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INTRODUCTION. 

The homogeneous partial differential equation of the first order 

XJ-$ 1(x) iJJ + ~2(x) iJJ + ... + ~,.(x) ij =o, 
<1x1 dx2 ox,. 

where ~1(.i-), ~lx), ... /n(.x) being holomorphic about the point (o, o, ... o) 
and 

i= r, 2, ... n, 

the dotted part· being terms of higher degrees, has n- 1 algebroidal 
solutions in the vicibity of the point (o, o, ... o), provided Ai, .A.2, .. .A,. 
satisfy the following conditions : 

1. 0 the relations 

i= r, 2, ... n 

are not satisfied by any positive integral values of pi, p2, ... p,,., pro-

vided P1 +P2+ ... +p,. >-2; 
2°. if we denote .A.1, .A.2, ... A,., by the points on a plane, then 

we can trace a convex polygon in which these n points lie but which 
does not contain the origin ; or we may say that this is a straight 
line through the origin, on one side of which all the n points lie. 

In the previous memoir1 these are called Poincare's conditions; 

1 T. Matsumoto, Memoir of the College of Science, Kyoto Imp. Univ., Vol. II, No. 

5 (1917), On the solutions .... 
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and the writer discussed the case where the coefficients ~1(z),;lz), ... 
~ .. (.x) commence by general linear homogeneous functions of z1,z2, 

... .xn; and the case of a complete system. In both cases Poincare's 
conditions had a determinative power for the existence of solutions, 
i.e., for the existence of holomorphic solutions of the equa­
tions: Xf=AJ, i= r, 2, ... n. In the first part of the present memoir, 
the author wishes to make, about this equation, some comments with 
respect to Poincare's conditions and in the next part some considera­
tions of the equation Xf = A;f are extended over the partial homoge­
neous differential equations of a higher order in which we shall obtain 
a glance at the relations existing between our problem and the 
ordinary differential equations of Fuchs' class. 

I. 

I. When the system of numbers Ai, ).2, ... A,. satisfy the second 
part of Poincare's conditions but not the first part i.e., if for positive 
integral values of jJ1, p2, ... p,. a relation e.g., for i = n ; 

exist, we shall prove that the total number ef such relations is 
finite. For when such relations as (r) would exist for infinitely many 
times, then the total sum of integers : Pi+ p2 + ... + p,. must increase 
indefinitely. But since ).1, A2, • .,;,,,. satisfy the second pa_rt of Poincare's 
conditions, as usual the centre of masses 

P1A1 + Pi2 + ... + p,.;,," 
P1+P2+ ... +p,,. (2) 

cannot be the origin, i.e., its absolute value must always be greater 
than a positive number e. But when p1 + p2 + ... + p,. become sufficient­
ly great, the ratio 

P1;,,1 +P)2+ ... +JnA,.-A,,. 
P1 + h + • • • + p,. - I 

approaches (2). Therefore from certain value of Pi+ h+ ... +p,., (r) 
can not be satisfied. 

2. To test whether such a relation as (r) exist between ).'s, let 
g be a straight line on one side of which the n points ).1, 2, •• .A,. lie. 
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Multiply these numbers by e"-i, where a is a certain real quantity. Then 
all the real parts of A1e°'i, A2e°'i, ... A,,e°'i may be made positive ; for the 
multiplication by such a number is nothing but a rotation of amount 
a, of the straight line g about the origin, and hence g may be made 
to coincide with the y-axis. Therefore assume the transformation has 
already been done, then the real parts of Ai, At, ... A,. are all positive, 
Moreover suppose that the real parts of 

are of an increasing order. Then if a relation hold : 

then p., ... p,. must be zero, or else after our arrangements, the real 
part of the sum of the terms of the left-hand side is greater than that 
of ..l... This is absurd. Therefore it is only possible that 

Therefore we may determine all possible relations such as (4). 
3. Given the equation 

where the dotted parts stand for terms of higher degrees, suppose, 
A1, A2, ... An being in the previous arrangement (3), that 

(6) 

where pi, .. ,P, .are positive integers whose total sum is not less than 2. 

We make a further assumption that in (6) none of Ai, .. ,A. can linearly 
be expressed by the other, i.e., they fulfil the first part of Poincare's 
conditions. This assumption is possible, for if A1 be not so, then we 
have only to eliminate it from (6). But as we have proved, since 
the total number of such a relation as (6) is finite, the case may occur 
where Pi+ ... + p. is maximum. Under these conditions the equation 
(S) has a holomorphic solution commencing with the term 

Pi p. 

Pi p. 
/j=z1 ... z. + ... , (7) 

By the method of calculations of limits, often used in the previous 
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Memoir, the unique existence of the solution fj can easily be proved. 
It is our purpose to show that this solution is not helpful for s?lving 
Xf=o. 

Since J.1, ... A.,: satisfy both parts of Poincare's conditions, the 
equations 

h= r, ... i, (8) 

have holomorphic solutions of the form 

h= I, ••• i, 

the dotted parts being terms of higher degrees. Now consider the 
product 

Pl Pi Pt p;, 
F=fi .. :ft =Z1 ••• X,: + ... 

Then clearly by (6), 

XF=(p1J.1 + ... + piJ..)F=J.iF. 

On the other hand since the solution fj is unique, it must hold that 

Pi Pt 
IJ=F=f;_ .. f:t 

r. Now consider the equation 

II. 

07 ii1/ <)2_/ (ar+ ... )- +(2bxy+ ... )---+(cy2+ ... )--
ax2 dxoy ay2 

Q.E.D. 

of ) of +(hz+ ... )- +(ky+ ... - + (J.+ ... )f=o, (r) 
ox i)y 

where a, b, c, h, k, J. are constants not zero and the dotted parts 
stand for terms of higher degrees written before. All the functions 
being holomorphic about (o, o), the origin (o, o) is a singular points 
of this equation. 

At the origin, we must have 

J.(f)o=o, hence (f)0=0. 

Differentiating (1) by x resp. y and putting z=y=o, we have 

(h +J.)( of ) =o, ax O 

If neither h + J., nor k +). be zero, we must take 
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( r':f) (ill) 
~ o= ~ o=o. 

Differentiating with respect to x twice, x and y, finally y twice, we 
have, for (o, o). 

( 02.f) (2a+2h+A) -- =o az2 o , 

(2b+h+k+A)( i/2.f ) =o, 
oxt1y 0 

(zc+ zk+A)( iJ2.f) =o, 
i)y2 0 

Therefore suppose e.g., A satisfy the equation 

2a+2h+A=o, 

then the solution f of the equation (I) commences by x\ 

(2) 

2. Now differentiate the equation (1), _p-times with respect to x 

and q-times with respect toy, then for x=y=o, the term with diff­
erential quotient of highest order is found to be 

[a(P) 2+2bpq+lq) 2+hp+kq+ JJ( i)P+'l_f) 
2 ,2 ox1'df o 

=[ap2+2bpq+cq2+(h-a)p+(k-b)q+A] ( iJP+'l_f) 
i) x1' elf o, 

the other being of lower order. If the coefficient 

ap2 + 2bpq+ cq2+ (h-a)p+ (k-b)q+J 

does not vanish for any positive integral values of p, q such as 

then we may calculate all the values of differential quotients at x= y 
=o, step by step. 

3. Now put 

f=Ar-t-v, (5) 

A being a constant, the equation (I) may be written as follows : 
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where 'ho, 'P11, 'Po2, X commence at least by terms of the third degree, 
'Fi, ¢•2 by the second degree, 0 by the first degree. Let M be the 
maximum modulus of these functions, r the smallest radius of con­
vergent circles about (o, o), then we have, as fonctions majorantes, 

M(-r!y)3 

< 
x+y 

I---
r 

M(x:y)z 
<; 

I-
x+y 

r 

M x+y 
r 

< 

I- z+y 
r 

Hence consider the equation 

e (xz a2 V + zxy az V + yz oz V + .r ~ + y iJ V - v) 
or o.xay oy2 oz iJy 

M(z+y)3 
r ( 02 V iJ~ V 0·1 V ) =---- --. +--+--+1 

r - x+ y ax- o.xay ay2 
r 

M(x+y)2 M 
x+y 

r ( iJV av)+ 
r 

(7) + + V, 
I - z+y iJ,r iJy I - x+y 

r r 

where e is to be determined. Every term of each coefficient of the 
right-hand side of (6) is, in absolute value, less than the correspond­
ing term of (7). Now differentiating the equation (7) p-times with 
respect to .r and q-times with respect to y and put .r=y=o, we get, 
from the left-hand side of (7), the differential quotient of highest order, 

e(p2+zpq+q2- 1) ( av+qv) 
dzPc'lyq o. 
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Therefore if for p + q ~ 3, 

\ap~+ 2bpq+cl+(h-a)p+ (k-b)q+Aj 7 _ e > o, (8) 
(P+q)2- I 

the series calculated from (7) serves for fonction maforante of that 
of (6). 

4. The fraction (8), for sufficiently great p + q, is nearly equal to 

iap2 + 2bpq + cq\ 
(p+q)2 

(9 

There if 1°, the sum (3), i.e., numerator of (8) do not vanish for p+ 
q > 3, and 2°, the points a, b, c marked on Gauss' plane lie all on 
one side of a straight line through the origin, the inequality (8) may 
be fulfilled. These are nothing but Paincare's conditions. 

Under these conditions we shall prove the existence of a power­
series commencing with terms of the third degree in z and y which 
satisfy the equation (7). Put 

x+y=u, 

then we see, in the equation (7), that Vis a function of u and it 
may be written as follows : 

e (u2 d2 V + u dV - v) 
du2 du 

= ~ ~(3 di~ +I)+__!!_ ~(2 dV)+ M-u-V. (ro) 
r r-- u du r r- tt du r- u 

This equation, after dividing by e, may be written in the following 
form: 

the dotted parts stand for the terms of higher degrees written before 
and m is a constant. 

To solve this equation ( I I), consider the equation without the 
second member: 

2 d2V dV u(r+ ... )~. +u(1+ ... )~-(1+ ... )V=o. 
du2 du 

This equation belongs to the equations of the second order of Fuchs' 
class. Its characteristic equation is 
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~(r)=r(r-1)+r-1=0. 

The roots of this equation at u = o are 

where r 2-r1 = -2 which is not a positive integer. Therefore the 

equation (12) has an integral 

T,~=u U(u), (13) 

where U(u) is holomorphic and U(o)=t=o. To find the integral of (rr), 

put 

where the function C is to be determined. 

Putting 
dC --=z, 
du 

z is found to satisfy the equation 

u(U(o)+ ... )__!_z_ + (3U(o)+ ... )z=mu-t- ..... . 
du 

Therefore z is of the form 

Hence 

C= f zdu = S;(o) zt2(1+ ... ), 

V = power-series commencing by the term il. 

Thus our equation (7) has holomorphic solution commencing by (z+ 

y)8, which is the required fonction maforante of the solution v (z, y) 
of the equation (6). Hence, the partial differential equation (I) : 

2 o2f .., o2f 2 a2_/ (az + ... ) -- . + (~bxy + ... )--- + (cy + ... ) - -oz· ozoy oy2 

+(lzz+ ... ) }L_ + (ky + ... ) ___!L + (-<+ ... )f =o, 
dz oy 

where the dotted parts mean terms of higher degrees than the foregoing 

terms, under Poincarc's conditions has a ho!omorphic solution of the form 

f=A.x2+ ... , 
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p,-ovided the equation (2) be fulfilled: 

2a+zw:+l=o. 

5. The result can easily be extended to the case where the first 
part of Poincare's conditions is not satisfied, namely when 

ap2+ 2bpq·+ cq2+ (h-a)p+ (k-b)q+l=o. 

Suppose this relation is the last one where p + q is a maximum in­
teger. Then 

( ap,r;) 
i)zPiJf 0 

is arbitrary. Hence put, instead of (5), 

f=AzPf+v, 

then in ( 6) the function X will commence with terms of (p + q + r) tit 
d.egree, the other remaining the same. Consequently the second mem­
ber of ( r r) will be of the form 

muP+g+i + .... 
Moreover C will commence with uP+g. Therefore the lowest power in 
V is p + q + I, hence v will commence by the power p + q + I. Thus, 
when a, b, c lie on one side of a straight line through the origin, our 
eqnation (1) has still a holomorphic solution in the vicinity of (o, o). 

6. Our considerations may be extended easily for cases of equations 
of higher order or for cases of equations depending upon variables 
more than two, For the equation of higher order a little modification 
is necessary. Let us consider the equation of the nth order with 
two variables : 

(a,,, 0z"+ ... ) ~; + ((f)a n-1, 1X"-l_y+ .,.) i},:!.ii'J_y + ••• + (ao,nJ'"+ .. ,) :; 

an-y an-y 
+ (bn-1 o x"-1 + • •• ) -- + (("11)bn-• 1 x"-2y+ ... ) ---=--... . ax"-1 -. ax"-tay 

an-y 
+ (bo,,._i.J'n-l + ... ) ~n-1 

+ 

where in general the term of lowest degree in the coefficient of 

a? is (11!) xm- y• multiplied by a constant. 
dx"'·•yi i 
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For this epuation, the equation corresponding to ( I I) is of the form : 

dn V d"'-1 V dV u"(r+ ... )-+un----1(1 + ... )-- + ... +u(1 + ... )--
dzl' du"-1 du 

-(r+ ... )V=muh, (15) 

the dotted part being as usual terms of higher degrees. The charac• 
teristic equation of ( I 5) without the second member is 

<p(r)=r(r- 1) (r- 2) ... (r-n+ 1) +... +r(r- 1)+r- 1 =o. (16) 

This equation has a root r1 = 1 , and the other roots cannot be a positive 
integer greater than unity. Therefore when ri runs the series of the 
other roots, r,-r1 cannot be a positive integer. Hence our Fucks' 
equation, the equation ( 15) without the second member, has a holo­
morphic integral commencing with the term u, while the other in­
tegral cannot be holomorphic at u=O. 

7. To prove the existence of a holomorphic solution of the equation 
(15), consider in general the equation 

Then 

dF dp _ dn+i V , , d" V 
P- -F- -PPo --+(pPo +PP1-PP0)-+ ..... . du du dun+i dun 

In our case 

Pi =u"-•+ ... , i=o, r , ..• n- r, 
p,.=-1+ ... , 
p =muh+ ... , 
P'=mhuh-1+ ... , 

PP/ +PPm-P'p,=(muh+ ... ) ( (n-i)un-i-t+ ... ) +(mu~+ ... ) 
+ ... )-°(mhuh-1 + ... ) (u•H+ ... ) 

=muh-1( (n+ I -i-h)u"-i+ ... ). 
PPo=muh-1(u"+1+ ... ), 

PP' n-1 + PP,.-P'Pn-1 =muh-t( - hu + ... ), 
pp,,/-p'p,.=muh-1(h+ ... ). 

Hence the equation 

• 
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dF dp 
P du -F du =o, (17) 

will be, after dividing by mu"-1, 

(u"+l+ ... ) d"+1v + ((n + 1-h)u"+ ... ) dnv + ... 
du"+1 dun 

. dn-iV 
+( (n+ 1-i-h)u"--,,+ ... )--+ ... 

dun-• 

dV + (-hu + ... )- +(h+ ... )V=o. 
du ( r8) 

The characteristic equation is, therefore, 

<p(r)=r(r- 1) (r- 2) ... (r-n)+(n+ 1-h)r(r- 1)(r-2) ... (r-n+ 1) + ... 
+(n+ 1-i-h)r(r- 1) (r-2) ... (r-n+i+ 1)+ ... +(-h)r+h=O. 

But since 

h(h-1) ... (lz-n+i)+(n+ 1-i-h)h(h-1) ... (h-n+i+ 1) 
=h(h-1) ... (h-n+i+ 1), 

we have by successive calculation 

<p(h)=h(h-- 1)-h2 +h=o. 

Thus h is a root of the characteristic equation <p(r) =O. Moreover if 
this equation has an integral root, then it must be a divisor of h ; 
therefore when r, runs the series of the other root, r.-h cannot be a 
positive integer. Therefore the equation ( I 8) has a holomorphic in­
tegral such as 

V=Ku"+ ... , 

K being a constant. As we have said in the preceding paragraph, 
this cannot be an integral of the equation (r 5) without the second 
member. Hence from (17), 

F(VJ=cp, 

c being a constant. Therefore ~ is an integral of the equation ( I 5 ). 

Thus our equation ( 1 5) has a holomorphic solution commencing with 
u" which serves as the fonction maJorante of the equation (r4). Thus 
we may conclude as follows : The equation ( 14.), has always a holo­
morphic solution in the vicinity of (o, o) provided a,,, 0 ... a0.,.. marked as 
points of a Gauss' plane, lie on one side of a straight line through the 
origin. It is of-course necessary that A satisfy such an equation as (3'). 


