathfrak{AB} : so that we have $\mathfrak{AB} = \mathfrak{D}$.

N.B. The last theorem evidently holds good also when one of the ideals is the ring itself.

Cor. If two ideals \mathfrak{A} and \mathfrak{B} of a proper ring \mathfrak{R} are prime to each other and moreover if their norms² under \mathfrak{R} are both finite, then the norm of their product is equal to the product of their norms, viz.

$$n(\mathfrak{AB}) = n(\mathfrak{A}) \cdot n(\mathfrak{B}).$$

For, let \mathfrak{D} be the cross-cut of \mathfrak{A} and \mathfrak{B} , then $\mathfrak{AB} = \mathfrak{D}$, and the norm of \mathfrak{D} is equal to the product of the orders of the quotient rings $\frac{\mathfrak{R}}{\mathfrak{A}}$ and $\frac{\mathfrak{A}}{\mathfrak{D}}$. But $\frac{\mathfrak{A}}{\mathfrak{D}}$ is of the same type as $\frac{\mathfrak{R}}{\mathfrak{B}}$, since $(\mathfrak{A}, \mathfrak{B}) = \mathfrak{R}$ [Congr., § 11, Theorem]. Therefore the order of $\frac{\mathfrak{A}}{\mathfrak{D}}$ is equal to that of $\frac{\mathfrak{R}}{\mathfrak{B}}$, which is the norm of \mathfrak{B} . Hence we have

$$n(\mathfrak{AB}) = n(\mathfrak{D}) = n(\mathfrak{A}) \cdot n(\mathfrak{B}).$$

THEOREM: Let $\mathfrak{A}_1, \mathfrak{A}_2, \ldots, \mathfrak{A}_n$ be *n* ideals of a proper ring \mathfrak{R} which are prime to one another. Then their product $\mathfrak{A}_1 \mathfrak{A}_2, \ldots, \mathfrak{A}_n$ is equal to their cross-cut.

Assume that the theorem holds true for any given value n-1. Let \mathfrak{D}' be the cross-cut of n-1 ideals $\mathfrak{A}_1, \mathfrak{A}_2, \ldots, \mathfrak{A}_{n-1}$, then we have

$$\mathfrak{D}' = \mathfrak{A}_1 \mathfrak{A}_2 \dots \mathfrak{A}_{n-1},$$

which is prime to \mathfrak{A}_n [§ 4, theorem]. Therefore the product $\mathfrak{A}_1\mathfrak{A}_2$ $\mathfrak{A}_n = \mathfrak{D}'\mathfrak{A}_n$ is equal to the cross-cut of \mathfrak{D}' and \mathfrak{A}_n [by the last

¹ Congr., § 10, p. 215.

² Loc. cit. § 9, p. 213.

theorem], which is evidently the cross-cut of the n ideals. Thus the theorem must hold true also for n. But it holds true for two ideals prime to each other; therefore it is universally true.

Cor. The product of distinct maximal ideals of a proper ring is equal to their cross-cut.

Cor. If ideals $\mathfrak{A}_1, \mathfrak{A}_2, \ldots, \mathfrak{A}_n$ of a proper ring are prime to one another, the product $\mathfrak{A}_1^{e_1}\mathfrak{A}_1^{e_2}\ldots\mathfrak{A}_n^{e_n}$ is equal to the cross-cut of $\mathfrak{A}_1^{e_1}, \mathfrak{A}_2^{e_2}, \ldots, \mathfrak{A}_n^{e_n}$.

For, since the \mathfrak{A} 's are prime to one another, their powers are also prime to one another: so that the Cor. follows from the last theorem.

§ 6. THEOREM: If two ideals \mathfrak{A} and \mathfrak{B} of a proper ring \mathfrak{R} are prime to each other, then

$$(\mathfrak{C},\mathfrak{A})(\mathfrak{C},\mathfrak{B})=(\mathfrak{C},\mathfrak{AB}),$$

where & is an ideal of R.

For
$$(\mathfrak{C},\mathfrak{A})(\mathfrak{C},\mathfrak{B}) = (\mathfrak{C}^2,\mathfrak{C}\mathfrak{A},\mathfrak{C}\mathfrak{B},\mathfrak{A}\mathfrak{B})$$

= $(\mathfrak{C}^2,\mathfrak{C}(\mathfrak{A},\mathfrak{B}),\mathfrak{A}\mathfrak{B}) = (\mathfrak{C}^2,\mathfrak{C}\mathfrak{R},\mathfrak{A}\mathfrak{B})$ [:: $(\mathfrak{A},\mathfrak{B}) = \mathfrak{R}$]
= $(\mathfrak{C},\mathfrak{A}\mathfrak{B}),$

since $\mathfrak{GR} = \mathfrak{G}$, and \mathfrak{G}^2 is contained in \mathfrak{G} .

The aggregate of all possible products which are obtained by multiplying a given element ρ of a ring \Re by an element of \Re is an ideal of \Re , which is completely determined by the element ρ . When \Re is proper, according to the usual nomenclature and notation, we call this ideal a *principal ideal* and denote it by (ρ). Moreover, the product of two ideals (ρ) and \Re is denoted by ρ .

Cor. If two ideals \mathfrak{A} and \mathfrak{B} of a proper ring \mathfrak{R} are prime to each other, then

$$((\rho), \mathfrak{A})((\rho), \mathfrak{B}) = ((\rho), \mathfrak{AB}),$$

where ρ is an element of \Re .

It follows, from the theorem, that, if an ideal \mathfrak{M} of a proper ring \mathfrak{R} contains the product of two ideals, \mathfrak{A} and \mathfrak{B} , of \mathfrak{R} prime to each other, \mathfrak{M} also contains the product of two ideals $((M), \mathfrak{A})$ and $((M), \mathfrak{B})$, where M is an element of \mathfrak{M} arbitrarily chosen. But the product of two ideals prime to each other is equal to their cross-cut [§ 5, Theorem]; therefore the proposition may be rewritten as follows:

If an ideal \mathfrak{M} of a proper ring \mathfrak{R} contains the cross-cut of two ideals, \mathfrak{A} and \mathfrak{B} , of \mathfrak{R} prime to each other, \mathfrak{M} also contains the cross-cut of two ideals $((M), \mathfrak{A})$ and $((M), \mathfrak{B})$, where M is an element of \mathfrak{M} .

Ideals Containing the Square of a Maximal Ideal.

§ 7. Let \mathfrak{P} be a maximal ideal of a proper ring \mathfrak{R} . Then, as shown in § 4, \mathfrak{P} contains every ideal containing a power of \mathfrak{P} ; and hence evidently a chief-composition-series of \mathfrak{R} containing a power of \mathfrak{P} as a term has \mathfrak{P} for the second term.

As may be easily shown, there are two existent cases wherein \mathfrak{P}^2 either does or does not coincide with \mathfrak{P} ; but we now suppose that \mathfrak{P}^2 is not equal to \mathfrak{P} .

Let \mathfrak{A} be an ideal of \mathfrak{R} , distinct from \mathfrak{P} , which contains \mathfrak{P}^2 and consequently is contained in \mathfrak{P} . (Of course \mathfrak{A} may be \mathfrak{P}^2 ; if there is no ideal, except \mathfrak{P} and \mathfrak{P}^2 , containing \mathfrak{P}^2 , we need only take $\mathfrak{A}=\mathfrak{P}^2$.) Then the product of any two elements of \mathfrak{P} must belong to \mathfrak{A} ; because it belongs to \mathfrak{P}^2 , which is contained in \mathfrak{A} .

We now proceed to find a complete set¹ of incongruent (mod. \mathfrak{A}) elements of the ideal ((π), \mathfrak{A}), where π is an element of \mathfrak{P} which does not belong to \mathfrak{A} .

Every element of $((\pi), \mathfrak{A})$ is given by the form $\pi R + A$, where R and A are elements of \mathfrak{R} and \mathfrak{A} respectively.

If an element $\pi R + A$ of $((\pi), \mathfrak{A})$, and consequently πR , belongs to \mathfrak{A} , R must belong to \mathfrak{P} ; and conversely. For if it were $R \not\equiv 0$ (mod. \mathfrak{P}), then, since \mathfrak{R} is proper and \mathfrak{P} is a maximal ideal of \mathfrak{R} , we should have

$$((R), \mathfrak{P}) = \mathfrak{R};$$

consequently two elements R_i and P could be chosen from \Re and \Re respectively so that

$$RR_1 + P = 1$$
.

Multiplying both sides of the last equation by π we have

$$\pi = \pi R R_1 + \pi P \equiv 0 \pmod{\mathfrak{A}};$$

because $\pi R \equiv 0 \pmod{\mathfrak{A}}$ by hypothesis, and $\pi P \equiv 0 \pmod{\mathfrak{A}}$. This contradicts the assumption that $\pi \equiv 0 \pmod{\mathfrak{A}}$; therefore if $\pi R + A \equiv 0 \pmod{\mathfrak{A}}$, $R \equiv 0 \pmod{\mathfrak{A}}$. And the converse is evidently true.

¹ Let \mathfrak{S} be a subring of a ring \mathfrak{R} [cf. Congr., § 6], and \mathfrak{M} an ideal of \mathfrak{R} which is contained in \mathfrak{S} . A set of elements of \mathfrak{S} is called a complete set of incongruent (mod. \mathfrak{M}) elements of \mathfrak{S} , when the elements of the set are all incongruent (mod. \mathfrak{M}) and every element of \mathfrak{S} is congruent (mod. \mathfrak{M}) to one element of the set. In other words, it is a set of distinct elements of the quotient ring $\frac{\mathfrak{S}}{\mathfrak{M}}$ [cf. Congr., § 9].

Next, if two elements $\pi R + A$ and $\pi R' + A'$ of $((\pi), \mathfrak{A})$, are congruent (mod. \mathfrak{A}) to each other, viz.

	•	$\pi R + A \equiv \pi R' + A'$	(mod. X),
then		$\pi(R-R')\equiv 0$	$(\text{mod.} \mathfrak{A});$
whence		$R-R'\equiv 0$	(mod. ¥).
or		$R \equiv R'$	(mod. ¥).

Conversely, from $R \equiv R' \pmod{\mathfrak{P}}$ it evidently follows that $\pi R + A \equiv \pi R' + A' \pmod{\mathfrak{A}}$. Therefore we have the

THEOREM: Let

 $ho_1,
ho_2, \dots$

be a complete set of incongruent (mod. \mathfrak{P}) elements of \mathfrak{R} . Then the products

 $\pi \rho_1, \pi \rho_2, \ldots,$

being taken modulo \mathfrak{A} , form a complete set of incongruent (mod. \mathfrak{A}) elements of $((\pi), \mathfrak{A})$, that is, give the quotient ring $((\pi), \mathfrak{A})/\mathfrak{A}$. (\mathfrak{A} and π are the said ideal and element).

Cor. There is no ideal of \Re , except $((\pi), \mathfrak{A})$ and \mathfrak{A} , which is contained in $((\pi), \mathfrak{A})$ and contains \mathfrak{A} .

For, if β is an element of $((\pi), \mathfrak{A})$ which does not belong to \mathfrak{A} , then

 $\beta \equiv \pi \rho \pmod{\mathfrak{A}},$

where ρ is a certain element of the set ρ_1 , ρ_2 ,, which is not congruent (mod. \mathfrak{P}) to 0. Since $\rho \equiv 0 \pmod{\mathfrak{P}}$, we have

 $((\rho), \mathfrak{P}) = \mathfrak{R}.$

Choosing two elements R and P from \Re and \Re respectively so that $\rho R + P = 1$, we get

$$\pi = \pi \rho R + \pi P \equiv \beta R \pmod{\mathfrak{A}}.$$

Therefore the element π , and consequently the ideal $((\pi), \mathfrak{A})$, is contained in the ideal $((\beta), \mathfrak{A})$; and hence we have the Cor.

Particularly if the quotient ring \Re/\Re is of finite order, the two quotient rings \Re/\Re and $((\pi), \mathfrak{A})/\mathfrak{A}$ are of the same order.

§ 8. Let

 $\mathfrak{R}, \mathfrak{P}, \mathfrak{A}_1, \mathfrak{A}_2, \ldots, \mathfrak{A}_n, \mathfrak{P}^2$

be a chief-composition-series¹ of a proper ring \Re with the last term \Re^2 .

And let	ρ be an e	lement of	ን which does	not belong to	¥;
"	π	,,	Ŗ	,,	\mathfrak{A}_{1} ;
,,	a ₁	,,	\mathfrak{A}_1	,;	\mathfrak{A}_2 ;
"	a_2	1)	\mathfrak{A}_2	,,	$\mathfrak{A}_{\mathfrak{z}}$;
	•••••	•••••			••
,,	α_n	"	\mathfrak{A}_n	,,	₽².

Then, by the last theorem, we have

$$\begin{aligned} \mathfrak{A}_{n} &= ((a_{n}), \mathfrak{P}^{2}), \\ \mathfrak{A}_{n-1} &= ((a_{n-1}), \mathfrak{A}_{n}) = ((a_{n-1}), (a_{n}), \mathfrak{P}^{2}), \\ \mathfrak{A}_{1} &= ((a_{1}), \mathfrak{A}_{2}) = ((a_{1}), (a_{2}), \dots, (a_{n}), \mathfrak{P}^{2}), \\ \mathfrak{P} &= ((\pi), \mathfrak{A}_{1}) = ((\pi), (a_{1}), (a_{2}), \dots, (a_{n}), \mathfrak{P}^{2}), \\ \mathfrak{R} &= ((\rho), \mathfrak{P}) = ((\rho), (\pi), (a_{1}), \dots, (a_{n}), \mathfrak{P}^{2}), \end{aligned}$$

And the quotient rings

$$\frac{\mathfrak{P}}{\mathfrak{A}_1}$$
, $\frac{\mathfrak{A}_1}{\mathfrak{A}_2}$, ..., $\frac{\mathfrak{A}_n}{\mathfrak{P}^2}$

are of the same type, being no field [cf. Congr., § 20].

If, especially, the quotient \Re/\Re is of finite order, the above quotient rings are all of the same order as \Re/\Re ; and the norm² of \Re^2 is equal to $[n(\Re)]^{n+2}$.

Therefore if $n(\mathfrak{P}^2) = [n(\mathfrak{P})]^2$, an ideal of \mathfrak{R} which contains \mathfrak{P}^2 is either \mathfrak{P} or \mathfrak{P}^2 .

Powers of Maximal Ideals.

§ 9. Let \mathfrak{P} be a maximal ideal of a proper ring \mathfrak{R} ; and again suppose that \mathfrak{P}^2 is distinct from \mathfrak{P} . Then there are two existent cases wherein \mathfrak{R} either does or does not possess an ideal containing \mathfrak{P}^2 and distinct from both \mathfrak{P} and \mathfrak{P}^2 .

In the second case we have

$$\mathfrak{P} = ((\pi), \mathfrak{P}^2),$$
$$\mathfrak{P}^n = ((\pi^n), \mathfrak{P}^{n+1}),$$

and

¹ Congr. §13. p. 220.

² Loc. cit. §9.

where π is an element of \mathfrak{P} which does not belong to \mathfrak{P}^2 , and n is a positive integer.

For, as seen in § 6,

$$\mathfrak{P}=((\pi),\mathfrak{P}^2),$$

and

$$\mathfrak{P}^2 = ((\pi), \mathfrak{P}^2) \mathfrak{P} = (\pi \mathfrak{P}, \mathfrak{P}^3)$$

= $(\pi ((\pi), \mathfrak{P}^2), \mathfrak{P}^3) = ((\pi^2), \pi \mathfrak{P}^2, \mathfrak{P}^3)$
= $((\pi^2), \mathfrak{P}^3),$

since $\pi \mathfrak{P}^2$ is contained in $\mathfrak{P}^3 = ((\pi), \mathfrak{P}^2)\mathfrak{P}^2 = (\pi \mathfrak{P}^2, \mathfrak{P}^4)$. Next

$$\mathfrak{P}^{3} = ((\pi^{2}), \mathfrak{P}^{3}) \mathfrak{P} = (\pi^{2}\mathfrak{P}, \mathfrak{P}^{4})$$

= $(\pi^{2}((\pi), \mathfrak{P}^{2}), \mathfrak{P}^{4}) = ((\pi^{3}), \mathfrak{P}^{4}),$

since $\pi^2 \mathfrak{P}^2$ is contained in $\mathfrak{P}^4 = ((\pi^2), \mathfrak{P}^3) \mathfrak{P}^2 = (\pi^2 \mathfrak{P}^2 \mathfrak{P}^5)$; and so on.

It may happen that among the powers

P, P², P³, ...

there exist equal ones.

For example, let p and q be two distinct prime numbers. Then the p^2q integers

0, 1, 2, ..., (p^2q-1) ,

being taken modulo p^2q , form a ring, say called \Re . And the pq integers in \Re

$$0, p, 2p, ..., (pq-1)p,$$

also being taken modulo p^2q , form a maximal ideal of \Re , say called \mathfrak{P} . It is easily seen that \mathfrak{P}^2 consists of the q integers

0, p^2 , $2p^2$, ..., $(q-1)p^2$

taken modulo p^2q , and that \mathfrak{P}^3 coincides with \mathfrak{P}^2 .

If, on the contrary, for every index n

$$\mathfrak{P}^n \neq \mathfrak{P}^{n+1},$$

the successive powers

give a chief-composition-series of R, in the present case.

For, let α be an element of \mathfrak{P}^n which does not belong to \mathfrak{P}^{n+1} , then

$$\alpha = \pi^n R + P^{(n+1)},$$

where $P^{(n+1)}$ is an element of \mathfrak{P}^{n+1} , and R an element of \mathfrak{R} which

does not belong to \mathfrak{P} . Choose an element R_1 of \mathfrak{R} so that $RR_1 \equiv I$ (mod. \mathfrak{P}), and we have

$$\alpha R_1 \equiv \left(\pi^n R + P^{(n+1)}\right) R_1 \equiv \pi^n \pmod{(\mathfrak{P}^{n+1})},$$

Therefore the element π^n , and consequently the ideal \mathfrak{P}^n , is contained in the ideal ((a), \mathfrak{P}^{n+1}), a being an arbitrarily taken element of \mathfrak{P}^n which is not contained in \mathfrak{P}^{n+1} . So that there is no ideal of \mathfrak{R} containing \mathfrak{P}^{n+1} and contained in \mathfrak{P}^n ; and hence the series is a chiefcomposition-series of \mathfrak{R} .

§ 10. THEOREM: Let \mathfrak{P} be a maximal ideal of a proper ring \mathfrak{R} , and assume that there is no ideal of \mathfrak{R} , distinct from both \mathfrak{P} and \mathfrak{P}^2 , which contains \mathfrak{P}^2 and consequently is contained in \mathfrak{P} . Then every ideal of \mathfrak{R} , except \mathfrak{R} , which contains a power of \mathfrak{P} is a power of \mathfrak{P} .

Proof. Since, if $\mathfrak{P}^2 = \mathfrak{P}$, it is evident, we prove it under the supposition that $\mathfrak{P}^2 \neq \mathfrak{P}$. Let \mathfrak{A} be an ideal of \mathfrak{R} containing the power \mathfrak{P}^n . Then \mathfrak{A} is contained in \mathfrak{P} [§ 4, 2nd theorem]. Therefore, if $\mathfrak{A} \neq \mathfrak{P}^n$, there must exist a power of \mathfrak{P} such that it contains \mathfrak{A} , while the next power does not. Let it be \mathfrak{P}^{n-i} $(i \geq 1)$. That is to say, we suppose that \mathfrak{A} is contained in \mathfrak{P}^{n-i} but not in \mathfrak{P}^{n-i+1} .

Take an element α of \mathfrak{A} , which does not belong to \mathfrak{P}^{n-i+1} , and we have

$$\alpha = \pi^{n-i} R + P^{(n-i+1)}$$

where π is an element of \mathfrak{P} which is not contained in \mathfrak{P}^2 , and R, $P^{(n-i+1)}$ are elements of \mathfrak{R} , \mathfrak{P}^{n-i+1} respectively; because $\mathfrak{P}^{n-i}=((\pi^{n-i}),$ $\mathfrak{P}^{n-i+1})$. And moreover the element R does not belong to \mathfrak{P} ; because $R\equiv 0 \pmod{\mathfrak{P}}$ would involve $\pi^{n-i}R\equiv 0 \pmod{\mathfrak{P}^{n-i+1}}$ and consequently $a\equiv 0 \pmod{\mathfrak{P}^{n-i+1}}$, contrary to our assumption. Since thus $R\equiv 0 \pmod{\mathfrak{P}}$, we can choose two elements R' and P respectively from \mathfrak{R} and \mathfrak{P} so that $RR' + P = \mathbf{I}$. And we have

$$aR' = \pi^{n-i}RR' + R'P^{(n-i+1)}$$

= $\pi^{n-i}(I-P) + R'P^{(n-i+1)}$,

whence

$$\pi^{n-1} = \pi^{i-1} \alpha R' + \pi^{n-1} P - R' \pi^{i-1} P^{(n-i+1)}$$

But $\pi^{n-1}P$ and $R'\pi^{i-1}P^{(n-i+1)}$ are both contained in \mathfrak{P}^n . Therefore

$$\pi^{n-1} \equiv 0 \pmod{(\alpha, \mathfrak{P}^n)},$$

and consequently

Masazo Sono.

 $\pi^{n-1} \equiv 0 \pmod{\mathfrak{A}}.$

Hence \mathfrak{A} contains the ideal $((\pi^{n-1}), \mathfrak{P}^n) = \mathfrak{P}^{n-1}$.

Since, by supposition, \mathfrak{A} is contained in \mathfrak{P}^{n-i} , if i=1, \mathfrak{A} must= \mathfrak{P}^{n-1} . If i>1, it is shown similarly that \mathfrak{A} contains \mathfrak{P}^{n-2} ; and if i=2, $\mathfrak{A}=\mathfrak{P}^{n-2}$. Repeating the process we finally have $\mathfrak{A}=\mathfrak{P}^{n-i}$, which we require.

Cor. If $n(\mathfrak{P})$ is finite and moreover $n(\mathfrak{P}^2) = [n(\mathfrak{P})]^2$, every ideal, except \mathfrak{R} , containing a power of \mathfrak{P} is a power of \mathfrak{P} .

Because, if $n(\mathfrak{P}^2) = [n(\mathfrak{P})]^2$, an ideal containing \mathfrak{P}^2 is \mathfrak{P} or $\mathfrak{P}^2[\S 8]$.

§ 11. The case where there is at least one ideal, distinct from \mathfrak{P} and \mathfrak{P}^2 , containing \mathfrak{P}^2 . It is here treated under the condition that the ring \mathfrak{R} possesses a chief-composition-series with the last term \mathfrak{P}^2 . This again is divided into the two cases in which a chief-composition-series of \mathfrak{R} with the last term \mathfrak{P}^2 consists either of four terms or of more than four terms.

Beginning with the former, let

be a chief-composition-series of a proper ring \Re with the last term \mathfrak{P}^2 , \mathfrak{P} being a maximal ideal of \mathfrak{R} .

Let π be an element of \mathfrak{P} which does not belong to \mathfrak{A} , and α an element of \mathfrak{A} which does not belong to \mathfrak{P}^2 . Then, by §8, we have

 $\mathfrak{P} = ((\pi), (\alpha), \mathfrak{P}^2).$

And

$$\mathfrak{P}^{2} = ((\pi), (\alpha), \mathfrak{P}^{2}) \mathfrak{P} = (\pi \mathfrak{P}, \alpha \mathfrak{P}, \mathfrak{P}^{3})$$

= $(\pi ((\pi), (\alpha), \mathfrak{P}^{2}), \alpha ((\pi), (\alpha), \mathfrak{P}^{2}), \mathfrak{P}^{3})$
= $((\pi^{2}), (\pi \alpha), (\alpha^{2}), \mathfrak{P}^{3}),$

since the ideals $\pi \mathfrak{P}^2$ and $\alpha \mathfrak{P}^2$ are contained in the ideal $(\pi \mathfrak{P}^2, \alpha \mathfrak{P}^2, \mathfrak{P}^4) = ((\pi), (\alpha), \mathfrak{P}^2) \mathfrak{P}^2 = \mathfrak{P}^3$.

$$\mathfrak{P}^{3} = ((\pi^{2}), (\pi a), (a^{2}), \mathfrak{P}^{3}) \mathfrak{P}$$
$$= (((\pi^{2}), (a^{2}), \mathfrak{P}^{3}) \mathfrak{P}, \pi a \mathfrak{P}).$$

But

$$\pi \alpha \mathfrak{P} = \pi \alpha ((\pi), (\alpha), \mathfrak{P}^2) = ((\pi^2 \alpha), (\pi \alpha^2), \pi \alpha \mathfrak{P}^2),$$

and the ideals $(\pi^2 \alpha)$, $(\pi \alpha^2)$ and $\pi \alpha \mathfrak{P}^2$ are contained in the ideals $\pi^2 \mathfrak{P}$, $\alpha^2 \mathfrak{P}$ and \mathfrak{P}^4 respectively. Therefore we have the formula, which is important in our theory:

On Congruences. 11.

(I) $\mathfrak{P}^3 = ((\pi^2), (\alpha^2), \mathfrak{P}^3) \mathfrak{P}.$

There are to be considered the two cases in which the ideal $((\pi^2), (\alpha^2), \mathfrak{P}^3)$ is either equal or not equal to \mathfrak{P}^2 . The former will be further discussed in the next article.

§ 12. Now, we suppose that

$$((\pi^2), (\alpha^2), \mathfrak{P}^3) = \mathfrak{P}^2.$$

Then, since the product πa of the elements π and a belongs to \mathfrak{P}^2 , we have

(a) $\pi a = \pi^2 R + a^2 R_1 + P^{(3)},$

where R, R_1 are elements of the ring \Re , and $P^{(3)}$ an element of \Re^3 . Again, there are two cases to consider.

(1) Suppose that R and R_1 both belong to \mathfrak{P} , viz.

$$\pi a \equiv 0 \pmod{\mathfrak{P}^3},$$

 $R \equiv R_1 \equiv 0 \pmod{9}.$

and

$$\begin{aligned} ((\pi), \, \mathfrak{P}^2) \, ((a), \, \mathfrak{P}^2) &= ((\pi a), \, \pi \mathfrak{P}^2, \, a \mathfrak{P}^2, \, \mathfrak{P}^4) \\ &= ((\pi a), \, ((\pi), \, (a), \, \mathfrak{P}^2) \, \mathfrak{P}^2) \\ &= ((\pi a), \, \mathfrak{P}^3) = \, \mathfrak{P}^3. \end{aligned}$$

(2) The case in which at least one of R and R_1 does not belong to \mathfrak{P} .

(i) Suppose $R \equiv 0 \pmod{2}$.

Since \mathfrak{P} is a maximal ideal of \mathfrak{R} , it follows, from supposition, that

 $((R), \mathfrak{P}) = \mathfrak{R}.$

Hence, two elements R' and P can be chosen from \Re and \Re respectively so that

$$RR' + P = I.$$

Multiplying both sides of equation (a) by the element R' we have

$$\pi \alpha R' = \pi^2 R R' + a^2 R_1 R' + P^{(3)} R'$$

= $\pi^2 (1 - P) + a^2 R_1 R' + P^{(3)} R'$
= $\pi^2 + a^2 R_1 R' \pmod{\Re^3},$
 $\pi^2 \equiv \pi \alpha R' - \alpha^2 R_1 R' \pmod{\Re^3}.$

or

Hence π^2 is contained in the ideal ($(\pi \alpha)$, (α^2) , \mathfrak{P}^3). But

and

126

 $\mathfrak{P}^{2} = ((\pi^{2}), (\pi \alpha), (\alpha^{2}), \mathfrak{P}^{3}),$ $((\alpha), \mathfrak{P}^{2}) \mathfrak{P} = (\alpha \mathfrak{P}, \mathfrak{P}^{3})$ $= (\alpha((\pi), (\alpha), \mathfrak{P}^{2}), \mathfrak{P}^{3})$ $= ((\pi \alpha), (\alpha^{2}), \alpha \mathfrak{P}^{2}, \mathfrak{P}^{3})$ $= ((\pi \alpha), (\alpha^{2}), \mathfrak{P}^{3}),$

since $\alpha \mathfrak{P}^2$ is contained in \mathfrak{P}^3 . Therefore we have

$$\mathfrak{P}^2 = ((\alpha), \mathfrak{P}^2) \mathfrak{P}.$$

(ii) If $R_1 \equiv 0 \pmod{2}$, similarly we have

 $\mathfrak{P}^2 = ((\pi), \mathfrak{P}^2) \mathfrak{P}.$

The ideal $((\pi), \mathfrak{P}^2)$ is different from \mathfrak{P} ; because otherwise \mathfrak{P} would contain no ideal of \mathfrak{R} containing \mathfrak{P}^2 , except \mathfrak{P} and \mathfrak{P}^2 [by § 7, Cor.].

SUMMARY. If the set of ideals

R, P, A, P²

gives a chief-composition-series of the proper ring R, then

 $\mathfrak{P}^3 = ((\pi^2), (\alpha^2), \mathfrak{P}^3) \mathfrak{P},$

where π is an element of \mathfrak{P} which is not contained in \mathfrak{A} , and a an element of \mathfrak{A} which is not contained in \mathfrak{P}^2 .

In case $\mathfrak{P}^2 = ((\pi^2), (\alpha^2), \mathfrak{P}^3),$

(1) if $\pi a \equiv 0 \pmod{\frac{1}{3}}$,

$$\mathfrak{P}^{3} = ((\pi), \mathfrak{P}^{2}) ((\alpha), \mathfrak{P}^{2}),$$

and (2) if $\pi a \equiv 0 \pmod{\Re^3}$,

$$\mathfrak{P}^2 = ((P), \mathfrak{P}^2) \mathfrak{P},$$

where P is a certain element of \mathfrak{P} which does not belong to \mathfrak{P}^2 .

§ 13. The case wherein a chief-composition-series with the last term \mathfrak{P}^2 consists of more than four terms. Let

$$\mathfrak{R}, \mathfrak{P}, \mathfrak{A}_1, \mathfrak{A}_2, ..., \mathfrak{A}_n, \mathfrak{P}^2 \qquad (n \geq 2)$$

be a chief-composition-series of a proper ring \Re with the last term \mathfrak{P}^2 . And let

$$\pi \text{ be an element of } \mathfrak{P} \text{ which does not belong to } \mathfrak{A}_{1};$$

$$a_{i} \qquad ,, \qquad \mathfrak{A}_{i} \qquad ,, \qquad \mathfrak{A}_{i+1} \qquad (i=1, 2, \dots, n-1);$$

$$a_{n} \qquad ,, \qquad \mathfrak{A}_{n} \qquad ,, \qquad \mathfrak{P}^{2}.$$

Then by §8 we have

(1)

$$\mathfrak{P} = ((\pi), (a_1), (a_2), \dots, (a_n), \mathfrak{P}^2),$$
and
(2)

$$\mathfrak{P}^2 = ((\pi), (a_1), (a_2), \dots, (a_n), \mathfrak{P}^2) \mathfrak{P}$$

$$= (\pi \mathfrak{P}, a_1 \mathfrak{P}, a_2 \mathfrak{P}, \dots, a_n \mathfrak{P}, \mathfrak{P}^3)$$

$$= ((\pi^2), (\pi a_1), (\pi a_2), \dots, (\pi a_n),$$

$$(a_1^2), (a_1 a_2), \dots, (a_1 a_n),$$

$$(a_2^2), \dots, (a_2 a_n),$$

$$\dots$$

$$(a_n^2), \mathfrak{P}^3);$$

because $\pi \mathfrak{P}^2$, $\alpha_1 \mathfrak{P}^2$,...., $\alpha_n \mathfrak{P}^2$ are all contained in \mathfrak{P}^3 .

Putting

$$\mathfrak{M} = ((\pi^2), (a_1^2), (a_1a_2), \dots, (a_1a_n), \\ (a_2^2), \dots, (a_2a_n), \\ \dots \\ (a_n^2), \mathfrak{P}^3)$$

we have

$$\mathfrak{P}^3 = (\pi a_1 \mathfrak{P}, \pi a_2 \mathfrak{P}, \dots, \pi a_n \mathfrak{P}, \mathfrak{M} \mathfrak{P}).$$

But

$$\begin{aligned} \pi a_i \mathfrak{P} &= \pi a_i \left((\pi), (a_1), \dots, (a_n), \mathfrak{P}^2 \right) \\ &= \left((\pi^2) \, a_i, (a_i a_1) \, \pi, \dots, (a_i a_n) \, \pi, \pi a_i \mathfrak{P}^2 \right); \end{aligned}$$

therefore the ideal $\pi \alpha_i \mathfrak{P}$ is contained in the product $\mathfrak{M}\mathfrak{P}$. And hence we get the second important formula:

(II) where $\mathfrak{M} = ((\pi^2), (a_1^2), (a_1a_2), \dots, (a_1a_n), (a_2^2), \dots, (a_2a_n), \dots, (a_n^2), \mathfrak{P}^3).$ In this also are to be considered the two cases in which the ideal \mathfrak{M} is either equal or not equal to \mathfrak{P}^2 . The former will be further discussed in the next article.

§ 14. We now suppose that $\mathfrak{M} = \mathfrak{P}^2$. Then, since by (2)

$$\pi \sigma_i \equiv 0 \pmod{\mathbb{P}^2} \quad (i = 1, 2, \dots, n),$$

we have

(b)
$$\pi a_{i} = \pi^{2} R_{i} + a_{1}^{2} R_{i11} + a_{1} a_{2} R_{i12} + \dots + a_{1} a_{n} R_{i1n} + a_{2}^{2} R_{i22} + \dots + a_{2} a_{n} R_{i2n} + \dots + a_{n}^{2} R_{inn} + P_{i}^{(3)},$$
$$(i = 1, 2, \dots, n),$$

where the R's are elements of the ring \Re , and the $P^{(3)}$'s are elements of \Re^3 .

Again there are four cases to consider.

(1) Suppose that all the R's of (b) belong to \mathfrak{P} . Then by (b)

$$\pi a_i \equiv 0 \pmod{\mathfrak{P}^3}$$
 for every $i = 1, 2, ..., n$;

and we get

$$((\pi), \mathfrak{P}^{2})((a_{1}), (a_{2}), \dots, (a_{n}), \mathfrak{P}^{2})$$

= $((\pi a_{1}), (\pi a_{2}), \dots, (\pi a_{n}), \pi \mathfrak{P}^{3}, a_{1}\mathfrak{P}^{2}, a_{2}\mathfrak{P}^{3}, \dots a_{n}\mathfrak{P}^{2}, \mathfrak{P}^{4})$
= $((\pi a_{1}), (\pi a_{2}), \dots, (\pi a_{n}), ((\pi), (a_{1}), (a_{2}), \dots, (a_{n}), \mathfrak{P}^{2}) \mathfrak{P}^{2})$
= $((\pi a_{1}), (\pi a_{2}), \dots, (\pi a_{n}), \mathfrak{P}^{3})$
= $\mathfrak{P}^{3}.$

The ideals $((\pi), \mathfrak{P}^2)$ and $((a_1), \ldots, (a_n), \mathfrak{P}^2)$ contain \mathfrak{P}^2 and are contained in \mathfrak{P} ; but evidently both are different from \mathfrak{P} and \mathfrak{P}^2 [cf. § 7, Cor.].

(2), (i) Suppose that at least one of R_1 , R_2 ,, R_n , (say R_1), does not belong to \mathfrak{P} , viz. $R_1 \neq 0 \pmod{\mathfrak{P}}$.

Then we have

$$((R_1),\mathfrak{P})=\mathfrak{R};$$

and hence we can choose two elements R' and P respectively from \Re and \Re so that

$$R_1 R' + P = \mathbf{I}$$

Multiplying both sides of equation (b) by this element R' we have

On Congruences. II.

$$\pi a_{1}R' = \pi^{2}R_{1}R' + P_{1}^{(3)}R' + \sum_{i,j} a_{i}a_{j}R_{1ij}R'$$
$$= \pi^{2}(1-P) + P_{1}^{(3)}R' + \sum a_{i}a_{j}R_{1ij}R';$$
$$\pi^{2} \equiv \pi a_{1}R' - \sum a_{i}a_{j}R_{1ij}R' \pmod{\Re^{3}},$$

or

з,

which shows that
$$\pi^2$$
 is contained in the ideal $((\pi a_1), (a_1^2), (a_1a_2), \ldots, (a_1a_n), (a_2^2), \ldots, (a_2a_n), \ldots, (a_n^2), \mathfrak{P}^3)$. We obtain a similar result also when $R_i \equiv 0 \pmod{\mathfrak{P}}, i=2, 3, \ldots, n$; viz. π^2 is contained in the ideal, $((\pi a_i), (a_1^2), (a_1a_2), \ldots, (a_1a_n), (a_2^2), \ldots, (a_2a_n), \ldots, (a_n^2), \mathfrak{P}^3)$. Therefore, if at least one of R_1, R_2, \ldots, R_n does not belong to \mathfrak{P} , the ideal

$$((\pi a_1), (\pi a_2), \dots, (\pi a_n), (a_1^2), (a_1 a_2), \dots, (a_1 a_n), (a_2^2), \dots, (a_2 a_n), \dots (a_n^2), \mathfrak{P}^3)$$

contains the element π^2 , and consequently becomes equal to \mathfrak{P}^2 [\mathcal{G} . § 13, (2)], while being equal to the product

So that $\begin{array}{l}
((a_1), (a_2), \dots, (a_n), \mathfrak{P}^2) \mathfrak{P}.\\
\mathfrak{P}^2 = ((a_1), (a_2), \dots, (a_n), \mathfrak{P}^2) \mathfrak{P}.
\end{array}$

The first factor of the right side is equal to \mathfrak{A}_1 , which, of course, is distinct from \mathfrak{P} .

(ii) If the coefficient $R_{iii} \equiv 0 \pmod{2}$, the element α_1^2 , as is shown similarly, belongs to the ideal

$$((\pi^2), (\pi a_i), (a_1a_2), (a_1a_3), \dots, (a_1a_n), (a_2^2), (a_2a_3), \dots, (a_2a_n), (a_3^2), \dots, (a_3a_n), \dots, (a_n^2), \mathbb{P}^3).$$

Therefore, if at least one of the *n* coefficients R_{111} , R_{211} ,, R_{n11} does not belong to \mathfrak{P} , the ideal

129

ï

Masazo Sono.

$$((\pi^2), (\pi a_1), (\pi a_2), \dots, (\pi a_n), (a_1 a_2), (a_1 a_3), \dots, (a_1 a_n), (a_2^2), (a_2 a_3), \dots, (a_2 a_n), (a_3^2), \dots, (a_3 a_n), \dots, (a_n^2), \mathfrak{P}^3)$$

must contain the element a_1^2 , and consequently becomes equal to \mathfrak{P}^2 , while being equal to the product

So that

 $((\pi), (a_2), (a_3), \dots, (a_n), \mathfrak{P}^2) \mathfrak{P}.$ $\mathfrak{P}^2 = ((\pi), (a_2), (a_3), \dots, (a_n), \mathfrak{P}^2) \mathfrak{P}.$

The first factor of the right side is evidently distinct from \mathfrak{P} [cf. § 7, Cor.].

Similarly, if at least one of the *n* coefficients R_{1jj} , R_{2jj} ,, R_{njj} does not belong to \mathfrak{P} , then

$$\mathfrak{P}^{2} = ((\pi), (a_{1}), \dots, (a_{j-1}), (a_{j+1}), \dots, (a_{n}), \mathfrak{P}^{2}) \mathfrak{P},$$

the first factor of which is also different from \$.

(3) Lastly, suppose that all of R_i and R_{ijj} (i, j=1, 2,, n) belong to \mathfrak{P} , but at least one of the other coefficients R_{ijk} 's $(j \neq k)$ does not belong to \mathfrak{P} .

Then equations (b) become

$$\pi a_{i} \equiv a_{1}a_{2}R_{i12} + a_{1}a_{3}R_{i13} + \dots + a_{1}a_{n}R_{i1n} + a_{2}a_{3}R_{i23} + \dots + a_{2}a_{n}R_{i2n} + \dots + a_{n-1}a_{n}R_{i,n-1,n} \pmod{\Re^{3}}, (i = 1, 2, ..., n).$$

And hence all the products πa_1 , πa_2 ,, πa_n are contained in the ideal

$$((a_1a_2), (a_1a_3), \dots, (a_1a_n), (a_2a_3), \dots, (a_2a_n), \dots, (a_n-1a_n), \mathfrak{P}^3),$$

1

which we denote by \mathfrak{N} . But

$$((\pi), (a_1), (a_2), \dots, (a_{n-1}), \mathfrak{P}^2)$$
 $((a_2), (a_3), \dots, (a_n), \mathfrak{P}^2)$

$$= ((\pi a_{2}), (\pi a_{3}), \dots, (\pi a_{n}), (\pi a_{n}), \pi \mathfrak{P}^{2}, (a_{1}a_{2}), (a_{1}a_{3}), \dots, (a_{1}a_{n}), (a_{1}\mathfrak{P}^{2}, (a_{2}^{2}), (a_{2}a_{3}), \dots, (a_{2}a_{n}), a_{2}\mathfrak{P}^{2}, (a_{3}^{2}), \dots, (a_{3}a_{n}), a_{3}\mathfrak{P}^{2}, (a_{3}^{2}), \dots, (a_{n-1}a_{n}), a_{n-1}\mathfrak{P}^{2}, (a_{n}^{2}), (a_{n-1}a_{n}), (a_{n-1}a_{n}), a_{n-1}\mathfrak{P}^{2}, a_{n}\mathfrak{P}^{2}, \mathfrak{P}^{4})$$

$$= ((\pi a_{2}), (\pi a_{3}), \dots, (\pi a_{n}), (a_{2}^{2}), (a_{3}^{2}), \dots, (a_{n-1}^{2}), \mathfrak{N}) [by \S I 3, (I)]$$

$$= ((a_{2}^{2}), (a_{3}^{2}), \dots, (a_{n-1}^{2}), \mathfrak{N}),$$

since all πa_i 's (i=1, 2, ..., n) are contained in \mathfrak{N} . And similarly

$$((a_1), (a_2), ..., (a_{n-1}), \mathfrak{P}^2) ((\pi), (a_2), (a_3), ..., (a_n), \mathfrak{P}^2) = ((a_2^2), (a_3^2), ..., (a_{n-1}^2), \mathfrak{N}).$$

Therefore we have

$$((\pi), (a_1), (a_2), ..., (a_{n-1}), \mathfrak{P}^2) ((a_2), (a_3), ..., (a_n), \mathfrak{P}^2) = ((a_1), (a_2), ..., (a_{n-1}), \mathfrak{P}^2) ((\pi), (a_2), (a_3), ..., (a_n), \mathfrak{P}^2).$$

These four ideals are different from one another, and all are contained in \mathfrak{P} and contain \mathfrak{P}^2 .

For, since

$$((\alpha_2), (\alpha_3), \ldots, (\alpha_n), \mathfrak{P}^2) = \mathfrak{A}_2$$

as shown in §8, if we put

$$((a_1), (a_2), \ldots, (a_{n-1}), \mathfrak{P}^2) = \mathfrak{B},$$

the last equation may be rewritten as follows:

$$((\pi),\mathfrak{B})\mathfrak{A}_2=\mathfrak{B}((\pi),\mathfrak{A}_2).$$

But $((\pi), \mathfrak{B}) = \mathfrak{A}_2$ or \mathfrak{B} would involve $\mathfrak{P} = \mathfrak{A}_2$ or \mathfrak{A}_1 respectively; $((\pi), \mathfrak{B}) = ((\pi), \mathfrak{A}_2)$ would involve $\mathfrak{P} = ((\pi), \mathfrak{A}_2)$, and consequently $\mathfrak{A}_1 = \mathfrak{P}$ or \mathfrak{A}_2 [by § 7, Cor.]; $\mathfrak{A}_2 = \mathfrak{B}$ would involve $\mathfrak{A}_1 = \mathfrak{A}_2$; $\mathfrak{A}_2 \neq ((\pi), \mathfrak{A}_2)$ by hypothesis; $\mathfrak{B} = ((\pi), \mathfrak{A}_2)$ would involve $\mathfrak{P} = \mathfrak{A}_1$. Therefore the four ideals are all different from one another.

§ 15. SUMMARY. If the set of ideals

 $\mathfrak{R}, \mathfrak{P}, \mathfrak{A}_1, \mathfrak{A}_2, \dots, \mathfrak{A}_n, \mathfrak{P}^2 \quad (n \geq 2)$

Masazo Sono.

gives a chief-composition-series of a proper ring \Re with the last term \Re^2 , we have

$$\mathfrak{P} = \mathfrak{M}\mathfrak{P},$$

$$\mathfrak{M} = ((\pi^2), (a_1^2), (a_1a_2), \dots, (a_1a_n),$$

$$(a_2^2), \dots, (a_2a_n),$$

$$\dots,$$

$$(a_n^2), \mathfrak{P}^3),$$

and π and the a's denote the same as in § 13.

If $\mathfrak{M} = \mathfrak{P}^2$, there holds good at least one of the following four equations:

- (1) $\mathfrak{P}^{3} = ((\pi), \mathfrak{P}^{2}) ((a_{1}), (a_{2}), ..., (a_{n}), \mathfrak{P}^{2});$
- (2), (i) $\mathfrak{P}^2 = ((\alpha_1), (\alpha_2), ..., (\alpha_n), \mathfrak{P}^2) \mathfrak{P};$

(ii)
$$\mathfrak{P}^2 = ((\pi), (a_1), \dots, (a_{j-1}), (a_{j+1}), \dots, (a_n), \mathfrak{P}^2) \mathfrak{P};$$

(3)
$$((\pi), (a_1), (a_2), ..., (a_{n-1}), \mathfrak{P}^2) ((a_2), (a_3), ..., (a_n), \mathfrak{P}^2)$$

= $((a_1), (a_2), ..., (a_{n-1}), \mathfrak{P}^2) ((\pi), (a_2), (a_3), ..., (a_n), \mathfrak{P}^2).$

Ideals of a Proper Ring in which every Ideal, Distinct from the O-ideal, is of Finite Norm. Resolution of an Ideal into Factors Prim to Each Other.

§ 16. Throughout the present and the subsequent articles (§§ 16— 30) we assume that a ring to be treated is such that the norm of every ideal of it, which is not the o-ideal¹, is finite.

THEOREM : Let

$$\mathfrak{N}, \mathfrak{A}_1, \mathfrak{A}_2, \ldots, \mathfrak{A}_n \quad (n \geq 2)$$

be a chief-composition-series² of a proper ring \Re with the last term \mathfrak{A}_n . If any one of the quotient rings

$$\frac{\mathfrak{A}_1}{\mathfrak{A}_2}, \frac{\mathfrak{A}_2}{\mathfrak{A}_3}, \dots, \frac{\mathfrak{A}_{n-1}}{\mathfrak{A}_n}$$

derived from the series is a field³, the ideal \mathfrak{A}_n may be expressed as the product of two ideals prime to each other.

132

where

¹ The ideal consisting of the element o alone.

² Cf. Congr. § 13,

³ The term field is used to denote the German Körper.

LEMMA I. If in a ring F of finite order the product of any two elements of it is not 0, unless at least one of the factors is 0, the ring F must be a field.

For, let

(1) $F_1, F_2, ..., F_s$

be the distinct elements of \mathfrak{F} . Taking out an element F, not equal to 0, of \mathfrak{F} and multiplying each one of the series (1) by it, we get

(2)
$$F_1F, F_2F, ..., F_sF$$
.

These products are all distinct, while belonging to \mathfrak{F} . For, since $F \neq 0$, $F_i F = F_j F$ would involve $F_i = F_j$, contrary to our assumption. Therefore, series (I) and (2) are identical, except as regards the sequence in which the terms occur. And, corresponding to every element F_i of (I), there exists in \mathfrak{F} one and only one element F_j such that

$$F_j F = F_i$$

Therefore F is a field [Congr., p. 205].

LEMMA 2. Let \mathfrak{V} be an ideal of a proper ring \mathfrak{R} which is contained in another ideal \mathfrak{A} . If the quotient $\mathfrak{A}/\mathfrak{V}$ is a field, \mathfrak{V} is equal to the product of \mathfrak{A} and an ideal prime to \mathfrak{A} .

Here \mathfrak{A} is assumed to be distinct from \mathfrak{R} .

Since the quotient \Re/\mathfrak{B} is never a field,¹ there exist in \Re at least two elements (say, called R_1 and R_2), such that their product is congruent (mod. \mathfrak{B}) to 0, while they are both incongruent (mod. \mathfrak{B}) to 0 [by lemma]. If it happen that one, say R_1 , of the elements R_1 , R_2 belongs to \mathfrak{A} , we take R_1 and denote it by S. Since $\mathfrak{A}/\mathfrak{B}$ is a field, R_2 does not belong to \mathfrak{A} . On the contrary if every product which we obtain by multiplying an element, not belonging to \mathfrak{B} , of \mathfrak{A} by an element, not belonging to \mathfrak{B} , of \mathfrak{R} is incongruent (mod. \mathfrak{B}) to 0, we take any one of R_1 , R_2 and denote it by S. Then the elements X of \mathfrak{R} which satisfy the condition

$$SX \equiv 0 \pmod{2}$$

form an ideal (say, called \Re) of \Re . \Re necessarily contains all the elements of \mathfrak{B} and also contains certain elements not belonging to \mathfrak{A} , while containing no element, not belonging to \mathfrak{B} , of \mathfrak{A} ; because $\mathfrak{A}/\mathfrak{B}$ is assumed to be a field. Therefore the ideal \Re is distinct from \mathfrak{B} and contains \mathfrak{B} for the cross-cut with \mathfrak{A} .

¹ Congr., 29.

If \Re is prime to \mathfrak{A} , our theorem has already been proved. On the contrary, if not, the process may be repeated with the ideals (\mathfrak{A} , \mathfrak{R}) and \mathfrak{R} as follows:

Since the cross-cut of \mathfrak{A} and \mathfrak{R} is \mathfrak{B} , the quotient $(\mathfrak{A}, \mathfrak{K})/\mathfrak{R}$ is simply isomorphic with the quotient $\mathfrak{A}/\mathfrak{B}$ [Congr., § 11, Theorem] and consequently is a field. Therefore it can be proved similarly that there exists an ideal (say, called \mathfrak{K}_1) such that \mathfrak{K}_1 is distinct from \mathfrak{R} and contains \mathfrak{R} for the cross-cut with $(\mathfrak{A}, \mathfrak{K})$. But the cross-cut of \mathfrak{K}_1 and $(\mathfrak{A}, \mathfrak{K})$ is \mathfrak{K} , and that of \mathfrak{K} and \mathfrak{A} is \mathfrak{B} ; hence the cross-cut of \mathfrak{K}_1 and \mathfrak{A} is \mathfrak{B} . If, therefore, \mathfrak{K}_1 is prime to $(\mathfrak{A}, \mathfrak{K})$ and consequently to \mathfrak{A} , the theorem has already been proved. If \mathfrak{K}_1 is not yet prime to $(\mathfrak{A},$ $\mathfrak{K})$, the process may be repeated with the ideals $(\mathfrak{A}, \mathfrak{K}_1)$ and \mathfrak{K}_1 , viz. there may be obtained an ideal \mathfrak{K}_2 , distinct from \mathfrak{K}_1 , such that the cross-cut of \mathfrak{K}_2 and $(\mathfrak{A}, \mathfrak{K}_1)$ is \mathfrak{K}_1 , and consequently that of \mathfrak{K}_2 and \mathfrak{A} is \mathfrak{B} ; and so on. Then, since the norm of every ideal (± 0) of \mathfrak{R} is assumed to be finite, eventually we shall obtain an ideal (say, called \mathfrak{M}) which is prime to \mathfrak{A} and contains \mathfrak{B} as the cross-cut with \mathfrak{A} . And then $\mathfrak{B}=\mathfrak{A}\mathfrak{M}$ [by § 5, 1st theorem].

Returning to the subject in question, if $\mathfrak{A}_{n-1}/\mathfrak{A}_n$ is a field, by lemma 2 we have

$$\mathfrak{A}_n = \mathfrak{A}_{n-1}\mathfrak{M},$$

 \mathfrak{M} being an ideal prime to \mathfrak{A}_{n-1} , what is to be proved.

We now suppose that $\mathfrak{A}_i/\mathfrak{A}_{i+1}$ is a field, but all of

$$rac{\mathfrak{A}_{i+1}}{\mathfrak{A}_{i+2}}, \ rac{\mathfrak{A}_{i+2}}{\mathfrak{A}_{i+3}}, \ \ldots \ rac{\mathfrak{A}_{n-1}}{\mathfrak{A}_n} \quad (i < n-1)$$

are not fields. Then the product of two elements of \mathfrak{A}_{i+j} is contained in \mathfrak{A}_{i+j+1} $(j \ge 1)$ [cf. Congr., § 20].

First we prove that \mathfrak{A}_{i+2} may be resolved into the product of two ideals prime to each other. Since $\mathfrak{A}_i/\mathfrak{A}_{i+1}$ is a field, by lemma 2 \mathfrak{A}_{i+1} may be expressed as the product of \mathfrak{A}_i and an ideal, say \mathfrak{M} , prime to \mathfrak{A}_i , viz.

$$\mathfrak{A}_{i+1} = \mathfrak{A}_i \mathfrak{M},$$

where $(\mathfrak{A}_i, \mathfrak{M}) = \mathfrak{R}$. But \mathfrak{A}_{i+1}^2 is contained in \mathfrak{A}_{i+2} . If $\mathfrak{A}_{i+2} = \mathfrak{A}_{i+1}^2 = \mathfrak{A}_{i+1}^2 = \mathfrak{A}_i^2 \mathfrak{M}_i^2$, \mathfrak{A}_{i+2} has already been resolved into two factors prime to each other; because from $(\mathfrak{A}_i, \mathfrak{M}) = \mathfrak{R}$ follows $(\mathfrak{A}_i^2, \mathfrak{M}^2) = \mathfrak{R}$, none of \mathfrak{A}_i^2 and \mathfrak{M}^2 being \mathfrak{R} [§ 4, theorem].

If not, a finite number of elements

 $P_1, P_2, ..., P_{\mu}$

can be so chosen that

$$\mathfrak{A}_{i+2} = (\mathfrak{A}_{i+1}^2, (P_1), (P_2), ..., (P_{\mu})) = (\mathfrak{A}_i^2 \mathfrak{M}^2, \mathfrak{C}),$$

where

$$\mathbb{C} = ((P_1), (P_2), ..., (P_{\mu}));$$

because, since the norm of every ideal ($\neq 0$) of \Re is finite and $(\mathfrak{A}_{i}^{2}, \mathfrak{M}^{2}) = \Re$, neither of $\mathfrak{A}_{i}^{2}, \mathfrak{M}^{2}$ being the o-ideal, we have $n(\mathfrak{A}_{i+1}^{2}) = n(\mathfrak{A}_{i}^{2}) n(\mathfrak{M}^{2})$ [§ 5, Cor.], and hence the order of the quotient $\mathfrak{A}_{i+2}/\mathfrak{A}_{i+1}^{2}$ is, of course, finite. And, since $(\mathfrak{A}_{i}^{2}, \mathfrak{M}^{2}) = \Re$, we have

$$\mathfrak{A}_{i+2} = (\mathfrak{A}_i^2 \mathfrak{M}^2, \mathfrak{C}) = (\mathfrak{A}_i^2, \mathfrak{C})(\mathfrak{M}^2, \mathfrak{C}) \quad [by \S 6, theorem].$$

But since the ideal \mathfrak{C} is contained in \mathfrak{A}_{i+2} , evidently it is contained in \mathfrak{A}_i and \mathfrak{M} ; hence the ideal $(\mathfrak{A}_i^2, \mathfrak{C})$ is contained in \mathfrak{A}_i , and the ideal $(\mathfrak{M}^2, \mathfrak{C})$ in \mathfrak{M} . Therefore \mathfrak{A}_{i+2} can be resolved into factors prime to each other, none of which is \mathfrak{R} ; and, if i+2=n, the theorem has been thereby proved.

If i+2 < n, put

$$(\mathfrak{M}_{i}^{2}, \mathfrak{C}) = \mathfrak{L}_{1},$$

 $(\mathfrak{M}^{2}, \mathfrak{C}) = \mathfrak{M}_{1}.$

But \mathfrak{A}_{i+3} contains \mathfrak{A}_{i+2}^2 , which is the product of the two ideals \mathfrak{L}_1^2 and \mathfrak{M}_1^2 prime to each other. If $\mathfrak{A}_{i+3} = \mathfrak{A}_{i+2}^2 = \mathfrak{L}_1^2 \mathfrak{M}_1^2$, \mathfrak{A}_{i+3} is equal to the product of two ideals \mathfrak{L}_1^2 and \mathfrak{M}_1^2 which are prime to each other and none of which is \mathfrak{R} ; because $(\mathfrak{L}_1, \mathfrak{M}_1) = \mathfrak{R}$, and $\mathfrak{L}_1, \mathfrak{M}_1$ are contained in \mathfrak{A}_i and \mathfrak{M} respectively. If not, in the same way as before we have

$$\mathfrak{A}_{i+3} = (\mathfrak{A}_{i+2}^2, \mathfrak{C}_1) = (\mathfrak{L}_1^2 \mathfrak{M}_1^2, \mathfrak{C}_1);$$

because the quotient $\mathfrak{A}_{i+3}/\mathfrak{A}_{i+2}^2$ is of finite order. And then

$$\mathfrak{A}_{i+3} = (\mathfrak{L}_1^2, \mathfrak{C}_1)(\mathfrak{M}_1^2, \mathfrak{C}_1).$$

Since \mathfrak{C}_1 is contained in \mathfrak{A}_{i+3} , evidently the ideals $(\mathfrak{L}_1^2, \mathfrak{C}_1)$ and $(\mathfrak{M}_1^2, \mathfrak{C}_1)$ are contained in \mathfrak{L}_1 and \mathfrak{M}_1 respectively. And, moreover, these are prime to each other; because $(\mathfrak{L}_1, \mathfrak{M}_1) = \mathfrak{R}$. Therefore \mathfrak{A}_{i+3} can be resolved into factors which are prime to each other and none of which is \mathfrak{R} : so that, if i+3=n, the theorem has already been proved. I i+3 is not yet equal n, repeat the process, and eventually we shal reach the result which we require.

§ 17. The converse of the theorem also holds true, viz.

Masazo Sono.

THEOREM: If an ideal \mathfrak{A} of a proper ring \mathfrak{R} may be resolved into the product of two ideals prime to each other, the set of quotient rings derived from a chief-composition-series of \mathfrak{R} with the last term \mathfrak{A} contains at least one field besides the first quotient.

For, suppose that

 $\mathfrak{A} = \mathfrak{LM}$

where \mathfrak{L} and \mathfrak{M} are two ideals prime to each other. Let \mathfrak{P} and \mathfrak{D} be maximal ideals of \mathfrak{N} , respectively containing \mathfrak{L} and \mathfrak{M} . Then \mathfrak{P} and \mathfrak{D} must be distinct; because otherwise the ideal $(\mathfrak{L}, \mathfrak{M})$ would be contained in \mathfrak{P} , contrary to the assumption $(\mathfrak{L}, \mathfrak{M}) = \mathfrak{R}$. Since $n(\mathfrak{A})$ is finite and the product $\mathfrak{P}\mathfrak{D}$, being the cross-cut of \mathfrak{P} and \mathfrak{D} , contains \mathfrak{A} , we can choose a chief-composition-series of \mathfrak{R} containing \mathfrak{P} and $\mathfrak{P}\mathfrak{D}$, and having \mathfrak{A} as the last term. Let

be such one. Then the quotient $\Re/\Re\Omega$ is of the same type as \Re/Ω [Congr., § 11, Theorem], which is a field [§ 2].

§ 18. Let

$$\mathfrak{R}, \mathfrak{A}_1, \mathfrak{A}_2, \ldots, \mathfrak{A}_n$$

be a chief-composition-series of a proper ring \Re . If none of the quotient rings

$$\frac{\mathfrak{A}_1}{\mathfrak{A}_2}, \frac{\mathfrak{A}_2}{\mathfrak{A}_3}, \dots, \frac{\mathfrak{A}_{n-1}}{\mathfrak{A}_n}$$

is a field, \mathfrak{A}_n contains a power of the maximal ideal \mathfrak{A}_1 . Conversely if \mathfrak{A}_n contains a power of \mathfrak{A}_1 (say, \mathfrak{A}_1^e), none of the quotient rings is a field. For, if any one of the quotient rings were a field, \mathfrak{A}_n would be resolvable into two factors prime to each other. Suppose that $\mathfrak{A}_n =$ $\mathfrak{A}\mathfrak{M}$, where $(\mathfrak{L}, \mathfrak{M}) = \mathfrak{R}$. Since $(\mathfrak{L}, \mathfrak{M}) = \mathfrak{R}$, the maximal ideal \mathfrak{A}_1 would be prime to at least one of \mathfrak{L} and \mathfrak{M} ; suppose $(\mathfrak{A}_1, \mathfrak{L}) = \mathfrak{R}$. Then $(\mathfrak{A}_1, \mathfrak{L}) = \mathfrak{R}$ would involve $(\mathfrak{A}_1^e, \mathfrak{L}) = \mathfrak{R}$ [§ 4], and consequently $(\mathfrak{A}_n, \mathfrak{L})$ $= \mathfrak{R}$, while $\mathfrak{A}_n = \mathfrak{L}\mathfrak{M}$ would involve $(\mathfrak{A}_n, \mathfrak{L}) = \mathfrak{L}$. Therefore \mathfrak{A}_n can not be resolved into two factors prime to each other; hence none of the quotient rings is a field. Therefore the last two theorems, being summed up, may be rewritten as follows:

An ideal of a proper ring can or can not be resolved into two factors prime to each other, according as it does not or does contain a power of maximal ideal.

It is clear that no ideal can contain two powers of distinct maximal ideals; because powers of distinct maximal ideals are prime to each other; and also that no ideal containing a power of maximal ideal is contained in two distinct maximal ideals. [cf. § 4].

§ 19 THEOREM: Every ideal which contains no power of maximal ideal may be expressed as the product of a finite number of ideals which contain powers of distinct maximal ideals respectively; and this can be done in only one way.

Let \mathfrak{A} be an ideal of a proper ring \mathfrak{R} , which contains no power of maximal ideal of \mathfrak{R} . Then by the last proposition \mathfrak{A} can be resolved into two factors prime to each other. Suppose that $\mathfrak{A} = \mathfrak{Q}\mathfrak{M}$, where $(\mathfrak{Q}, \mathfrak{M}) = \mathfrak{R}$. If both factors \mathfrak{Q} and \mathfrak{M} contain powers of maximal ideals, these two maximal ideals must be distinct; because otherwise \mathfrak{Q} and \mathfrak{M} would be contained in the same maximal ideal [§ 4, 2nd theorem], contrary to $(\mathfrak{Q}, \mathfrak{M}) = \mathfrak{R}$. And hence the resolution has already been effected. If not, the process may be repeated, viz. either \mathfrak{Q} or \mathfrak{M} or both may be resolved into two factors prime to each other, and so on. It is clear that eventually no further resolution will be possible; because if \mathfrak{A} could be resolved into the product of an infinite number of ideals prime to one another, none of which is \mathfrak{R} , the norm of \mathfrak{A} would be infinitely great, contrary to our assumption [cf. § 5, 1st Cor.]. And \mathfrak{A} is finally reduced to the form

$$\mathfrak{A} = \mathfrak{A}_1 \mathfrak{A}_2 \dots \mathfrak{A}_{\vee}$$
,

where $\mathfrak{A}_1, \mathfrak{A}_2, \ldots, \mathfrak{A}_{\nu}$ are ideals respectively containing powers of distinct maximal ideals.

Next a maximal ideal containing \mathfrak{A} must contain one of \mathfrak{A}_1 , \mathfrak{A}_2 ,, \mathfrak{A}_{ν} . For, let \mathfrak{P} be a maximal ideal containing \mathfrak{A} . If \mathfrak{P} contained none of \mathfrak{A}_1 , \mathfrak{A}_2 ,, \mathfrak{A}_{ν} , it would be prime to all of them and consequently to their product \mathfrak{A}_1 \mathfrak{A}_2 $\mathfrak{A}_{\nu}=\mathfrak{A}$ [§ 4], contrary to the assumption that \mathfrak{P} contains \mathfrak{A} . Therefore \mathfrak{P} must contain one of \mathfrak{A}_1 , \mathfrak{A}_2 ,, \mathfrak{A}_{ν} .

So that if two resolutions are possible, the maximal ideals, each of which contains one of the factors, are the same in both. And hence the only admissible supposition is

$$\mathfrak{A} = \mathfrak{A}_1 \mathfrak{A}_2 \dots \mathfrak{A}_{\nu} = \mathfrak{A}_1' \mathfrak{A}_2' \dots \mathfrak{A}_{\nu'},$$

where \mathfrak{A}_i and \mathfrak{A}'_i are ideals containing powers of the same maximal

ideal \mathfrak{P}_i , $(i=1, 2, \ldots, \nu)$. Since \mathfrak{A}'_1 contains a power of \mathfrak{P}_1 , it is prime to all of \mathfrak{A}_2 , \mathfrak{A}_3 , \mathfrak{A}_{ν} and consequently to their product [§ 4]; similarly \mathfrak{A}_1 is prime to the product $\mathfrak{A}_2' \mathfrak{A}_3' \ldots \mathfrak{A}_{\nu}'$. Therefore

$$(\mathfrak{A}_{1}\mathfrak{A}_{1}', \mathfrak{A}_{1}\mathfrak{A}_{2} \dots \mathfrak{A}_{\nu}) = \mathfrak{A}_{1}(\mathfrak{A}_{1}', \mathfrak{A}_{2}\mathfrak{A}_{3} \dots \mathfrak{A}_{\nu}) = \mathfrak{A}_{1},$$

$$(\mathfrak{A}_{1}'\mathfrak{A}_{1}, \mathfrak{A}_{1}'\mathfrak{A}_{2}' \dots \mathfrak{A}_{\nu}') = \mathfrak{A}_{1}'(\mathfrak{A}_{1}, \mathfrak{A}_{2}'\mathfrak{A}_{3}' \dots \mathfrak{A}_{\nu}') = \mathfrak{A}_{1}',$$

while $\mathfrak{A}_1\mathfrak{A}_2 \ldots \mathfrak{A}_{\nu} = \mathfrak{A}'_1\mathfrak{A}'_2 \ldots \mathfrak{A}'_{\nu}$. So that $\mathfrak{A}_1 = \mathfrak{A}'_1$. Taking \mathfrak{A}_i for \mathfrak{A}_1 , similarly we can prove $\mathfrak{A}_i = \mathfrak{A}'_i$: so that the two resolutions are identical.

§ 20. Let \mathfrak{P}_1 , \mathfrak{P}_2 ,, \mathfrak{P}_{ν} be the distinct maximal ideals of a proper ring \mathfrak{R} which contain a given ideal \mathfrak{A} of \mathfrak{R} . Then \mathfrak{A} can be resolved into factors as follows:

$$\mathfrak{A} = \mathfrak{A}_1 \mathfrak{A}_2 \dots \mathfrak{A}_{\mathsf{v}},$$

where $\mathfrak{A}_1, \mathfrak{A}_2, \ldots, \mathfrak{A}_{\nu}$ are ideals containing powers of $\mathfrak{P}_1, \mathfrak{P}_2, \ldots, \mathfrak{P}_{\nu}$ respectively.

Now take a chief-composition-series of \Re

having \mathfrak{A}_i for the last term, and the quotient $\mathfrak{R}/\mathfrak{P}_i$ is a field, but the others $\mathfrak{P}_i/\mathfrak{P}_{i1}$, $\mathfrak{P}_{i1}/\mathfrak{P}_{i2}$, are not fields, viz. \mathfrak{P}^2_i , \mathfrak{P}^2_{i1} , are contained in \mathfrak{P}_{i1} , \mathfrak{P}_{i2} , respectively [§ 18]. Multiplying each term of the series by the product $\mathfrak{A}_1\mathfrak{A}_2$ \mathfrak{A}_{i-1} we have the series of ideals

$$\begin{aligned} \mathfrak{A}_1\mathfrak{A}_2\ldots\mathfrak{A}_{i-1}, \quad \mathfrak{A}_1\mathfrak{A}_2\ldots\mathfrak{A}_{i-1}\mathfrak{P}_i, \quad \mathfrak{A}_1\mathfrak{A}_2\ldots\mathfrak{A}_{i-1}\mathfrak{P}_{i1}, \quad \mathfrak{A}_1\mathfrak{A}_2\ldots\mathfrak{A}_{i-1}\mathfrak{P}_{i2}, \\ \ldots, \quad \mathfrak{A}_1\mathfrak{A}_2\ldots\mathfrak{A}_{i-1}\mathfrak{A}_i. \end{aligned}$$

The quotient $\mathfrak{A}_1\mathfrak{A}_2 \ldots \mathfrak{A}_{i-1}/\mathfrak{A}_1\mathfrak{A}_2 \ldots \mathfrak{A}_{i-1}\mathfrak{P}_i$ is a field; because it follows from $(\mathfrak{A}_1\mathfrak{A}_2 \ldots \mathfrak{A}_{i-1}, \mathfrak{P}_i) = \mathfrak{R}$ [by Congr., § 11, theorem]. But $(\mathfrak{A}_1\mathfrak{A}_2 \ldots \mathfrak{A}_{i-1}\mathfrak{P}_i)^2$, $(\mathfrak{A}_1\mathfrak{A}_2 \ldots \mathfrak{A}_{i-1}\mathfrak{P}_{i1})^2$, evidently are contained in $\mathfrak{A}_1 \mathfrak{A}_2 \ldots \mathfrak{A}_{i-1} \mathfrak{P}_{i1}$, $\mathfrak{A}_1 \mathfrak{A}_2 \ldots \mathfrak{A}_{i-1} \mathfrak{P}_{i2}$, respectively.

Therefore if we take a chief-composition-series¹ of \Re such that it contains the ideals

 $\mathfrak{P}_{1}, \mathfrak{P}_{11}, \mathfrak{P}_{12}, \dots, \mathfrak{A}_{1}, \mathfrak{A}_{1}\mathfrak{P}_{2}, \mathfrak{A}_{1}\mathfrak{P}_{21}, \mathfrak{A}_{1}\mathfrak{P}_{22}, \dots, \mathfrak{A}_{1}\mathfrak{A}_{2}, \mathfrak{A}_{1}\mathfrak{A}_{2}\mathfrak{P}_{3}, \mathfrak{A}_{1}\mathfrak{A}_{2}\mathfrak{P}_{31}, \mathfrak{A}_{1}\mathfrak{A}_{2}\mathfrak{P}_{32}, \dots, \mathfrak{A}_{1}\mathfrak{A}_{2}\mathfrak{A}_{3},$

¹ Such a series yevidently exists.

•••••••••••••••••••

 $\mathfrak{A}_1 \ldots \mathfrak{A}_{\nu-1} \mathfrak{P}_{\nu}, \quad \mathfrak{A}_1 \ldots \mathfrak{A}_{\nu-1} \mathfrak{P}_{\nu 1}, \quad \mathfrak{A}_1 \ldots \mathfrak{A}_{\nu-1} \mathfrak{P}_{\nu 2}, \ldots, \mathfrak{A}_1 \ldots \mathfrak{A}_{\nu-1} \mathfrak{A}_{\nu},$

and has \mathfrak{A} for the last term, then the set of quotient rings derived from it contains just ν fields

$$\Re/\mathfrak{P}_1, \ \mathfrak{A}_1/\mathfrak{A}_1\mathfrak{P}_2, \ \mathfrak{A}_1\mathfrak{A}_2/\mathfrak{A}_1\mathfrak{A}_2\mathfrak{P}_3, \ \dots, \\ (\mathfrak{A}_1 \dots \mathfrak{A}_{\nu-1})/(\mathfrak{A}_1 \dots \mathfrak{A}_{\nu-1}\mathfrak{P}_{\nu}).$$

But two chief-composition-series with the same last term lead to two sets of quotient rings which are identical [Congr., §13, theorem]. Therefore we have the

THEOREM: The number of the maximal ideals of a proper ring \Re which contain a given ideal \mathfrak{A} of \Re is equal to the number of the fields which are contained in the set of quotient rings derived from a chiefcomposition-series of \Re with the last term \mathfrak{A} .

Φ -Function : Fermat's Theorem.

§ 21. The function $\Phi(\mathfrak{A})$. Let \mathfrak{A} be an ideal of a proper ring \mathfrak{R} , and

$$R_1, R_2, ..., R_{\lambda}$$

a complete set of incongruent (mod. \mathfrak{A}) elements of \mathfrak{R} . The number of the elements of the set which are prime¹ to \mathfrak{A} is denoted by the symbol² $\Phi(\mathfrak{A})$ as a number dependent on \mathfrak{A} ; and let $\Phi(\mathfrak{A})=\mathfrak{I}$ for $\mathfrak{A}=\mathfrak{R}$.

1.° First to determine the Φ -function of an ideal containing a power of maximal ideal, we suppose that \mathfrak{A} is an ideal of a proper ring \mathfrak{R} which contains a power of a maximal ideal \mathfrak{P} . Then \mathfrak{P} contains \mathfrak{A} , and an element of \mathfrak{R} which does not belong to \mathfrak{P} is prime to \mathfrak{A} . [§ 4]. Now let

(1)
$$\rho_1, \rho_2, \ldots, \rho_n$$
 $(n=n(\mathfrak{P}))$

be a complete set of incongruent (mod. \mathfrak{P}) elements of \mathfrak{R} , and

(2)
$$\pi_1, \pi_2, ..., \pi_m$$

a complete set of incongruent (mod. \mathfrak{A}) elements of \mathfrak{P} . Then the *nm* elements

¹ The phrase that an element R is prime to \mathfrak{A} is used to denote that the principal ideal (R) is prime to \mathfrak{A} .

² As in the case of ideals in algebraic number-fields.

Masazo Sono.

(3)
$$\rho_i + \pi_j$$
 $(i = 1, 2, ..., n; j = 1, 2, ..., m)$

evidently form a complete set of incongruent (mod. \mathfrak{A}) elements of \mathfrak{R} , and the number of the elements of (3) which do not belong to \mathfrak{P} is $\Phi(\mathfrak{A})$

But if $\rho_i \equiv 0 \pmod{\Re}$, $\rho_i + \pi_j \equiv 0 \pmod{\Re}$ for every j = 1, 2, ..., m; conversely if $\rho_i + \pi_j \equiv 0 \pmod{\Re}$, $\rho_i \equiv 0 \pmod{\Re}$. And there exists in (1) just one element which belongs to \mathfrak{P} . Therefore the number of the elements of (3) which do not belong to \mathfrak{P} is

$$nm-m = nm\left(\mathbf{I} - \frac{\mathbf{I}}{n}\right) = n(\mathfrak{A})\left(\mathbf{I} - \frac{\mathbf{I}}{n(\mathfrak{B})}\right).$$

And hence we have

$$\Phi(\mathfrak{A}) = n(\mathfrak{A}) \left(\mathbf{I} - \frac{\mathbf{I}}{n(\mathfrak{P})} \right).$$

2.° Next suppose that two ideals \mathfrak{A} and \mathfrak{B} are prime to each other. Then the cross-cut of \mathfrak{A} and \mathfrak{B} is equal to the product \mathfrak{AB} [§ 5, 1st theorem], and

$$n(\mathfrak{AB}) = n(\mathfrak{A}) \cdot n(\mathfrak{B})$$
 [§ 5, Cor.].

(4)
$$a_1, a_2, ..., a_{\mu},$$

(5) $\beta_1, \beta_2, \ldots, \beta_{\nu}$

be complete sets of incongruent (mod. \mathfrak{AB}) elements of \mathfrak{A} and \mathfrak{B} respectively. Then, as shown in Congr., § 11, the elements of (4) being considered for elements of $(\mathfrak{A}, \mathfrak{B}) = \mathfrak{R}$ and being taken modulo \mathfrak{B} form a complete set of incongruent (mod. \mathfrak{B}) elements of \mathfrak{R} . And hence the number of the elements of (4) which are prime to \mathfrak{B} is $\Phi(\mathfrak{B})$. Similarly the number of the elements of (5) which are prime to \mathfrak{A} is $\Phi(\mathfrak{A})$.

Since $(\mathfrak{A}, \mathfrak{B}) = \mathfrak{R}$, an element of \mathfrak{R} is expressed in the form A+B, where A and B are elements of \mathfrak{A} and \mathfrak{B} respectively, while A and B are given by the forms $a_i + D'$ and $\beta_j + D''$ respectively where D', D'' denote elements of $\mathfrak{A}\mathfrak{B}$. Therefore every element of \mathfrak{R} is expressed in the form $a_i + \beta_j + D$, where D is an element of $\mathfrak{A}\mathfrak{B}$. But two sums $a_i + \beta_j$ and $a_s + \beta_t$ are congruent (mod. $\mathfrak{A}\mathfrak{B}$) when, and only when, $a_i \equiv a_s$ and $\beta_j \equiv \beta_t$ (mod. $\mathfrak{A}\mathfrak{B}$) simultaneously. Therefore the $\mu\nu$ sums

(6)
$$a_i + \beta_j$$
 $(i = 1, 1, ..., \mu; j = 1, 2, ..., \nu)$

form a complete set of incongruent (mod. IB) elements of R.

But by §6, Cor. we have

$$\begin{aligned} ((a_i+\beta_j),\mathfrak{AB}) &= ((a_i+\beta_j),\mathfrak{A}) ((a_i+\beta_j),\mathfrak{B}) \\ &= ((\beta_j),\mathfrak{A}) ((a_i),\mathfrak{B}). \end{aligned}$$

Therefore $a_i + \beta_j$ is prime to \mathfrak{AB} when, and only when,

$$egin{aligned} &((eta_j),\mathfrak{A})\,=\,\mathfrak{R}\ &((a_i),\mathfrak{B})\,=\,\mathfrak{R} \end{aligned}$$

simultaneously. The number of the elements of (5) which are prime to \mathfrak{A} is $\Phi(\mathfrak{A})$, and that of those of (4) which are prime to \mathfrak{B} is $\Phi(\mathfrak{B})$, as shown above. Hence the number of the elements of (6) which are prime to \mathfrak{AB} is equal to $\Phi(\mathfrak{A}) \cdot \Phi(\mathfrak{B})$; so that

$$\Phi\left(\mathfrak{AB}\right) = \Phi\left(\mathfrak{A}\right) \cdot \Phi\left(\mathfrak{B}\right),$$

if $(\mathfrak{A}, \mathfrak{B}) = \mathfrak{R}$.

3°. Lastly let \mathfrak{A} be an ideal of \mathfrak{R} , and let \mathfrak{P}_1 , \mathfrak{P}_2 ,, \mathfrak{P}_{ν} be the different maximal ideals of \mathfrak{R} which contain \mathfrak{A} . Then, as shown in § 19, \mathfrak{A} may be resolved into the product of ideals prime to one another as follows:

$$\mathfrak{A} = \mathfrak{A}_1 \mathfrak{A}_2 \dots \mathfrak{A}_{\nu},$$

where $\mathfrak{A}_1, \mathfrak{A}_2, \ldots, \mathfrak{A}_{\nu}$ are ideals containing powers of $\mathfrak{P}_1, \mathfrak{P}_2, \ldots, \mathfrak{P}_{\nu}$ respectively. Since the factors are prime to one another, from 1° and 2° we have

$$\Phi(\mathfrak{A}) = \Phi(\mathfrak{A}_{1}) \Phi(\mathfrak{A}_{2}) \dots \Phi(\mathfrak{A}_{\nu})$$
$$= n(\mathfrak{A}_{1}) \left(\mathbf{I} - \frac{\mathbf{I}}{n(\mathfrak{B}_{1})} \right) n(\mathfrak{A}_{2}) \left(\mathbf{I} - \frac{\mathbf{I}}{n(\mathfrak{B}_{2})} \right) \dots n(\mathfrak{A}_{\nu}) \left(\mathbf{I} - \frac{\mathbf{I}}{n(\mathfrak{B}_{\nu})} \right)$$
$$= n(\mathfrak{A}) \left(\mathbf{I} - \frac{\mathbf{I}}{n(\mathfrak{B}_{1})} \right) \left(\mathbf{I} - \frac{\mathbf{I}}{n(\mathfrak{B}_{2})} \right) \dots \left(\mathbf{I} - \frac{\mathbf{I}}{n(\mathfrak{B}_{\nu})} \right),$$

since $n(\mathfrak{A}) = n(\mathfrak{A}_1) n(\mathfrak{A}_2)...n(\mathfrak{A}_{\nu})$ [§ 5, Cor.].

Thus we have the formula:

$$\Phi(\mathfrak{A}) = n(\mathfrak{A})\left(\mathbf{I} - \frac{\mathbf{I}}{n(\mathfrak{P}_1)}\right)\left(\mathbf{I} - \frac{\mathbf{I}}{n(\mathfrak{P}_2)}\right) \dots \left(\mathbf{I} - \frac{\mathbf{I}}{n(\mathfrak{P}_2)}\right),$$

where \mathfrak{P}_1 , \mathfrak{P}_2 ,, \mathfrak{P}_{ν} are all the different maximal ideals which contain \mathfrak{A} .

§ 22. Fermat's theorem. Let \mathfrak{A} be an ideal of a proper ring \mathfrak{R} , and ρ any element of \mathfrak{R} which is prime to \mathfrak{A} , then the congruence

and

.

Masazo Sono.

 $\rho^{\Phi(\mathfrak{A})} \equiv \mathfrak{1} \pmod{\mathfrak{A}}$

holds good.

Lemma. If an element ρ of \Re is prime to \mathfrak{A} , then every element X of \Re for which

$$\rho X \equiv 0 \qquad (\text{mod. } \mathfrak{A})$$

is congruent (mod. \mathfrak{A}) to 0.

For, if $\rho X = A$, A being an element of \mathfrak{A} , we have

while

$$((\rho X), X\mathfrak{A}) = ((A), X\mathfrak{A}),$$

$$((\rho X), X\mathfrak{A}) = X((\rho), \mathfrak{A}) = X\mathfrak{R} = (X),$$

and evidently $((A), X\mathfrak{A})$ is contained in \mathfrak{A} . Therefore (X) is contained in \mathfrak{A} .

Reterning to the theorem let

(I)
$$\rho_1, \rho_2, ..., \rho_{\mu}$$
 $(\mu = \Phi(\mathfrak{A}))$

be a set of the incongruent (mod. \mathfrak{A}) elements of \mathfrak{R} which are prime to \mathfrak{A} , and ρ an element of (1). Then the μ products

(2)
$$\rho \rho_1, \rho \rho_2, ..., \rho \rho_\mu$$

are incongruent (mod. \mathfrak{A}) to one another; because $\rho \rho_i \equiv \rho \rho_j \pmod{\mathfrak{A}}$ would involve $\rho_i \equiv \rho_j \pmod{\mathfrak{A}}$ [by lemma]. Moreover they are all prime to \mathfrak{A} [cf. § 4]. Therefore set (2), each term being taken modulo \mathfrak{A} , is identical with (1) except as regards the sequence. So that

or
$$\rho_1 \rho_2 \dots \rho_{\mu} \rho^{\mu} \equiv \rho_1 \rho_2 \dots \rho_{\mu} \quad (\text{mod. } \mathfrak{A}),$$
$$\rho_1 \rho_2 \dots \rho_{\mu} (\rho^{\mu} - \mathbf{I}) \equiv \mathbf{0} \quad (\text{mod. } \mathfrak{A}).$$

Whence it follows by lemma that

$$\rho^{u}-I \equiv 0 \qquad (\text{mod. }\mathfrak{A}),$$

since ρ_1 , ρ_2 ,, ρ_{μ} and consequently their product are prime to \mathfrak{A} .

Divisibity of Ideals.

§ 23. Let \mathfrak{A} and \mathfrak{B} be two ideals of a proper ring \mathfrak{R} ; let \mathfrak{P}_1 , $\mathfrak{P}_2, \ldots, \mathfrak{P}_{\vee}$ be the distinct maximal ideals of \mathfrak{R} which contain \mathfrak{A} , and $\mathfrak{D}_4, \mathfrak{D}_2, \ldots, \mathfrak{D}_{\mu}$ those which contain \mathfrak{B} . And suppose that

$$\mathfrak{P}_1 = \mathfrak{Q}_1, \ \mathfrak{P}_2 = \mathfrak{Q}_2, \ \ldots, \ \mathfrak{P}_{\lambda} = \mathfrak{Q}_{\lambda} \quad (\lambda \leq \nu, \mu),$$

but that no others are equal, viz. that the λ ideals $\mathfrak{P}_1, \mathfrak{P}_2, ..., \mathfrak{P}_{\lambda}$ are

 \mathfrak{A}_{λ}

the maximal ideals which contain both \mathfrak{A} and \mathfrak{B} . Then \mathfrak{A} and \mathfrak{B} may be expressed in the forms

$$\begin{split} \mathfrak{A} &= \mathfrak{A}_1 \mathfrak{A}_2 \dots \mathfrak{A}_{\nu}, \\ \mathfrak{B} &= \mathfrak{B}_1 \mathfrak{B}_2 \dots \mathfrak{B}_{\mu_1} \end{split}$$

where $\mathfrak{A}_1, \ldots, \mathfrak{A}_{\nu}, \mathfrak{B}_1, \ldots, \mathfrak{B}_{\mu}$ are ideals which contain powers of $\mathfrak{P}_1, \ldots, \mathfrak{P}_{\nu}, \mathfrak{Q}_1, \ldots, \mathfrak{Q}_{\mu}$ respectively. Again they may be rewritten as follows:

	$\mathfrak{A} = \mathfrak{A}_1 \mathfrak{A}_2 \dots \mathfrak{A}_\lambda \mathfrak{A}'$		
whore	$\mathfrak{B}=\mathfrak{B}_1\mathfrak{B}_2\dots\mathfrak{B}_\lambda\mathfrak{B}',$		
WIICIC	$\mathfrak{A}' = \mathfrak{R} \text{or} \mathfrak{A}_{\lambda+1}\mathfrak{A}_{\lambda+2} \dots$		
according as	$\lambda = \nu$ or $< \nu$,		
and	$\mathfrak{B'}=\mathfrak{R}$ or $\mathfrak{B}_{\lambda+1}\mathfrak{B}_{\lambda+2}\mathfrak{B}_{\mu}$		

according as $\lambda = \mu$ or $< \mu$. Then evidently

$$(\mathfrak{A},\mathfrak{B}')=\mathfrak{R},$$

and
$$(\mathfrak{A}',\mathfrak{B}_1\mathfrak{B}_2\ldots\mathfrak{B}_{\lambda})=\mathfrak{R}.$$

By successive use of § 6, theorem we have

$$\begin{aligned} &(\mathfrak{A},\mathfrak{B}) = (\mathfrak{A},\mathfrak{B}_{1}\mathfrak{B}_{2}\ldots\mathfrak{B}_{\lambda}\mathfrak{B}') \\ &= (\mathfrak{A},\mathfrak{B}_{1}\mathfrak{B}_{2}\ldots\mathfrak{B}_{\lambda})(\mathfrak{A},\mathfrak{B}') \\ &= (\mathfrak{A}_{1}\mathfrak{A}_{2}\ldots\mathfrak{A}_{\lambda}\mathfrak{A}',\mathfrak{B}_{1}\mathfrak{B}_{2}\ldots\mathfrak{B}_{\lambda}) \\ &= (\mathfrak{A}_{1}\mathfrak{A}_{2}\ldots\mathfrak{A}_{\lambda},\mathfrak{B}_{1}\mathfrak{B}_{2}\ldots\mathfrak{B}_{\lambda})(\mathfrak{A}',\mathfrak{B}_{1}\mathfrak{B}_{2}\ldots\mathfrak{B}_{\lambda}) \\ &= (\mathfrak{A}_{1}\mathfrak{A}_{2}\ldots\mathfrak{A}_{\lambda},\mathfrak{B}_{1}\mathfrak{B}_{2}\ldots\mathfrak{B}_{\lambda})(\mathfrak{A}',\mathfrak{B}_{1}\mathfrak{B}_{2}\ldots\mathfrak{B}_{\lambda}) \\ &= (\mathfrak{A}_{1}\mathfrak{A}_{2}\ldots\mathfrak{A}_{\lambda},\mathfrak{B}_{1}(\mathfrak{A}_{1}\mathfrak{A}_{2}\ldots\mathfrak{A}_{\lambda},\mathfrak{B}_{2}\mathfrak{B}_{3}\ldots\mathfrak{B}_{\lambda}) \\ &= (\mathfrak{A}_{1}\mathfrak{A}_{2}\ldots\mathfrak{A}_{\lambda},\mathfrak{B}_{1})(\mathfrak{A}_{1}\mathfrak{A}_{2}\ldots\mathfrak{A}_{\lambda},\mathfrak{B}_{2}\mathfrak{B}_{3}\ldots\mathfrak{B}_{\lambda}) \\ &= (\mathfrak{A}_{1},\mathfrak{B}_{1})(\mathfrak{A}_{2}\mathfrak{A}_{3}\ldots\mathfrak{A}_{\lambda},\mathfrak{B}_{1})(\mathfrak{A}_{1},\mathfrak{B}_{2}\mathfrak{B}_{3}\ldots\mathfrak{B}_{\lambda})(\mathfrak{A}_{2}\mathfrak{A}_{3}\ldots\mathfrak{A}_{\lambda},\mathfrak{B}_{2}\mathfrak{B}_{3}\ldots\mathfrak{B}_{\lambda}). \end{aligned}$$

Similarly

.

$$(\mathfrak{A}_{2}\mathfrak{A}_{3}\ldots\mathfrak{A}_{\lambda},\mathfrak{B}_{2}\mathfrak{B}_{3}\ldots\mathfrak{B}_{\lambda})$$

= $(\mathfrak{A}_{2},\mathfrak{B}_{2})(\mathfrak{A}_{3}\ldots\mathfrak{A}_{\lambda},\mathfrak{B}_{3}\ldots\mathfrak{B}_{\lambda});$

and so on. Finally we have the

THEOREM:

$$(\mathfrak{A}, \mathfrak{B}) = (\mathfrak{A}_1, \mathfrak{B}_1)(\mathfrak{A}_2, \mathfrak{B}_2) \dots (\mathfrak{A}_{\lambda}, \mathfrak{B}_{\lambda}).$$

§ 24. We now suppose that \mathfrak{A} contains \mathfrak{B} . Then $\lambda = \nu \leq \mu$, and

Masazo Sono.

 $\begin{aligned} \mathfrak{A} &= (\mathfrak{A}, \mathfrak{B}) = (\mathfrak{A}_1, \mathfrak{B}_1)(\mathfrak{A}_2, \mathfrak{B}_2) \dots (\mathfrak{A}_{\nu}, \mathfrak{B}_{\nu}), \\ \mathfrak{A} &= \mathfrak{A}_1 \mathfrak{A}_2 \dots \mathfrak{A}_{\nu}. \end{aligned}$

while

Therefore by § 19, theorem we have

$$\begin{aligned} (\mathfrak{A}_1, \mathfrak{B}_1) &= \mathfrak{A}_1; \ (\mathfrak{A}_2, \mathfrak{B}_2) &= \mathfrak{A}_2; \dots; \\ (\mathfrak{A}_{\nu}, \mathfrak{B}_{\nu}) &= \mathfrak{A}_{\nu}. \end{aligned}$$

Namely $\mathfrak{A}_1, \mathfrak{A}_2, ..., \mathfrak{A}_{\nu}$ contain $\mathfrak{B}_1, \mathfrak{B}_2, ..., \mathfrak{B}_{\nu}$ respectively.

If moreover $n(\mathfrak{P}_i^2) = [n(\mathfrak{P}_i)]^2$, the ideals \mathfrak{A}_i and \mathfrak{B}_i are powers of $\mathfrak{P}_i[\S 10. \text{ Cor.}]$, while \mathfrak{A}_i contains \mathfrak{B}_i . And hence \mathfrak{A}_i divides \mathfrak{B}_i . Therefore we have the

THEOREM: Let $\mathfrak{P}_1, \mathfrak{P}_2, ..., \mathfrak{P}_{\vee}$ be the maximal ideals of a proper ring \mathfrak{R} which contain a given ideal \mathfrak{A} of \mathfrak{R} . If

$$n(\mathfrak{P}_i^2) = [n(\mathfrak{P}_i)]^2$$

for each $i = I, 2, ..., \mathfrak{A}$ divides every ideal of \mathfrak{R} which is contained in \mathfrak{A} .

Cor. 1. A maximal ideal \mathfrak{P} of a proper ring \mathfrak{R} , for which $n(\mathfrak{P}^2) = [n(\mathfrak{P})]^2$, divides every ideal of \mathfrak{R} which is contained in \mathfrak{P} ,

In other words, if an ideal \mathfrak{A} of \mathfrak{R} is not divisible by a maximal ideal \mathfrak{P} , for which $n(\mathfrak{P}^2) = [n(\mathfrak{P})]^2$, \mathfrak{A} is prime to \mathfrak{P} , i.e, $(\mathfrak{A}, \mathfrak{P}) = \mathfrak{R}$.

Cor. 2. Under the same assumption for \mathfrak{P} as in Cor. 1, if an ideal \mathfrak{A} is contained in \mathfrak{P}^e but not in \mathfrak{P}^{e+1} , then

$$\mathfrak{A} = \mathfrak{P}^{\epsilon}$$
 or $\mathfrak{P}^{\epsilon}\mathfrak{M}$,
 $(\mathfrak{M}, \mathfrak{P}) = \mathfrak{R}$.

For, \mathfrak{P} is the only maximal ideal containing \mathfrak{P}^e , and hence \mathfrak{P}^e divides \mathfrak{A} which is contained in it [by the theorem]: so that $\mathfrak{A} = \mathfrak{P}^e \mathfrak{M}$, If $\mathfrak{M} \neq \mathfrak{N}$, $(\mathfrak{M}, \mathfrak{P})$ must= \mathfrak{N} ; because otherwise \mathfrak{M} would be divisible by \mathfrak{P} [by Cor, 1], and consequently \mathfrak{A} would be divisible by \mathfrak{P}^{e+1} , contrary to the assumption that \mathfrak{A} is not contained in \mathfrak{P}^{e+1} .

Cor. 3. Under the same assumption for \mathfrak{P} , if the product of two ideals is divisible by \mathfrak{P} , at least one of the factors is divisible by \mathfrak{P} .

For, if $\mathfrak{AB} = \mathfrak{PO}$, then evidently

$$\mathfrak{A}(\mathfrak{B},\mathfrak{P})=\mathfrak{P}(\mathfrak{Q},\mathfrak{A}).$$

Hence, if \mathfrak{B} is not divisible by \mathfrak{P} , $(\mathfrak{B}, \mathfrak{P}) = \mathfrak{R}$ [by Cor. 1], and consequently

where

$$\mathfrak{A}=\mathfrak{P}(\mathfrak{Q},\mathfrak{A}),$$

which shows that \mathfrak{A} is divisible by \mathfrak{P} .

,

§ 25. Consider a proper ring \Re of which every maximal ideal \Re is subject to the condition

 $n(\mathfrak{P}^2) = [n(\mathfrak{P})]^2.$

In \Re an ideal divides all ideals which are contained in it [by the last theorem]. The ideal $(\mathfrak{A}, \mathfrak{B})$ derived from two ideals \mathfrak{A} and \mathfrak{B} divides both \mathfrak{A} and \mathfrak{B} , while being divisible by each of the ideals which contain both \mathfrak{A} and \mathfrak{B} : so that $(\mathfrak{A}, \mathfrak{B})$ is a common divisor of \mathfrak{A} and \mathfrak{B} , while being divisible by any other common divisor.

Also the cross-cut \mathfrak{D} of \mathfrak{A} and \mathfrak{B} is a common multiple of \mathfrak{A} and \mathfrak{B} , while dividing any other common multiple of \mathfrak{A} and \mathfrak{B} .

Moreover between $(\mathfrak{A}, \mathfrak{B})$ and \mathfrak{D} the relation

$$(\mathfrak{A},\mathfrak{B})\mathfrak{D}=\mathfrak{AB}$$

holds good.

For, put

 $\mathfrak{A} = (\mathfrak{A}, \mathfrak{B}) \mathfrak{A}', \quad \mathfrak{B} = (\mathfrak{A}, \mathfrak{B}) \mathfrak{B}'.$

Then

$$(\mathfrak{A}, \mathfrak{B}) \mathfrak{A}' \mathfrak{B}' = \mathfrak{A}\mathfrak{B}' = \mathfrak{A}' \mathfrak{B},$$

and hence $(\mathfrak{A}, \mathfrak{B}) \mathfrak{A}' \mathfrak{B}'$ is contained in both \mathfrak{A} and \mathfrak{B} , and consequently in \mathfrak{D} . Therefore the product $\mathfrak{AB} = (\mathfrak{A}, \mathfrak{B})^2 \mathfrak{A}' \mathfrak{B}'$ is contained in $(\mathfrak{A}, \mathfrak{B}) \mathfrak{D}$, while containing $(\mathfrak{A}, \mathfrak{B}) \mathfrak{D}$: so that $\mathfrak{AB} = (\mathfrak{A}, \mathfrak{B}) \mathfrak{D}$.

Composite and Prime Ideals. Condition for the Unique Resolvability¹ of an Ideal into Prime Factors.

§ 26. Every ideal \mathfrak{A} of a proper ring \mathfrak{R} , which is different from \mathfrak{R} , has at least two distinct divisors, namely \mathfrak{R} and \mathfrak{A} . If it has no other divisors distinct from these, it is called a *prime* ideal: if otherwise, it is said to be *composite*.

Let \mathfrak{P} be a maximal ideal of a proper ring \mathfrak{R} . Then there are four cases to consider.

¹ If an ideal can be expressed as the product of a finite number of prime ideals, and moreover if this can be done in only one way, the ideal is said to be *uniquely resolvable* into prime factors.

Convention: When $\mathfrak{P}^{a} = \mathfrak{P}^{a+1}$, \mathfrak{P} being a prime ideal, the ideal \mathfrak{P}^{a} is considered as not uniquely resolvable, even if divisible by no other prime ideal than \mathfrak{P} .

(1) Suppose that $\mathfrak{P}^2 = \mathfrak{P}$. Then \mathfrak{P} apparently seems composite, but here *is considered as prime*, because having no other divisors distinct from \mathfrak{R} and \mathfrak{P} . And evidently *it divides each ideal of* \mathfrak{R} *which is contained in it*. For, if an ideal \mathfrak{A} is contained in \mathfrak{P} , \mathfrak{A} is divisible by an ideal containing a power of \mathfrak{P} [§ 19]. But, since $\mathfrak{P}^2 = \mathfrak{P}$, the latter coincides with \mathfrak{P} . Therefore \mathfrak{A} is divisible by \mathfrak{P} .

(2) The case in which \mathfrak{P}^2 = the o-ideal.

In this case all ideals are contained in \mathfrak{P} [§ 4, 2nd theorem], and the product of any two of them is the o-ideal. Hence the ideals, except the o-ideal, are all prime.

(3) Suppose that $\mathfrak{P}^2 \neq 0$, and that there are ideals of \mathfrak{R} , distinct from \mathfrak{P} and \mathfrak{P}^2 , which contain \mathfrak{P}^2 , viz. that $n(\mathfrak{P}^2) > [n(\mathfrak{P})]^2$ [cf. § 8].

Take an ideal \mathfrak{A} of \mathfrak{R} , which is distinct from \mathfrak{P}^2 and contains \mathfrak{P}^2 . If \mathfrak{A} were composite, all its divisors would contain \mathfrak{A} and consequently \mathfrak{P}^2 . So that they would be contained in $\mathfrak{P}[\S 4, 2nd \text{ theorem}]$, and the ideal \mathfrak{A} , which is the product of them, would be contained in \mathfrak{P}^2 , contrary to assumption. Therefore every ideal of \mathfrak{R} , which is distinct from \mathfrak{P}^2 and contains \mathfrak{P}^2 is prime.

Next let \mathfrak{M} be an ideal contained in \mathfrak{P} , and

 $\mathfrak{R}, \mathfrak{P}, \mathfrak{P}_1, \mathfrak{P}_2, \ldots, \mathfrak{P}_n, \mathfrak{M}$

a chief-composition-series of \Re with last term \mathfrak{M} . If any one of the quotient rings

$$\frac{\mathfrak{P}}{\mathfrak{P}_1}, \frac{\mathfrak{P}_1}{\mathfrak{P}_2}, ..., \frac{\mathfrak{P}_n}{\mathfrak{M}}$$

is a field, \mathfrak{M} may be resolved into two factors prime to each other [§ 16, theorem], and hence is composite. The contrary case will be left for future investigation.

(4) Lastly we suppose that there is no ideal, distinct from \mathfrak{P} and \mathfrak{P}^2 , which contains \mathfrak{P}^2 and consequently is contained in \mathfrak{P} . This is equivalent to the supposition that $n(\mathfrak{P}^2) = [n(\mathfrak{P})]^2$, [cf. §8].

Then \mathfrak{P} is prime, but every ideal of \mathfrak{R} which is contained in \mathfrak{P} is composite.

For, since $n(\mathfrak{P}^2) = [n(\mathfrak{P})]^2$, \mathfrak{P} must be prime; and every ideal contained in \mathfrak{P} is divisible by \mathfrak{P} [§ 24, Cor. I].

§ 27. THEOREM: Let I be a composite ideal of a proper ring R,

and $\mathfrak{P}_1, \mathfrak{P}_2, ..., \mathfrak{P}_{\mathbf{v}}$ the distinct maximal ideals¹ of \mathfrak{R} which contain \mathfrak{A} . 1° If

$$n(\mathfrak{P}_i^2) = [n(\mathfrak{P}_i)]^2$$
 (for every $i=1, 2, \dots, \nu$),

A can be resolved into the product of a finite number of prime ideals; 2° if

$$n(\mathfrak{P}_{i}^{e}) = [n(\mathfrak{P}_{i})]^{e} \quad \begin{pmatrix} for \ every \ i=1, 2, ..., \nu; \\ for \ every \ exponent \ e \end{pmatrix},$$

this can be done in only one way.

For \mathfrak{A} may be expressed in the form

$$\mathfrak{A} = \mathfrak{A}_1 \mathfrak{A}_2 \dots \mathfrak{A}_{\nu},$$

where $\mathfrak{A}_1, \mathfrak{A}_2, ..., \mathfrak{A}_{\nu}$ are ideals which contain powers of $\mathfrak{P}_1, \mathfrak{P}_2, ..., \mathfrak{P}_{\nu}$ respectively [§ 19, theorem]. But $n(\mathfrak{P}_i^2) = [n(\mathfrak{P}_i)]^2$ for every *i*. Therefore the maximal ideals are all prime [§ 26] and moreover \mathfrak{A}_i is equal to a power of \mathfrak{P}_i [§ 10, Cor.]. And hence \mathfrak{A} can be resolved into prime factors, as

$$\mathfrak{A}=\mathfrak{P}_{1}^{e_{1}}\mathfrak{P}_{2}^{e_{2}}\cdots\mathfrak{P}_{\nu}^{e_{\nu}}.$$

Taking up the second it is clear that a prime ideal dividing \mathfrak{A} must be one of $\mathfrak{P}_1, \mathfrak{P}_2, \ldots, \mathfrak{P}_{\nu}$, and also clear that if two resolutions are possible the same prime factors must occur in both; otherwise Cor. 3 of § 24 would be contradicted: so that the only admissible supposition is

$$\mathfrak{P}_1^{e_1}\mathfrak{P}_2^{e_2}\ldots\mathfrak{P}_{\nu}^{e_{\nu}}=\mathfrak{P}_1^{e_1'}\mathfrak{P}_2^{e_2'}\ldots\mathfrak{P}_{\nu}^{e_{\nu'}},$$

where none of the exponents e's and e''s is zero. Then, by §-19, theorem, we have

$$\mathfrak{P}_i{}^{e_i}=\mathfrak{P}_i{}^{e'_i} \quad (i=1,2,...,\nu),$$

whence by hypothesis

$$[n(\mathfrak{P}_i)]^{e_i} = [n(\mathfrak{P}_i)]^{e'_i} \qquad (i = 1, 2, ..., \nu),$$

and hence

$$e_i = e'_i$$
 $(i=1, 2, ..., \nu);$

because $n(\mathfrak{P}_i) > 1$. So that the two resolutions are identical.

§ 28. Let \Re be a proper ring subject to the conditions:

¹ N.B. The number of the maximal ideals which contain a given ideal is always finite, as shown already.

I. The product of two elements of \Re is not equal to 0, unless at least one of the factors is equal to 0;

2. Every ideal of \Re , distinct from the o-ideal, is of finite norm.

THEOREM: In order that every composite ideal of the ring \Re can be resolved into prime factors always and in only one way, it is necessary and sufficient that for every maximal ideal \Re of \Re and for every exponent e the equation

$$n(\mathfrak{P}^e) = [n(\mathfrak{P})]^e$$

should hold.

It is clear by the last theorem that the condition is sufficient for unique resolvability. Hence we need only show that it is necessary.

Let \mathfrak{P} be a maximal ideal of \mathfrak{R} . Then, by condition (1), \mathfrak{P}^2 is never the o-ideal, and consequently is of finite norm. And moreover \mathfrak{P}^2 must be distinct from \mathfrak{P} ; because otherwise the resolution of a power of \mathfrak{P} would not be unique by our convention [p. 145]. Therefore

$$n(\mathfrak{P}^2) = [n(\mathfrak{P})]^{n+2}$$

where n is 0 or a finite positive integer [cf. §§ 7,8].

If $n \ge 1$, there are ideals, distinct from \mathfrak{P} and \mathfrak{P}^2 , which contain \mathfrak{P}^2 and consequently are contained in \mathfrak{P} ; and they are all prime [§ 25]. And hence we see from the results obtained in §§ 11-15 that the powers \mathfrak{P}^2 or \mathfrak{P}^3 may be resolved into prime factors in at least two ways. Therefore, in order that a composite ideal may be uniquely resolvable into prime factors, it must be that $n(\mathfrak{P}^2) = [n(\mathfrak{P})]^2$, viz. there is no ideal, except \mathfrak{P} and \mathfrak{P}^2 , which contains \mathfrak{P}^2 .

Next \mathfrak{P}^e must $\# \mathfrak{P}^{e+1}$ for every exponent e; because otherwise \mathfrak{P}^e can be resolved into prime factors in more than one way according to our convention

Therefore, as shown in §9, R and the powers

must give a chief-composition-series of \Re : so that $n(\Re^e)$ must = $[n(\Re)]^e$ for every index e.

§ 29. Let \mathfrak{A} be an ideal containing a power of a maximal ideal \mathfrak{P} , for which $n(\mathfrak{P}^2) = [n(\mathfrak{P})]^2$. Then \mathfrak{A} is equal to a power of \mathfrak{P} , and therefore suppose that $\mathfrak{A} = \mathfrak{P}^n$.

If $\mathfrak{P}^e \neq \mathfrak{P}^{e+1}$ for every index $e \leq n$, \mathfrak{A} is uniquely resolvable into prime factors.

If, on the contrary, $\mathfrak{P}^e = \mathfrak{P}^{e+1}$ for a certain index $e \leq n$, the

resolution of \mathfrak{A} is not unique according to our convention [p. 145, foot note]. If, however, we regard \mathfrak{A} as uniquely resolvable also in the latter case, the condition for the unique resolvability requires to be changed and stated as follows:

$$n(\mathfrak{P}^2) \leq [n(\mathfrak{P})]^2$$

for each maximal ideal of the ring.

§ 30. It would be of interest to find all possible resolutions of an ideal resolvable into prime factors in two or more than two ways; but this problem must be left for future investigation, with the mere statement that, by application of the theorem of § 19 and a few others, the problem may be reduced to an investigation of resolutions of ideals which contain powers of a maximal ideal \mathfrak{P} for which $n(\mathfrak{P}^2) > [n(\mathfrak{P})]^2$.

November, 1917.