SYMBOLIC DYNAMICAL SYSTEMS AND ENDOMORPHISMS ON C*-ALGEBRAS

横浜市立大学・総合理学研究科 松本健吾 (KENGO MATSUMOTO)

Department of Mathematical Sciences Yokohama City University Seto 22-2, Kanazawa-ku, Yokohama 236-0027, JAPAN

1. Introduction

This article is a survey of the author's recent preprint entitled "Actions of symbolic dynamical systems on C^* -algebras", that is written based on the talk at RIMS, Jan. 2004. Details are given in the preprint.

In [CK], J. Cuntz and W. Krieger have founded a close relationship between symbolic dynamics and C^* -algebras (cf.[C2]). They constructed purely infinite simple C^* -algebras from irreducible topological Markov shifts. They have proved that their stabilization with gauge action is invariant under topological conjugacy of topological Markov shifts, so that K-theoretic invariants of the C^* -algebras with gauge actions yield invariants of topological Markov shifts. The invariants are the dimension group introduced by W. Krieger [Kr] and the Bowen-Franks group [BF]. They play a crucial rôle in the classification theory of topological Markov shifts. R. F. Williams has classified topological Markov shifts in terms of an algebraic relation of underlying matrices [Wi]. The algebraic relation is called a strong shift equivalence. M. Nasu generalized Williams's classification result to sofic shifts, that are subshifts coming from finite labeled graphs [N].

In [Ma], the author introduced a notion of λ -graph system, whose matrix version is called symbolix matrix system. A λ -graph system is a generalization of a finite labeled graph and presents a subshift. Conversely any subshift is presented by a λ -graph system, and the topological conjugacy classes of the subshifts are exactly corresponding to the strong shift equivalence classes of the symbolic matrix systems of the canonical λ -graph systems. He constructed C^* -algebras from λ -graph systems [Ma3] as a generalization of the above Cuntz-Krieger algebras. It has been proved that the outer conjugacy class of the stabilized gauge action is invariant under strong shift equivalence of the symbolic matrix system of the λ -graph system [Ma4]. Hence K-theoretic invariants of the C^* -algebras with gauge actions constructed from λ -graph systems yield invariants of topological conjugacy classes of subshifts.

In this survey article, we will study and generalize the above discussions in purely C^* -algebra setting. We will introduce a notion of C^* -symbolic dynamical system, that is a finite family $\{\rho_{\alpha}\}_{{\alpha}\in\Sigma}$ of endomorphisms of a unital C^* -algebra ${\mathcal A}$ indexed by symbols Σ satisfying the condition $\sum_{{\alpha}\in\Sigma}\rho_{\alpha}(1)\geq 1$. A finite labeled graph gives rise to a C^* -symbolic dynamical system $({\mathcal A},\rho,\Sigma)$ such that ${\mathcal A}$ is commutative

and finite dimensional. Conversely, if the C^* -algebra \mathcal{A} is commutative and finite dimensional, the C^* -symbolic dynamical system comes from a finite labeled graph. A λ -graph system gives rise to a C^* -symbolic dynamical system $(\mathcal{A}, \rho, \Sigma)$ such that \mathcal{A} is commutative and AF. Conversely, if the C^* -algebra \mathcal{A} is commutative and AF, the C^* -symbolic dynamical system comes from a λ -graph system ([Theorem 3.4]). We may prove that equivalence classes of the predecessor-separated λ -graph systems exactly correspond to the isomorphism classes of the predecessor-separated C^* -symbolic dynamical systems of the commutative AF-algebras ([Corollary 3.7]).

A C^* -symbolic dynamical system $(\mathcal{A}, \rho, \Sigma)$ yields a nontrivial subshift $\Lambda_{(\mathcal{A}, \rho, \Sigma)}$ over Σ and a Hilbert C^* -right \mathcal{A} -module $\mathcal{H}^{\rho}_{\mathcal{A}}$. For $\alpha_1, \ldots, \alpha_k \in \Sigma$, a word $(\alpha_1, \ldots, \alpha_k)$ is admissible for the subshift if and only if $(\rho_{\alpha_k} \circ \cdots \circ \rho_{\alpha_1})(1) \neq 0$. The Hilbert C^* -right \mathcal{A} -module $\mathcal{H}^{\rho}_{\mathcal{A}}$ has an orthogonal finite basis $\{u_{\alpha}\}_{\alpha \in \Sigma}$ and a unital faithful diagonal left action $\phi_{\rho}: \mathcal{A} \to L(\mathcal{H}^{\rho}_{\mathcal{A}})$. It is called a Hilbert C^* -symbolic bimodule over \mathcal{A} , and written as $(\phi_{\rho}, \mathcal{H}^{\rho}_{\mathcal{A}}, \{u_{\alpha}\}_{\alpha \in \Sigma})$.

We will consider C^* -algebras constructed from the Hilbert C^* -symbolic bimodules $(\phi_{\rho}, \mathcal{H}_{\mathcal{A}}^{\rho}, \{u_{\alpha}\}_{{\alpha} \in \Sigma})$. A general construction of C^* -algebras from Hilbert C^* bimodules has been established by M. Pimsner [Pim] (see [Ka] for the case of von Neumann algebras). The C^* -algebras are called Cuntz-Pimsner algebras. Its ideal structure and simplicity conditions have been studied by Kajiwara-Pinzari-Watatani [KPW] and Muhly-Solel [MS] (see also [KW], [Sch]). The constructed C^* -algebra from the Hilbert C^* -symbolic bimodule $(\phi_\rho, \mathcal{H}^\rho_A, \{u_\alpha\}_{\alpha \in \Sigma})$ is denoted by $\mathcal{A} \rtimes_{\rho} \Lambda$, where Λ is the subshift $\Lambda_{(\mathcal{A},\rho,\Sigma)}$ associated with the C^* -symbolic dynamical system $(\mathcal{A}, \rho, \Sigma)$. We call the algebra $\mathcal{A} \rtimes_{\rho} \Lambda$ the C*-symbolic crossed product of A by the subshift Λ . As in [Pim] (cf. [KPW]), the gauge action, denoted by $\hat{\rho}$, on the algebra $\mathcal{A} \rtimes_{\rho} \Lambda$ of the torus $\mathbb{T} = \{z \in \mathbb{C} \mid |z| = 1\}$ is defined as a generalization of that of the Cuntz-Krieger algebras. We remark that Pimsner showed the following fact [Pim]: For every Hilbert C^* -bimodule E over a C^* -algebra \mathcal{A} , if \mathcal{A} is commutative and finite dimensional, and if E is projective and finitely generated, the associated C^* -algebra is a Cuntz-Krieger algebra. We present the following theorem

Theorem A (Theorem 5.2). Let (A, ρ, Σ) be a C^* -symbolic dynamical system and Λ be the associated subshift $\Lambda_{(A,\rho,\Sigma)}$. Assume that A is commutative.

- (i) If $A = \mathbb{C}$, the subshift Λ is the full shift $\Sigma^{\mathbb{Z}}$, and the C^* -algebra $A \rtimes_{\rho} \Lambda$ is the Cuntz algebra $\mathcal{O}_{|\Sigma|}$ of order $|\Sigma|$.
- (ii) If A is finite dimensional, the subshift Λ is a sofic shift $\Lambda_{\mathcal{G}}$ presented by a left-resolving labeled graph \mathcal{G} , and the C^* -algebra $A \rtimes_{\rho} \Lambda$ is a Cuntz-Krieger algebra $\mathcal{O}_{\mathcal{G}}$ associated with the labeled graph. Conversely, for any sofic shift, that is presented by a left-resolving labeled graph \mathcal{G} , there exists a C^* -symbolic dynamical system (A, ρ, Σ) such that the associated subshift is the sofic shift, the algebra A is finite dimensional, and the algebra $A \rtimes_{\rho} \Lambda$ is the Cuntz-Krieger algebra $\mathcal{O}_{\mathcal{G}}$ associated with the labeled graph.
- (iii) If A is an AF-algebra, there uniquely exists a λ -graph system $\mathfrak L$ up to equivalence such that the subshift Λ is presented by $\mathfrak L$ and the C^* -algebra $A \rtimes_{\rho} \Lambda$ is the C^* -algebra $\mathcal O_{\mathfrak L}$ associated with the λ -graph system $\mathfrak L$. Conversely, for any subshift, that is presented by a left-resolving λ -graph system $\mathfrak L$, there exists a C^* -symbolic dynamical system (A, ρ, Σ) such that the associated

subshift is the subshift presented by \mathfrak{L} , the algebra \mathcal{A} is a commutative AF-algebra, and the algebra $\mathcal{A} \rtimes_{\rho} \Lambda$ is the C*-algebra $\mathcal{O}_{\mathfrak{L}}$ associated with the λ -graph system \mathfrak{L} .

We will introduce notions of strong shift equivalence and shift equivalence of C^* -symbolic dynamical systems, that are generalizations of those of square nonnegative matrices defined by Williams [Wi], of finite symbolic square matrices defined by Nasu [N] and Boyle-Krieger [BK] and of symbolic matrix systems defined by [Ma]. They are generalizations of conjugacy of single automorphisms of C^* -algebras. Strong shift equivalence and shift equivalence of Hilbert C^* -symbolic bimodules are introduced. We know that two C^* -symbolic dynamical systems $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}', \rho', \Sigma')$ are strong shift equivalent (resp. shift equivalent) if and only if their associated Hilbert C^* -symbolic bimodules $(\phi_{\rho}, \mathcal{H}^{\rho}_{\mathcal{A}}, \{u_{\alpha}\}_{\alpha \in \Sigma})$ and $(\phi_{\rho'}, \mathcal{H}^{\rho'}_{\mathcal{A}'}, \{u'_{\alpha}\}_{\alpha \in \Sigma'})$ are strong shift equivalent (resp. shift equivalent). A notion of strong shift equivalence of C^* -symbolic crossed products with gauge actions is introduced. We finally obtain the following theorem.

Theorem B(Theorem 7.5). Let (A, ρ, Σ) and (A', ρ', Σ') be two C^* -symbolic dynamical systems. Let Λ and Λ' be their associated subshifts $\Lambda_{(A,\rho,\Sigma)}$ and $\Lambda_{(A',\rho',\Sigma')}$ respectively. If (A, ρ, Σ) and (A', ρ', Σ') are strong shift equivalent, then

- (i) the subshifts Λ and Λ' are topologically conjugate,
- (ii) the C*-symbolic crossed products $(A \rtimes_{\rho} \Lambda, \hat{\rho}, \mathbb{T})$ and $(A' \rtimes_{\rho'} \Lambda', \hat{\rho'}, \mathbb{T})$ with gauge actions are strong shift equivalent, and
- (iii) the stabilized gauge actions $(\mathcal{A} \rtimes_{\rho} \Lambda \otimes \mathcal{K}, \hat{\rho} \otimes \operatorname{id}, \mathbb{T})$ and $(\mathcal{A}' \rtimes_{\rho'} \Lambda' \otimes \mathcal{K}, \hat{\rho}' \otimes \operatorname{id}, \mathbb{T})$ are cocycle conjugate, where \mathcal{K} denotes the C^* -algebra of all compact operators on a separable infinite dimensional Hilbert space.

The result (iii) is a generalization of the main result of [Ma4] (cf.[CK:3.8. Theorem]).

We define the K-groups $K_*(\mathcal{A}, \rho, \Sigma)$, the Bowen-Franks groups $BF^*(\mathcal{A}, \rho, \Sigma)$ and the dimension groups $D_*(\mathcal{A}, \rho, \Sigma)$ for $(\mathcal{A}, \rho, \Sigma)$ by setting for *=0,1

$$\begin{split} K_*(\mathcal{A},\rho,\Sigma) &= K_*(\mathcal{A} \rtimes_{\rho} \Lambda), \qquad BF^*(\mathcal{A},\rho,\Sigma) = \mathrm{Ext}_*(\mathcal{A} \rtimes_{\rho} \Lambda), \\ D_*(\mathcal{A},\rho,\Sigma) &= (K_*((\mathcal{A} \rtimes_{\rho} \Lambda) \rtimes_{\hat{\rho}} \mathbb{T}), \hat{\hat{\rho}}_*) \end{split}$$

where $\hat{\rho}_*$ is the automorphism of $K_*((\mathcal{A} \rtimes_{\rho} \Lambda) \rtimes_{\hat{\rho}} \mathbb{T})$ induced from the dual action $\hat{\rho}$ of the gauge action $\hat{\rho}$. The dimension groups and the Bowen-Franks groups are generalizations of those groups for a finite square nonnegative matrix, that is regarded as a finite labeled graph for which labels are edges itself (cf.[BF], [Kr], [LM]). Then Theorem B implies that all the abelian groups $K_*(\mathcal{A}, \rho, \Sigma)$, $BF^*(\mathcal{A}, \rho, \Sigma)$ and $D_*(\mathcal{A}, \rho, \Sigma)$ are invariant under strong shift equivalence of C^* -symbolic dynamical systems (Proposition 7.6).

2. λ -graph systems and its C^* -algebras

Let Σ be a finite set with its discrete topology. We call it an alphabet. Each element of Σ is called a symbol or a label. Let $\Sigma^{\mathbb{Z}}$ be the infinite product spaces

 $\Pi_{i\in\mathbb{Z}}\Sigma_i$, where $\Sigma_i=\Sigma$, endowed with the product topology. The transformation σ on $\Sigma^{\mathbb{Z}}$ given by $(\sigma(x_i))_{i\in\mathbb{Z}}=(x_{i+1})_{i\in\mathbb{Z}}$ is called the (full) shift. Let Λ be a shift invariant closed subset of $\Sigma^{\mathbb{Z}}$ i.e. $\sigma(\Lambda)=\Lambda$. The topological dynamical system $(\Lambda,\sigma|_{\Lambda})$ is called a subshift. We write the subshift as Λ for brevity. A finite sequence $\mu=(\mu_1,...,\mu_k)$ of elements $\mu_j\in\Sigma$ is called a word of length $|\mu|=k$. For a subshift Λ , we denote by Λ^l the set of all admissible words of length l of Λ . By a symbolic matrix \mathcal{B} over Σ we mean a finite matrix with entries in finite formal sums of elements of Σ . A square symbolic matrix \mathcal{B} naturally gives rise to a finite labeled directed graph which we denote by $\mathcal{G}_{\mathcal{B}}$. The labeled directed graph defines a subshift over Σ which consists of all infinite labeled sequences following the labeled directed edges in $\mathcal{G}_{\mathcal{B}}$. Such a subshift is called a sofic shift presented by $\mathcal{G}_{\mathcal{B}}$ and written as $\Lambda_{\mathcal{G}_{\mathcal{B}}}$ ([Fi],[Kr2],[Kr3],[We], cf. [Kit],[LM]). Throughout this paper, a labeled graph means a labeled directed graph with finite vertices and finite directed edges such as every vertex has at least one in-coming edge and at least one out-going edge.

Let \mathcal{B} and \mathcal{B}' be symbolic matrices over Σ and Σ' respectively. Let ϕ be a bijection from a subset of Σ onto a subset of Σ' , that is called a specification. Following M. Nasu in [N],[N2], we say that \mathcal{B} and \mathcal{B}' are specified equivalent under specification ϕ if \mathcal{B}' can be obtained from \mathcal{B} by replacing every symbol α appearing in \mathcal{B} by $\phi(\alpha)$. We write it as $\mathcal{B} \stackrel{\phi}{\simeq} \mathcal{B}'$. Let \mathbb{Z}_+ be the set of all nonnegative integers.

Recall that a λ -graph system $\mathfrak{L} = (V, E, \lambda, \iota)$ over Σ is a directed Bratteli diagram with a vertex set $V = \bigcup_{l \in \mathbb{Z}_+} V_l$, an edge set $E = \bigcup_{l \in \mathbb{Z}_+} E_{l,l+1}$, and a map $\lambda : E \to \Sigma$, and that is supplied with a sequence of surjective maps $\iota(=\iota_{l,l+1}) : V_{l+1} \to V_l$ for $l \in \mathbb{Z}_+$. Here the vertex sets $V_l, l \in \mathbb{Z}_+$ and the edge sets $E_{l,l+1}, l \in \mathbb{Z}_+$ are finite disjoint sets. An edge e in $E_{l,l+1}$ has its source vertex s(e) in V_l , its terminal vertex t(e) in V_{l+1} and its label $\lambda(e)$ in Σ . Every vertex in V has successors and every vertex in V, except V_0 , has predecessors. It is then required that for $u \in V_{l-1}$ and $v \in V_{l+1}$, there exists a bijective correspondence between the edge set $\{e \in E_{l,l+1} | t(e) = v, \iota(s(e)) = u\}$ and the edge set $\{e \in E_{l-1,l} | s(e) = u, t(e) = \iota(v)\}$ that preserves labels. The required property is called the local property.

Two λ -graph systems $\mathfrak{L} = (V, E, \lambda, \iota)$ over Σ and $\mathfrak{L}' = (V', E', \lambda', \iota')$ over Σ' are said to be isomorphic if there exist bijections $\Phi_V : V_l \to V_l', \Phi_E : E_{l,l+1} \to E'_{l,l+1}$ and a specification $\phi : \Sigma \to \Sigma'$ such that $\Phi_V(s(e)) = s(\Phi_E(e)), \Phi_V(t(e)) = t(\Phi_E(e))$ and $\lambda'(\Phi_E(e)) = \phi(\lambda(e))$ for $e \in E$, and $\iota'(\Phi_V(v)) = \Phi_V(\iota(v))$ for $v \in V$.

A symbolic matrix system over Σ consists of a sequence of pairs of rectangular matrices $(\mathcal{M}_{l,l+1}, I_{l,l+1}), l \in \mathbb{Z}_+$. The matrices $\mathcal{M}_{l,l+1}$ have their entries in formal sums of Σ and the matrices $I_{l,l+1}$ have their entries in $\{0,1\}$. The matrices $\mathcal{M}_{l,l+1}$ and $I_{l,l+1}$ have the same size for each $l \in \mathbb{Z}_+$ and satisfy the following relations

(2.1)
$$I_{l,l+1}\mathcal{M}_{l+1,l+2} = \mathcal{M}_{l,l+1}I_{l+1,l+2}, \qquad l \in \mathbb{Z}_+.$$

The matrices $I_{l,l+1}$, $l \in \mathbb{Z}_+$ have one 1 in each column and at least one 1 in each row. We denote it by (\mathcal{M}, I) . A λ -graph system naturally arises from a symbolic matrix system (\mathcal{M}, I) . The edges from a vertex $v_i^l \in V_l$ to a vertex v_j^{l+1} are given by the (i, j)-component $\mathcal{M}_{l,l+1}(i, j)$ of the matrix $\mathcal{M}_{l,l+1}$. The matrix $I_{l,l+1}$ defines a surjection $\iota_{l,l+1}$ from V_{l+1} to V_l for each $l \in \mathbb{Z}_+$.

and

Two symbolic matrix systems (\mathcal{M}, I) over Σ and (\mathcal{M}', I') over Σ' are said to be isomorphic if there exists a specification ϕ from Σ to Σ' and an $m(l) \times m(l)$ -square permutation matrix P_l for each $l \in \mathbb{N}$ such that

$$P_{l}\mathcal{M}_{l,l+1} \stackrel{\phi}{\simeq} \mathcal{M}'_{l,l+1}P_{l+1}, \qquad P_{l}I_{l,l+1} = I'_{l,l+1}P_{l+1} \qquad \text{for} \quad l \in \mathbb{Z}_{+}.$$

There exists a bijective correspondence between the set of all isomorphism classes of symbolic matrix systems and the set of all isomorphism classes of λ -graph systems.

Let $\mathcal{G} = (G, \lambda)$ be a labeled graph with finite directed graph G and labeling λ . Let $\{v_1, \ldots, v_n\}$ be the vertex set of G. Put $V_l = \{v_1, \ldots, v_n\}$ for all $l \in \mathbb{Z}_+$. We regard the sets $V_l, l \in \mathbb{Z}_+$ as disjoint sets. Define $\iota : V_{l+1} \to V_l$ by $\iota(v_i) = v_i$ for $i = 1, \ldots, n$. Write labeled edges from V_l to V_{l+1} for $l \in \mathbb{N}$ following the directed graph G with labeling λ . The resulting labeled Bratteli diagram with ι becomes a λ -graph system. A labeled graph and also a λ -graph system are said to be left-resolving if different edges with the same label have different terminals. Hence a lebeled graph defines a λ -graph system such that if the lebeled graph is left-resolving, so is the λ -graph system. We call the resulting λ -graph system the associated λ -graph system with the labeled graph graph. We note that any sofic shift may be presented by left-resolving labeled graph ([Kr2],[Kr3],[We]).

A λ -graph system $\mathfrak L$ gives rise to a subshift $\Lambda_{\mathfrak L}$ on the sequence space of labels appearing in the labeled Bratteli diagram. We say that $\mathfrak L$ presents the subshift $\Lambda_{\mathfrak L}$. A canonical method to construct a λ -graph system from an arbitrary subshift Λ has been introduced in [Ma]. The λ -graph system and its symbolic matrix system are said to be canonical for the subshift and written as $\mathfrak L^{\Lambda}$ and $(\mathcal M^{\Lambda}, I^{\Lambda})$ respectively.

Let $\mathfrak{L}=(V,E,\lambda,\iota)$ be a λ -graph system over Σ . For a vertex $v\in V_l$, we denote by $\Gamma_{\mathfrak{L},l}^-(v)$ the set of all label sequences of length l in \mathfrak{L} that start at vertices of V_0 and terminate at v. We say that \mathfrak{L} is predecessor-separated if for $u,v\in V_l$ the condition $\Gamma_{\mathfrak{L},l}^-(u)=\Gamma_{\mathfrak{L},l}^-(v)$ implies u=v. The canonical λ -graph systems are left-resolving and predecessor-separated.

We will introduce an equivalence relation of predecessor-separated λ -graph systems. Let (\mathcal{M}, I) and (\mathcal{M}', I') be the symbolic matrix systems over Σ and Σ' respectively. We denote by m(l) the row size of the matrix $\mathcal{M}_{l,l+1}$ and by m'(l) that of $\mathcal{M}'_{l,l+1}$ respectively. We say that (\mathcal{M}, I) and (\mathcal{M}', I') are equivalent if there exist $N \in \mathbb{Z}_+$ and a bijection $\pi: \Sigma \to \Sigma'$ such that for each $l \in \mathbb{Z}_+$, there exist an $m(l) \times m'(N+l)$ matrix H_l over $\{0,1\}$ and an $m'(l) \times m(N+l)$ matrix K_l over $\{0,1\}$ satisfying the following equations:

$$\mathcal{M}_{l,l+1}H_{l+1} \stackrel{\pi}{\simeq} H_l \mathcal{M}'_{l+N,l+N+1}, \qquad \mathcal{M}'_{l,l+1}K_{l+1} \stackrel{\pi^{-1}}{\simeq} K_l \mathcal{M}_{l+N,l+N+1},$$

$$I_{l,l+1}H_{l+1} = H_l I'_{l+N,l+N+1}, \qquad I'_{l,l+1}K_{l+1} = K_l I_{l+N,l+N+1}$$

$$H_l K_{N+l} = I_{l,2N+l}, \qquad K_l H_{N+l} = I'_{l,2N+l}.$$

We write this equivalence relation as $(\mathcal{M}, I) \cong (\mathcal{M}', I')$. Two λ -graph systems are called *equivalent* if their respect symbolic matrix systems are equivalent.

In the rest of this section, we briefly review the C^* -algebra $\mathcal{O}_{\mathfrak{L}}$ associated with λ -graph system \mathfrak{L} . The C^* -algebras have been originally constructed in [Ma3] as groupoid C^* -algberas of certain r-discrete groupoids constructed from continuous graphs in the sense of Deaconu ([De],[De2],[De3],cf.[Re]) obtained by the λ -graph systems. They are realized as universal unique C^* -algebras as in the following way. For a λ -graph system $\mathfrak{L} = (V, E, \lambda, \iota)$ over Σ , let $\{v_1^l, \ldots, v_{m(l)}^l\}$ be the vertex set V_l . We put

(2.2)
$$A_{l,l+1}(i,\alpha,j) = \begin{cases} 1 & \text{if } s(e) = v_i^l, \lambda(e) = \alpha, t(e) = v_j^{l+1} \text{ for some } e \in E_{l,l+1}, \\ 0 & \text{otherwise,} \end{cases}$$
(2.3)
$$I_{l,l+1}(i,j) = \begin{cases} 1 & \text{if } \iota_{l,l+1}(v_j^{l+1}) = v_i^l, \\ 0 & \text{otherwise} \end{cases}$$

for
$$i = 1, 2, ..., m(l), j = 1, 2, ..., m(l+1), \alpha \in \Sigma$$
.

Lemma 2.1([Ma3; Theorem A]). The C^* -algebra $\mathcal{O}_{\mathfrak{L}}$ is the universal concrete C*-algebra generated by partial isometries $S_{\alpha}, \alpha \in \Sigma$ and projections $E_i^l, i =$ $1, 2, \ldots, m(l), l \in \mathbb{Z}_+$ satisfying the following relations called (\mathfrak{L}) :

(2.4)
$$\sum_{\beta \in \Sigma} S_{\beta} S_{\beta}^* = 1,$$

(2.5)
$$\sum_{k=1}^{m(l)} E_k^l = 1, \qquad E_i^l = \sum_{i=1}^{m(l+1)} I_{l,l+1}(i,j) E_j^{l+1},$$

$$(2.6) S_{\alpha}S_{\alpha}^*E_i^l = E_i^l S_{\alpha}S_{\alpha}^*,$$

(2.6)
$$S_{\alpha}S_{\alpha}^{*}E_{i}^{l} = E_{i}^{l}S_{\alpha}S_{\alpha}^{*},$$
(2.7)
$$S_{\alpha}^{*}E_{i}^{l}S_{\alpha} = \sum_{j=1}^{m(l+1)} A_{l,l+1}(i,\alpha,j)E_{j}^{l+1},$$

for
$$i = 1, 2, \ldots, m(l), l \in \mathbb{Z}_+, \alpha \in \Sigma$$
.

If \mathcal{L} satisfies condition (I), a generalized condition of condition (I) for a finite square matrix with entries in $\{0,1\}$ defined in [CK], the algebra $\mathcal{O}_{\mathfrak{L}}$ is the unique C^* -algebra subject to the above relations (\mathfrak{L}). Furthermore, if \mathfrak{L} is irreducible, the C^* -algebra $\mathcal{O}_{\mathfrak{L}}$ is simple and purely infinite ([Ma3],[Ma5]). The gauge action $\alpha^{\mathfrak{L}}$ on $\mathcal{O}_{\mathfrak{L}}$ is defined by an action of $\mathbb{T} = \{z \in \mathbb{C} \mid |z| = 1\}$ such that $\alpha^{\mathfrak{L}}_{z}(S_{\alpha}) = zS_{\alpha}$, $\alpha^{\mathfrak{L}}_{z}(E_{i}^{l}) = E_{i}^{l} \text{ for } \alpha \in \Sigma, i = 1, 2, \dots, m(l), l \in \mathbb{Z}_{+}.$

3. C^* -symbolic dynamical systems

Let $\mathcal A$ be a unital C^* -algebra. Throughout this paper, an endomorphism of $\mathcal A$ means a *-endomorphism of \mathcal{A} that does not necessarily preserve the unit $1_{\mathcal{A}}$ of \mathcal{A} . The unit $1_{\mathcal{A}}$ is denoted by 1 unless we specify. We denote by $\operatorname{End}(\mathcal{A})$ the set of all endomorphisms of \mathcal{A} . Let Σ be a finite set. A finite family of endomorphisms $\rho_{\alpha} \in$ $\operatorname{End}(\mathcal{A}), \alpha \in \Sigma \text{ is said to be essential if } \rho_{\alpha}(1) \neq 0 \text{ for all } \alpha \in \Sigma \text{ and } \Sigma_{\alpha \in \Sigma} \rho_{\alpha}(1) \geq 1.$

It is said to be *faithful* if for any nonzero $x \in \mathcal{A}$ there exists a symbol $\alpha \in \Sigma$ such that $\rho_{\alpha}(x) \neq 0$.

Definition. A C^* -symbolic dynamical system is a triplet $(\mathcal{A}, \rho, \Sigma)$ consisting of a unital C^* -algebra \mathcal{A} and a finite family of endomorphisms ρ_{α} of \mathcal{A} indexed by $\alpha \in \Sigma$, that is essential and faithful.

Two C^* -symbolic dynamical systems $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}', \rho', \Sigma')$ are said to be isomorphic if there exist an isomorphism $\Phi : \mathcal{A} \to \mathcal{A}'$ and a bijection $\pi : \Sigma \to \Sigma'$ such that $\Phi \circ \rho_{\alpha} = \rho'_{\pi(\alpha)} \circ \Phi$ for all $\alpha \in \Sigma$.

Proposition 3.1. For a C^* -symbolic dynamical system $(\mathcal{A}, \rho, \Sigma)$, there uniquely exists a subshift $\Lambda_{(\mathcal{A}, \rho, \Sigma)}$ over Σ such that a word $\alpha_1 \cdots \alpha_k$ of Σ is admissible for the subshift if and only if $(\rho_{\alpha_k} \circ \cdots \circ \rho_{\alpha_1})(1) \neq 0$.

Suppose that \mathcal{A} is a commutative C^* -algebra $C(\Omega)$ of all continuous functions on a compact Hausdorff space Ω . An endomorphism of \mathcal{A} bijectively corresponds to a continuous map from a clopen set of Ω to Ω . Hence a C^* -symbolic dynamical system $(C(\Omega), \rho, \Sigma)$ bijectively corresponds to a family $\{f_{\alpha}, E_{\alpha}\}_{\alpha \in \Sigma}$ of clopen sets $E_{\alpha} \subset \Omega$ and continuous maps $f_{\alpha} : E_{\alpha} \to \Omega$, $\alpha \in \Sigma$ such that

$$\bigcup_{lpha \in \Sigma} E_{lpha} = \Omega \quad ext{ and } \quad \bigcup_{lpha \in \Sigma} f_{lpha}(E_{lpha}) = \Omega.$$

We will study this situation in more graphical examples for a while.

For a left-resolving labeled graph $\mathcal{G}=(G,\lambda)$, let v_1,\ldots,v_n be its vertex set. Consider the *n*-dimensional commutative C^* -algebra $\mathcal{A}_{\mathcal{G}}=\mathbb{C}E_1\oplus\cdots\oplus\mathbb{C}E_n$ where each minimal projection E_i corresponds to the vertex v_i for $i=1,\ldots,n$. Then we may define an $n\times n$ -matrix for $\alpha\in\Sigma$ with entries in $\{0,1\}$ by

(3.1)
$$A^{\mathcal{G}}(i,\alpha,j) = \begin{cases} 1 & \text{if there exists an edge } e \text{ from } v_i \text{ to } v_j \text{ with } \lambda(e) = \alpha, \\ 0 & \text{otherwise} \end{cases}$$

for $i, j = 1, \ldots, n$. We set

$$\rho_{\alpha}^{\mathcal{G}}(E_i) = \sum_{j=1}^n A^{\mathcal{G}}(i,\alpha,j)E_j, \qquad i = 1,\ldots,n, \alpha \in \Sigma.$$

Then $\rho_{\alpha}^{\mathcal{G}}$, $\alpha \in \Sigma$ define endomorphisms of $\mathcal{A}_{\mathcal{G}}$ such that $(\mathcal{A}_{\mathcal{G}}, \rho^{\mathcal{G}}, \Sigma)$ is a C^* -symbolic dynamical system.

Conversely, let $(\mathcal{A}, \rho, \Sigma)$ be a C^* -symbolic dynamical system such that \mathcal{A} is n-dimensional and commutative. Take E_1, \ldots, E_n the orthogonal minimal projections of \mathcal{A} such that $\mathcal{A} = \mathbb{C}E_1 \oplus \cdots \oplus \mathbb{C}E_n$. Define an $n \times n$ matrix $[A(i, \alpha, j)]_{i,j=1,\ldots,n}$ for $\alpha \in \Sigma$ by setting

(3.2)
$$A(i,\alpha,j) = \begin{cases} 1 & \text{if } \rho_{\alpha}(E_i) \ge E_j, \\ 0 & \text{otherwise} \end{cases}$$

so that one has

$$\rho_{\alpha}(E_i) = \sum_{j=1}^{n} A(i, \alpha, j) E_j, \quad i = 1, \dots, n, \alpha \in \Sigma.$$

Let v_1, \ldots, v_n be the vertex set corresponding to the projections E_1, \ldots, E_n . Define a directed labeled edge e such as the source vertex $s(e) = v_i$, the terminal vertex $t(e) = v_j$ and the label $\lambda(e) = \alpha$ if $A(i, \alpha, j) = 1$. Then we have a left-resolving labeled graph \mathcal{G} which presents the subshift $\Lambda_{(\mathcal{A}, \rho, \Sigma)}$. Hence we have

Proposition 3.2. For a left-resolving labeled graph \mathcal{G} , there exists a C^* -symbolic dynamical system $(\mathcal{A}_{\mathcal{G}}, \rho^{\mathcal{G}}, \Sigma)$ such that the algebra $\mathcal{A}_{\mathcal{G}}$ is commutative and finite dimensional, and the associated subshift $\Lambda_{(\mathcal{A}_{\mathcal{G}}, \rho^{\mathcal{G}}, \Sigma)}$ is the sofic shift $\Lambda_{\mathcal{G}}$ presented by \mathcal{G} . Conversely, for a C^* -symbolic dynamical system $(\mathcal{A}, \rho, \Sigma)$, if \mathcal{A} is commutative and finite dimensional, there exists a left-resolving labeled graph \mathcal{G} such that $\mathcal{A} = \mathcal{A}_{\mathcal{G}}$ and the associated subshift $\Lambda_{(\mathcal{A}, \rho, \Sigma)}$ is the sofic shift $\Lambda_{\mathcal{G}}$ presented by \mathcal{G} .

Let us apply the above discussions to general subshifts and λ -graph systems. For a λ -graph system $\mathfrak{L} = (V, E, \lambda, \iota)$ over Σ , let (\mathcal{M}, I) be its corresponding symbolic matrix system. Let $A_{l,l+1}$ be the matrices defined by (2.2). We equip V_l with discrete topology. We denote by $\Omega_{\mathfrak{L}}$ the topological space of the projective limit

$$V_0 \stackrel{\iota}{\leftarrow} V_1 \stackrel{\iota}{\leftarrow} V_2 \stackrel{\iota}{\leftarrow} \cdots$$

that is a compact, totally disconnected, second countable topological space. We regard the algebra of all continuous functions on V_l as the direct sum

$$C(V_l) = \mathbb{C}E_1^l \oplus \mathbb{C}E_2^l \oplus \cdots \oplus \mathbb{C}E_{m(l)}^l,$$

where the vertices $v_i^l \in V_l, i = 1, ..., m(l)$ correspond to the minimal projections $E_i^l \in V_l, i = 1, ..., m(l)$. We denote $C(V_l)$ by $\mathcal{A}_{\mathfrak{L},l}$. Let $\mathcal{A}_{\mathfrak{L}}$ be the commutative C^* -algebra of all continuous functions on $\Omega_{\mathfrak{L}}$, that is the inductive limit algebra

$$\mathcal{A}_{\mathfrak{L},0} \stackrel{I_{0,1}^t}{\to} \mathcal{A}_{\mathfrak{L},1} \stackrel{I_{1,2}^t}{\to} \mathcal{A}_{\mathfrak{L},2} \stackrel{I_{2,3}^t}{\to} \mathcal{A}_{\mathfrak{L},3} \stackrel{I_{3,4}^t}{\to} \cdots$$

Hence $\mathcal{A}_{\mathfrak{L}}$ is a unital commutative AF-algebra. For a symbol $\alpha \in \Sigma$ we set

$$\rho_{\alpha}^{\mathfrak{L}}(E_{i}^{l}) = \sum_{j=1}^{m(l+1)} A_{l,l+1}(i,\alpha,j) E_{j}^{l+1} \qquad \text{for } i = 1, 2, \dots, m(l).$$

By the commutation relation (2.1), $\rho_{\alpha}^{\mathfrak{L}}$ defines an endomorphism of $\mathcal{A}_{\mathfrak{L}}$. Since each vertex $v_i^l \in V_l$ except l=0 has an in-coming edge, the family $\{\rho_{\alpha}^{\mathfrak{L}}\}_{\alpha \in \Sigma}$ is essential. It is also faithful because each vertex $v_i^l \in V_l$ has an out-going edge. Thus we have

Proposition 3.3. For a λ -graph system $\mathfrak L$ over Σ , there exists a C^* -symbolic dynamical system $(\mathcal A_{\mathfrak L}, \rho^{\mathfrak L}, \Sigma)$ such that the C^* -algebra $\mathcal A_{\mathfrak L}$ is commutative and AF, and the associated subshift $\Lambda_{(\mathcal A^{\mathfrak L}, \rho^{\mathfrak L}, \Sigma)}$ coincides with the subshift $\Lambda_{\mathfrak L}$ presented by $\mathfrak L$.

Conversely

Theorem 3.4. Let (A, ρ, Σ) be a C^* -symbolic dynamical system. If the algebra A is commutative and AF, there exists a λ -graph system $\mathfrak L$ over Σ such that the associated C^* -symbolic dynamical system $(A_{\mathfrak L}, \rho^{\mathfrak L}, \Sigma)$ is isomorphic to (A, ρ, Σ) .

A C^* -symbolic dynamical system $(\mathcal{A}, \rho, \Sigma)$ is said to be *predecessor-separated* if the projections $\{(\rho_{\alpha_k} \circ \cdots \circ \rho_{\alpha_1})(1) \mid \alpha_1, \ldots, \alpha_k \in \Sigma, k \in \mathbb{N}\}$ generate the C^* -algebra \mathcal{A} .

Proposition 3.5.

(i) If a λ -graph system $\mathfrak L$ is predecessor-separated, the associated C^* -symbolic dynamical system $(\mathcal A_{\mathfrak L}, \rho^{\mathfrak L}, \Sigma)$ is predecessor-separated.

(ii) Suppose that an algebra \mathcal{A} is unital, commutative and AF. If a C^* -symbolic dynamical system $(\mathcal{A}, \rho, \Sigma)$ is predecessor-separated, there exists a predecessor-separated λ -graph system \mathfrak{L} over Σ such that the associated C^* -symbolic dynamical system $(\mathcal{A}_{\mathfrak{L}}, \rho^{\mathfrak{L}}, \Sigma)$ is isomorphic to $(\mathcal{A}, \rho, \Sigma)$.

Proposition 3.6. Let \mathfrak{L} and \mathfrak{L}' be predecessor-separated λ -graph systems over Σ and Σ respectively. Then $(\mathcal{A}_{\mathfrak{L}}, \rho^{\mathfrak{L}}, \Sigma)$ is isomorphic to $(\mathcal{A}_{\mathfrak{L}'}, \rho^{\mathfrak{L}'}, \Sigma')$ if and only if \mathfrak{L} and \mathfrak{L}' are equivalent. In this case, the presented subshifts $\Lambda_{\mathfrak{L}}$ and $\Lambda_{\mathfrak{L}'}$ are identified through a symbolic conjugacy.

Therefore we have

Corollary 3.7. The equivalence classes of the predecessor-separated λ -graph systems are identified with the isomorphism classes of the predecessor-separated C^* -symbolic dynamical systems of the commutative AF-algebras.

We formulate here an action of a subshift to a C^* -algebra. We say that a subshift Λ acts on a C^* -algebra \mathcal{A} if there exists a C^* -symbolic dynamical system $(\mathcal{A}, \rho, \Sigma)$ such that the associated subshift $\Lambda_{(\mathcal{A}, \rho, \Sigma)}$ coincides with Λ .

4. HILBERT C^* -SYMBOLIC BIMODULES

In this section we will construct a Hilbert C^* -bimodule from a C^* -symbolic dynamical system. Let $(\mathcal{A}, \rho, \Sigma)$ be a C^* -symbolic dynamical system. We put the projections $P_{\alpha} = \rho_{\alpha}(1)$ in \mathcal{A} for $\alpha \in \Sigma$. Let $\{e_{\alpha}\}_{{\alpha} \in \Sigma}$ denote the standard basis of the $|\Sigma|$ -dimensional vector space $\mathbb{C}^{|\Sigma|}$, where $|\Sigma|$ denotes the cardinal number of the set Σ . Set

$$\mathcal{H}_{\mathcal{A}}^{\rho} := \sum_{\alpha \in \Sigma} \mathbb{C} e_{\alpha} \otimes P_{\alpha} \mathcal{A}.$$

Define a right A-action and an A-valued inner product on \mathcal{H}_{A}^{ρ} by setting

$$(e_{lpha}\otimes P_{lpha}x)y:=e_{lpha}\otimes P_{lpha}xy, \ \langle e_{lpha}\otimes P_{lpha}x\mid e_{eta}\otimes P_{eta}y
angle := \left\{egin{array}{ll} x^*P_{lpha}y & ext{if }lpha=eta, \ 0 & ext{otherwise} \end{array}
ight.$$

for $\alpha, \beta \in \Sigma$ and $x, y \in \mathcal{A}$. Then $\mathcal{H}^{\rho}_{\mathcal{A}}$ forms a Hilbert C^* -right \mathcal{A} -module. We put

$$u_{\alpha}:=e_{\alpha}\otimes P_{\alpha}, \qquad \alpha\in\Sigma.$$

Lemma 4.1. The family $u_{\alpha}, \alpha \in \Sigma$ forms an orthogonal finite basis of $\mathcal{H}^{\rho}_{\mathcal{A}}$ in the sense of [KPW] such that

$$(4.1) \sum_{\alpha \in \Sigma} \langle u_{\alpha} \mid u_{\alpha} \rangle \geq 1.$$

We say that a finite basis of a Hilbert C^* -module is essential if the basis satisfies the condition (4.1). We will next define a diagonal left action ϕ_{ρ} of \mathcal{A} to the set of all adjointable bounded \mathcal{A} -module maps $L(\mathcal{H}^{\rho}_{\mathcal{A}})$ on $\mathcal{H}^{\rho}_{\mathcal{A}}$ as follows:

$$\phi_{\rho}(a)u_{\alpha}x := u_{\alpha}\rho_{\alpha}(a)x, \qquad a, x \in \mathcal{A}, \alpha \in \Sigma.$$

The above definition is well-defined. If $u_{\alpha}x = u_{\alpha}y$, then $P_{\alpha}x = P_{\alpha}y$ so that $\rho_{\alpha}(a1)x = \rho_{\alpha}(a1)y$ for $a \in \mathcal{A}$. Hence one has that $u_{\alpha}\rho_{\alpha}(a)x = u_{\alpha}\rho_{\alpha}(a)y$. Since the family $\{\rho_{\alpha}\}_{\alpha\in\Sigma}$ is faithful, the left action ϕ_{ρ} of \mathcal{A} on $\mathcal{H}^{\rho}_{\mathcal{A}}$ is faithful, that is, the element $\phi_{\rho}(x)$ is nonzero for any nonzero $x \in \mathcal{A}$. Therefore we have

Proposition 4.2. For a C^* -symbolic dynamical system $(\mathcal{A}, \rho, \Sigma)$, there exists a Hilbert C^* -right \mathcal{A} -module $\mathcal{H}^{\rho}_{\mathcal{A}}$ with an orthogonal essential finite basis $\{u_{\alpha}\}_{{\alpha}\in\Sigma}$ and a unital faithful diagonal left action $\phi_{\rho}: \mathcal{A} \to L(\mathcal{H}^{\rho}_{\mathcal{A}})$ such that

$$\phi_{\rho}(a)u_{\alpha} = u_{\alpha}\rho_{\alpha}(a),$$

(4.3)
$$\langle u_{\alpha} | u_{\alpha} \rangle = \rho_{\alpha}(1), \quad a \in \mathcal{A}, \alpha \in \Sigma.$$

We note that the above two conditions imply

$$\langle u_{\alpha} \mid \phi_{\rho}(a)u_{\alpha} \rangle = \rho_{\alpha}(a), \qquad a \in \mathcal{A}, \alpha \in \Sigma.$$

Conversely

Proposition 4.3. For a Hilbert C^* -right A-module \mathcal{H}_A with an orthogonal essential finite basis $\{u_\alpha\}_{\alpha\in\Sigma}$ and a unital faithful diagonal left action $\phi:A\to L(\mathcal{H}_A)$, define ρ_α for $\alpha\in\Sigma$ by setting

$$\rho_{\alpha}(a) = \langle u_{\alpha} \mid \phi(a)u_{\alpha} \rangle, \qquad a \in \mathcal{A}.$$

Then ρ_{α} gives rise to an endomorphism of A such that (A, ρ, Σ) yields a C^* -symbolic dynamical system.

A Hilbert C^* -right \mathcal{A} -module $\mathcal{H}_{\mathcal{A}}$ with a left action $\phi: \mathcal{A} \to L(\mathcal{H}_{\mathcal{A}})$ is called a Hilbert C^* -bimodule over \mathcal{A} ([Pim], cf.[KW], [KPW], [MS]). Two Hilbert C^* -bimodules $(\phi, \mathcal{H}_{\mathcal{A}})$ and $(\phi', \mathcal{H}'_{\mathcal{A}})$ over \mathcal{A} are said to be unitary equivalent if there exists a bimodule isomorphism $\Phi: \mathcal{H}_{\mathcal{A}} \to \mathcal{H}'_{\mathcal{A}}$ such that Φ is unitary with respect to their respect inner products.

Definition. A Hilbert C^* -right \mathcal{A} -module $\mathcal{H}_{\mathcal{A}}$ with an orthogonal essential finite basis $\{u_{\alpha}\}_{{\alpha}\in\Sigma}$ and a unital faithful diagonal left action $\phi: \mathcal{A} \to L(\mathcal{H}_{\mathcal{A}})$ is called a Hilbert C^* -symbolic bimodule over \mathcal{A} . It is written as $(\phi, \mathcal{H}_{\mathcal{A}}, \{u_{\alpha}\}_{{\alpha}\in\Sigma})$.

A Hilbert C^* -symbolic bimodule $(\phi, \mathcal{H}_{\mathcal{A}}, \{u_{\alpha}\}_{\alpha \in \Sigma})$ over \mathcal{A} bijectively corresponds to a C^* -symbolic dynamical system $(\mathcal{A}, \rho, \Sigma)$ by the above discussions. Two Hilbert C^* -symbolic bimodules $(\phi, \mathcal{H}_{\mathcal{A}}, \{u_{\alpha}\}_{\alpha \in \Sigma})$ and $(\phi', \mathcal{H}'_{\mathcal{A}}, \{u'_{\alpha'}\}_{\alpha' \in \Sigma'})$ over \mathcal{A} are said to be unitary equivalent if there exists a bimodule isomorphism $\Phi: \mathcal{H}_{\mathcal{A}} \to \mathcal{H}'_{\mathcal{A}}$ and a bijection $\pi: \Sigma \to \Sigma'$ such that Φ is unitary with respect to their respect inner products and satisfies $\Phi(u_{\alpha}) = u'_{\pi(\alpha)}, \alpha \in \Sigma$. Let $\rho_{\alpha}, \alpha \in \Sigma$ and $\rho'_{\alpha'}, \alpha' \in \Sigma'$ be their respect endomorphisms of \mathcal{A} . In this case, we have

 $\rho_{\alpha}(a) = \rho'_{\pi(\alpha)}(a), a \in \mathcal{A}$ because the equality (4.2) implies $\phi'(a)\Phi(u_{\alpha}) = \Phi(u_{\alpha})\rho_{\alpha}(a)$ and hence $\phi'(a)u'_{\pi(\alpha)} = u'_{\pi(\alpha)}\rho_{\alpha}(a)$. This means that $\rho_{\alpha}(a) = \rho'_{\pi(\alpha)}(a), a \in \mathcal{A}$.

Two C^* -symbolic dynamical systems $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}, \rho', \Sigma')$ are said to be inner conjugate if there exists an element $U_{\alpha,\beta} \in \mathcal{A}$ for $\alpha \in \Sigma, \beta \in \Sigma'$ such that

(i) $\rho_{\alpha}(a)U_{\alpha,\beta}=U_{\alpha,\beta}\rho'_{\beta}(a)$,

(ii)
$$\sum_{\epsilon \in \Sigma'} U_{\alpha,\epsilon} U_{\gamma,\epsilon}^* = \delta_{\alpha,\gamma} \rho_{\alpha}(1), \quad \sum_{\gamma \in \Sigma} U_{\gamma,\beta}^* U_{\gamma,\epsilon} = \delta_{\beta,\epsilon} \rho_{\beta}'(1)$$
 and

(iii) $\rho_{\alpha}(1)U_{\alpha,\beta} = U_{\alpha,\beta} = U_{\alpha,\beta}\rho'_{\beta}(1)$

for $\alpha, \gamma \in \Sigma$, $\beta, \epsilon \in \Sigma'$ and $\alpha \in A$. The family $\{U_{\alpha,\beta}\}_{\alpha \in \Sigma, \beta \in \Sigma'}$ is called an intertwiner between (A, ρ, Σ) and (A, ρ', Σ') .

Proposition 4.4. Two C^* -symbolic dynamical systems $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}, \rho', \Sigma')$ are inner conjugate if and only if their associated Hilbert C^* -bimodules $(\phi_{\rho}, \mathcal{H}^{\rho}_{\mathcal{A}})$ and $(\phi_{\rho'}, \mathcal{H}^{\rho'}_{\mathcal{A}})$ are unitary equivalent as a Hilbert C^* -bimodule.

We note that if $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}, \rho', \Sigma')$ are inner conjugate with intertwiner $\{U_{\alpha,\beta}\}_{\alpha\in\Sigma,\beta\in\Sigma'}$, then the equalities for $\alpha\in\Sigma,\beta\in\Sigma'$ and $\alpha\in\mathcal{A}$

$$\rho_{\alpha}(a) = \sum_{\epsilon \in \Sigma'} U_{\alpha,\epsilon} \rho'_{\epsilon}(a) U^*_{\alpha,\epsilon}, \qquad \rho'_{\beta}(a) = \sum_{\gamma \in \Sigma} U^*_{\gamma,\beta} \rho_{\gamma}(a) U_{\gamma,\beta},$$

hold. For $(\mathcal{A}, \rho, \Sigma)$, let $D_{\rho}(a)$ for $a \in \mathcal{A}$ be the $|\Sigma| \times |\Sigma|$ -diagonal matrix $D_{\rho}(a)$ with diagonal entries $[\rho_{\alpha}(a)]_{\alpha \in \Sigma}$. One knows $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}, \rho', \Sigma')$ are inner conjugate if and only if there exists an $|\Sigma| \times |\Sigma'|$ -matrix U over \mathcal{A} such that

$$(4.5) D_{\rho}(a) = UD_{\rho'}(a)U^* \text{for } a \in \mathcal{A}, \text{ and}$$

(4.6)
$$UU^* = D_{\rho}(1), \quad U^*U = D_{\rho'}(1).$$

Let \mathcal{A} be an n-dimensional commutative C^* -algebra. By Proposition 3.2, a C^* -symbolic dynamical system $(\mathcal{A}, \rho, \Sigma)$ defines a left-resolving labeled graph $\mathcal{G}^{\rho} = (G^{\rho}, \lambda^{\rho})$ over Σ with underlying finite directed graph G^{ρ} . Let v_1, \ldots, v_n denote the vertex set of G^{ρ} . We denote by $A^{\rho}(i, j)$ the cardinal number of the edges $E^{\rho}(i, j)$ whose source vertex is v_i and terminal vertex is v_j . In this case, inner conjugacy is completely characterized as in the following way.

Proposition 4.5. Let A be the n-dimensional commutative C^* -algebra. Then C^* -symbolic dynamical systems (A, ρ, Σ) and (A, η, Σ) are inner conjugate if and only if $A^{\rho}(i,j) = A^{\eta}(i,j)$ for all $i,j = 1,2,\ldots,n$. That is, the directed graphs G^{ρ} and G^{η} are isomorphic.

5. CROSSED PRODUCTS BY SYMBOLIC DYNAMICAL SYSTEMS

We will study C^* -algebras constructed from Hilbert C^* -symbolic bimodules. A general construction of C^* -algebras from Hilbert C^* -bimodules has been established by Pimsner [Pim] (cf. [Ka]). The C^* -algebras are called Cuntz-Pimsner algebras. Its ideal structure and simplicity conditions have been studied by Kajiwara-Pinzari-Watatani [KPW] and Muhly-Solel [MS], see also [KW], [PWY], [Sch]. For a C^* -symbolic dynamical system $(\mathcal{A}, \rho, \Sigma)$, we have a C^* -algebra from the Hilbert C^* -symbolic bimodule $(\phi_{\rho}, \mathcal{H}^{\rho}_{\mathcal{A}}, \{u_{\alpha}\}_{\alpha \in \Sigma})$ by using Pimsner's general construction of C^* -algebras from Hilbert C^* -bimodules. We denote the C^* -algebra by $\mathcal{A} \rtimes_{\rho} \Lambda$, where Λ is the subshift $\Lambda_{(\mathcal{A}, \rho, \Sigma)}$ associated with $(\mathcal{A}, \rho, \Sigma)$. We call the algebra $\mathcal{A} \rtimes_{\rho} \Lambda$ the C^* -symbolic crossed product of \mathcal{A} by the subshift Λ .

Proposition 5.1. The C^* -symbolic crossed product $A \rtimes_{\rho} \Lambda$ is the universal unital C^* -algebra $C^*(A, S_{\alpha}, \alpha \in \Sigma)$ generated by $x \in A$ and partial isometries $S_{\alpha}, \alpha \in \Sigma$ subject to the following operator relations:

(5.1)
$$\sum_{\beta \in \Sigma} S_{\beta} S_{\beta}^* = 1, \qquad S_{\alpha}^* x S_{\alpha} = \rho_{\alpha}(x), \qquad x S_{\alpha} S_{\alpha}^* = S_{\alpha} S_{\alpha}^* x$$

for all $x \in \mathcal{A}$ and $\alpha \in \Sigma$. Furthermore for $\alpha_1, \ldots, \alpha_k \in \Sigma$, a word $(\alpha_1, \ldots, \alpha_k)$ is admissible for the subshift $\Lambda = \Lambda_{(\mathcal{A}, \rho, \Sigma)}$ if and only if $S_{\alpha_1} \cdots S_{\alpha_k} \neq 0$.

As in [Pim] (cf. [KPW]), the gauge action, denoted by $\hat{\rho}$, on the algebra $\mathcal{A} \rtimes_{\rho} \Lambda$ of the torus $\mathbb{T} = \{z \in \mathbb{C} \mid |z| = 1\}$ is defined by

$$\hat{
ho}_z(x) = x, \qquad \hat{
ho}_z(S_{lpha}) = zS_{lpha}, \qquad x \in \mathcal{A}, lpha \in \Sigma, z \in \mathbb{T}.$$

We have the following theorem.

Theorem 5.2. Let (A, ρ, Σ) be a C^* -symbolic dynamical system and Λ be the associated subshift $\Lambda_{(A,\rho,\Sigma)}$. Assume that A is commutative.

- (i) If $A = \mathbb{C}$, the subshift Λ is the full shift $\Sigma^{\mathbb{Z}}$, and the C^* -algebra $A \rtimes_{\rho} \Lambda$ is the Cuntz algebra $\mathcal{O}_{|\Sigma|}$ of order $|\Sigma|$.
- (ii) If A is finite dimensional, the subshift Λ is a sofic shift $\Lambda_{\mathcal{G}}$ presented by a left-resolving labeled graph \mathcal{G} , and the C^* -algebra $A \rtimes_{\rho} \Lambda$ is a Cuntz-Krieger algebra $\mathcal{O}_{\mathcal{G}}$ associated with the labeled graph. Conversely, for any sofic shift $\Lambda_{\mathcal{G}}$, that is presented by a left-resolving labeled graph \mathcal{G} , there exists a C^* -symbolic dynamical system (A, ρ, Σ) such that the associated subshift is the sofic shift $\Lambda_{\mathcal{G}}$, the algebra A is finite dimensional, and the C^* -algebra $A \rtimes_{\rho} \Lambda$ is the Cuntz-Krieger algebra $\mathcal{O}_{\mathcal{G}}$ associated with the labeled graph.
- (iii) If A is an AF-algebra, there uniquely exists a λ -graph system $\mathfrak L$ up to equivalence such that the subshift Λ is presented by $\mathfrak L$ and the C^* -algebra $A \rtimes_{\rho} \Lambda$ is the C^* -algebra $\mathcal O_{\mathfrak L}$ associated with the λ -graph system $\mathfrak L$. Conversely, for any subshift $\Lambda_{\mathfrak L}$, that is presented by a left-resolving λ -graph system $\mathfrak L$, there exists a C^* -symbolic dynamical system (A, ρ, Σ) such that the associated subshift is the subshift $\Lambda_{\mathfrak L}$, the algebra A is a commutative AF-algebra, and the C^* -algebra $A \rtimes_{\rho} \Lambda$ is the C^* -algebra $\mathcal O_{\mathfrak L}$ associated with the λ -graph system $\mathfrak L$.

We remark that Pimsner showed the following fact [Pim]: For every Hilbert C^* -bimodule E over a C^* -algebra \mathcal{A} , if \mathcal{A} is commutative and finite dimensional, and if E is projective and finitely generated, the associated C^* -algebra is a Cuntz-Krieger algebra.

We will give some examples

(i) Let $\alpha_1, \ldots, \alpha_m \in \operatorname{Aut}(\mathcal{B})$ be automorphisms of a unital C^* -algebra \mathcal{B} . Let $\mathcal{G} = (G, \lambda)$ be a left-resolving labeled graph with symbols $\Sigma = \{\alpha_1, \ldots, \alpha_m\}$. Let $V = \{v_1, \ldots, v_n\}$ be the vertex set. Let $[A^{\mathcal{G}}(i, \alpha_k, j)]_{i,j=1,\ldots,n}$ be the $n \times n$ -matrix for $\alpha_k \in \Sigma$ with entries in $\{0,1\}$ defined by (3.1). We put $\mathcal{A} = \mathcal{B} \oplus \cdots \oplus \mathcal{B}$ the

direct sum of the *n*-copies of \mathcal{B} . For $\alpha_k \in \Sigma$, define $\rho_{\alpha_k}^{\mathcal{G}} \in \text{End}(\mathcal{A})$ by setting

$$\rho_{\alpha_k}^{\mathcal{G}}(b_1,\ldots,b_n)$$

$$=(\sum_{i=1}^n A^{\mathcal{G}}(i,\alpha_k,1)\alpha_k(b_i),\ldots,\sum_{i=1}^n A^{\mathcal{G}}(i,\alpha_k,n)\alpha_k(b_i)), \qquad (b_1,\ldots,b_n) \in \mathcal{A}.$$

Since we assume that every vertex of G has an in-coming edge, one has $\sum_{k=1}^{n} \rho_{\alpha_{k}}^{\mathcal{G}}(1) \geq 1$. Since we also assume that every vertex of G has an out-going edge, the family $\{\rho_{\alpha_{k}}^{\mathcal{G}}\}_{k=1}^{n}$ is faithful. Hence we have a C^{*} -symbolic dynamical system $(\mathcal{A}, \rho^{\mathcal{G}}, \Sigma)$. The associated subshift $\Lambda_{(\mathcal{A}, \rho^{\mathcal{G}}, \Sigma)}$ is the sofic shift $\Lambda_{\mathcal{G}}$ presented by the labeled graph \mathcal{G} . If the underlying directed graph G is irreducible with condition (I) in the sense of [CK] and each automorphism α_{k} has no nontrivial invariant ideal of \mathcal{B} , the associated crossed product $\mathcal{A} \rtimes_{\rho} \Lambda_{\mathcal{G}}$ is simple and purely infinite.

The following example is a special case of this example.

(ii) Let $A = C(\mathbb{T})$ and $\Sigma = \{1, 2, ..., n\}, n > 1$. Take irrational numbers $\theta_1, ..., \theta_n \in \mathbb{R} \setminus \mathbb{Q}$. Define $\rho_i(f)(z) = f(e^{2\pi\sqrt{-1}\theta_i}z)$ for $f \in C(\mathbb{T}), z \in \mathbb{T}$. We have a C^* -symbolic dynamical system $(C(\mathbb{T}), \rho, \Sigma)$. Since the endomorphisms $\rho_i, i = 1, ..., n$ are automorphisms and hence the associated subshift is the full shift $\Sigma^{\mathbb{Z}}$. We denote by $\mathcal{O}_{\theta_1,...,\theta_n}$ the C^* -symbolic crossed product $C(\mathbb{T}) \rtimes_{\theta_1,...,\theta_n} \Sigma^{\mathbb{Z}}$. As the algebra $\mathcal{O}_{\theta_1,...,\theta_n}$ is the universal unital C^* -algebra generated by n isometries and one unitary U satisfying the following relations:

$$\sum_{j=1} S_j S_j^* = 1, \qquad S_i^* S_i = 1, \qquad U S_i = e^{2\pi\sqrt{-1}\theta_i} S_i U, \qquad i = 1, \dots, n.$$

Hence $\mathcal{O}_{\theta_1,\ldots,\theta_n}$ is realized as the ordinary crossd product $\mathcal{O}_n \rtimes_{\alpha_{\theta_1,\ldots,\theta_n}} \mathbb{Z}$ of the Cuntz algebra \mathcal{O}_n by the automorphism $\alpha_{\theta_1,\ldots,\theta_n}$ defined by $\alpha_{\theta_1,\ldots,\theta_n}(S_i) = e^{2\pi\sqrt{-1}\theta_i}S_i$. It is simple and purely infinite whose K-groups are

$$K_0(\mathcal{O}_{\theta_1,...,\theta_n}) = K_1(\mathcal{O}_{\theta_1,...,\theta_n}) \cong \mathbb{Z}/(n-1)\mathbb{Z}.$$

(iii) Let $A = [A(i,j)]_{i,j=1,...,n}$ be an $n \times n$ matrix with entries in $\{0,1\}$. We denote by Λ_A^+ the compact Hausdorff space

$$\Lambda_A^+ = \{(x_i)_{i \in \mathbb{N}} \in \{1, \dots, n\}^{\mathbb{N}} \mid A(x_i, x_{i+1}) = 1 \text{ for all } i \in \mathbb{N}\}$$

of the right one-sided topological Markov shift associated with the matrix A. Let $S_i, i=1,\ldots,n$ be the generating partial isometries of the Cuntz-Krieger algebra \mathcal{O}_A such that $\sum_{j=1}^n S_j S_j^* = 1$, $S_i^* S_i = \sum_{j=1}^n A(i,j) S_j S_j^*$. The algebra $\mathcal{A}_A = C(\Lambda_A^+)$ of all continuous functions on Λ_A^+ is identified with the subalgebra of \mathcal{O}_A generated by the projections $S_\mu S_\mu^*$ for $\mu = \mu_1 \cdots \mu_k$, where $S_\mu = S_{\mu_1} \cdots S_{\mu_k}$ for $\mu_1, \ldots, \mu_k \in \{1, \ldots, n\}$. Let $\Sigma = \{\langle 1, \langle 2, \ldots, \langle n, \rangle_1, \rangle_2, \ldots, \rangle_n\}$ be 2n-brackets. We define 2n-endomorphisms of \mathcal{A}_A by setting

$$\rho_{i}^{A}(a) = S_{i}^{*}aS_{i}, \qquad \rho_{i}^{A}(a) = S_{i}aS_{i}^{*}, \qquad i = 1, \ldots, n, \ a \in \mathcal{A}_{A}.$$

We have a C^* -symbolic dynamical system $(\mathcal{A}_A, \rho^A, \Sigma)$. If in particular all entries $A(i,j), i,j=1,\ldots,n$ of A are 1, then Λ_A^+ is the right one-sided full shift $\{1,\ldots,n\}^{\mathbb{N}}$ and the associated subshift is the Dyck shift D_n of the 2n-brackets. Let $\mathfrak{L}^{Ch(D_n)}$ be the corresponding λ -graph system for $(\mathcal{A}_A, \rho^A, \Sigma)$. It is called the Cantor horizon λ -graph system of the Dyck shift D_n , that has been studied in [KM]. The C^* -symbolic crossed product $C(\{1,\ldots,n\}^{\mathbb{N}}) \rtimes_{\rho^A} D_n$ is a simple purely infinite C^* -algebra $\mathcal{O}_{\mathfrak{L}^{Ch(D_n)}}$ that is the C^* -algebra associated with $\mathfrak{L}^{Ch(D_n)}$. Its K-groups have been computed so that

$$K_0(C(\{1,\ldots,n\}^{\mathbb{N}}) \rtimes_{\rho^A} D_n) = \mathbb{Z}/n\mathbb{Z} \oplus C(\mathcal{C},\mathbb{Z}),$$

 $K_1(C(\{1,\ldots,n\}^{\mathbb{N}}) \rtimes_{\rho^A} D_n) = 0$

where $C(\mathcal{C}, \mathbb{Z})$ denotes the abelian group of all \mathbb{Z} -valued continuous functions on the Cantor set \mathcal{C} ([KM]).

For a general matrix A with entries in $\{0,1\}$, let $\mathfrak{L}^{Ch(D_A)}$ be the corresponding λ -graph system to $(\mathcal{A}_A, \rho^A, \Sigma)$. It is easy to see that the associated subshift is a subshift of Dyck shift D_n that has some forbidden words coming from the forbidden words of the topological Markov shift Λ_A . The subshift is a version of topological Markov shift of the Dyck shifts, and appeard in [HIK], [KM2]. We call it the topological Markov Dyck shift associated with the matrix A and write it as D_A . We then see that the C^* -symbolic crossed product $C(\Lambda_A^+) \rtimes_{\rho^A} D_A$ is a simple purely infinite C^* -algebra $\mathcal{O}_{\mathfrak{L}^{Ch}(D_A)}$ if the matrix A is irreducible.

6. Strong shift equivalence of C^* -symbolic dynamical systems and Hilbert C^* -bimodules

As in the preceding section, we may regard a λ -graph system as a C^* -symbolic dynamical system. The matrix interpretation of a λ -graph system is called a symbolic matrix system. In [Ma], we have formulated strong shift equivalence of symbolic matrix systems, as a generalization of nonnegative square matrices ([Wi]) and symbolic square matrices ([N]). Strong shift equivalence of symbolic matrix systems is a basic equivalence relation related to topological conjugacy of subshifts. It has been proved that two subshifts Λ and Λ' are topologically conjugate if and only if their canonical symbolic matrix systems $(\mathcal{M}^{\Lambda}, I^{\Lambda})$ and $(\mathcal{M}^{\Lambda'}, I^{\Lambda'})$ are strong shift equivalent ([Ma]).

In this section, we will formulate strong shift equivalences and shift equivalences of C^* -symbolic dynamical systems and of Hilbert C^* -symbolic bimodules as generalizations of those of λ -graph systems.

Definition. Two C^* -symbolic dynamical systems $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}', \rho', \Sigma')$ are said to be *strong shift equivalent in* 1-*step* if there exist finite sets C and D, two families of homomorphisms $\eta_c: \mathcal{A} \to \mathcal{A}', c \in C$ and $\zeta_d: \mathcal{A}' \to \mathcal{A}, d \in D$ and two into bijections $\kappa: \Sigma \to CD$ and $\kappa': \Sigma' \to DC$ such that

$$\rho_{\alpha} = \zeta_{d_{\alpha}} \circ \eta_{c_{\alpha}} \text{ if } \kappa(\alpha) = c_{\alpha}d_{\alpha}, \quad \text{ and } \quad \rho'_{\alpha'} = \eta_{c_{\alpha'}} \circ \zeta_{d_{\alpha'}} \text{ if } \kappa'(\alpha') = d_{\alpha'}c_{\alpha'}$$

and

$$\zeta_d \circ \eta_c = 0$$
 if $cd \notin \kappa(\Sigma)$, and $\eta_c \circ \zeta_d = 0$ if $dc \notin \kappa'(\Sigma')$.

We write this situation as $(\mathcal{A}, \rho, \Sigma) \approx (\mathcal{A}', \rho', \Sigma')$.

We set $\widetilde{\mathcal{A}} = \mathcal{A} \oplus \mathcal{A}'$ and $\widetilde{\Sigma} = C \sqcup D$ disjoint union of C and D. Define $\widetilde{\rho}_{\widetilde{\alpha}} \in \operatorname{End}(\widetilde{\mathcal{A}})$ for $\widetilde{\alpha} \in \widetilde{\Sigma}$ by setting

$$ilde{
ho}_{ ilde{lpha}}(x,y) = \left\{ egin{array}{ll} (0,\eta_c(x)) & ext{if } ilde{lpha} = c \in C, \\ (\zeta_d(y),0) & ext{if } ilde{lpha} = d \in D. \end{array}
ight.$$

for $(x,y) \in \mathcal{A} \oplus \mathcal{A}'$. Then we have

Lemma 6.1. $(\widetilde{\mathcal{A}}, \widetilde{\rho}, \widetilde{\Sigma})$ is a C^* -symbolic dynamical system.

We call $(\widetilde{\mathcal{A}}, \widetilde{\rho}, \widetilde{\Sigma})$ the bipartite C^* -symbolic dynamical system related to $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}', \rho', \Sigma')$. If there exists an N-chain of strong shift equivalences in 1-step between $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}', \rho', \Sigma')$, they are said to be strong shift equivalent in N-step and written as $(\mathcal{A}, \rho, \Sigma) \approx (\mathcal{A}', \rho', \Sigma')$. They are simply said to be strong shift equivalent.

Recall that two C^* -symbolic dynamical systems $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}', \rho', \Sigma')$ are said to be isomorphic if there exists an isomorphism $\phi : \mathcal{A} \to \mathcal{A}'$ of C^* -algebras and a bijection $\pi : \Sigma \to \Sigma'$ such that $\rho_{\alpha} = \phi^{-1} \circ {\rho'}_{\pi(\alpha)} \circ \phi$ for all $\alpha \in \Sigma$.

Lemma 6.2.

- (i) If (A, ρ, Σ) and (A', ρ', Σ') are isomorphic, they are strong shift equivalent in 1-step.
- (ii) Suppose that both sets Σ and Σ' are one points $\{\alpha\}$ and $\{\alpha'\}$ respectively and both ρ_{α} and $\rho'_{\alpha'}$ are automorphisms. Then $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}', \rho', \Sigma')$ are isomorphic if and only if they are strong shift equivalent in 1-step.

We next formulate shift equivalence of C^* -symbolic dynamical systems **Definition.** C^* -symbolic dynamical systems $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}', \rho', \Sigma')$ are said to be shift equivalent of lag N if there exist two finite sets C and D, two families $\eta_c: \mathcal{A} \to \mathcal{A}', c \in C$ and $\zeta_d: \mathcal{A}' \to \mathcal{A}, d \in D$ of homomorphisms and four specifications $\kappa_C: \Sigma C \to C\Sigma', \kappa_D: \Sigma'D \to D\Sigma, \kappa_\Sigma: \Sigma^N \to CD$ and $\kappa_{\Sigma'}: \Sigma'^N \to DC$ such that

$$\eta_c \circ \rho_\alpha = \rho'_{\alpha'} \circ \eta_{c'} \quad \text{if} \quad \kappa_C(\alpha c) = c'\alpha',$$

$$\zeta_{d'} \circ \rho'_{\alpha'} = \rho_\alpha \circ \zeta_d \quad \text{if} \quad \kappa_D(\alpha'd') = d\alpha,$$

and

$$\rho_{\alpha_N} \circ \cdots \circ \rho_{\alpha_2} \circ \rho_{\alpha_1} = \zeta_d \circ \eta_c \qquad \text{if} \quad \kappa_{\Sigma}(\alpha_1 \alpha_2 \cdots \alpha_N) = cd,$$

$$\rho'_{\alpha'_N} \circ \cdots \circ \rho'_{\alpha'_2} \circ \rho'_{\alpha'_1} = \eta_{c'} \circ \zeta_{d'} \qquad \text{if} \quad \kappa_{\Sigma'}(\alpha'_1 \alpha'_2 \cdots \alpha'_N) = d'c'.$$

We write this situation as $(\mathcal{A}, \rho, \Sigma) \sim (\mathcal{A}', \rho', \Sigma')$.

The following proposition is proved by similar ideas to the case of matrices ([Wi], cf.[LM]).

Proposition 6.3. Let (A, ρ, Σ) , (A', ρ', Σ') and (A'', ρ'', Σ'') be C^* -symbolic dynamical systems.

- (i) $(\mathcal{A}, \rho, \Sigma) \approx (\mathcal{A}', \rho', \Sigma')$ implies $(\mathcal{A}, \rho, \Sigma) \sim (\mathcal{A}', \rho', \Sigma')$.
- (ii) $(\mathcal{A}, \rho, \Sigma) \stackrel{\wedge}{\sim} (\mathcal{A}', \rho', \Sigma')$ implies $(\mathcal{A}, \rho, \Sigma) \stackrel{\wedge}{\sim} (\mathcal{A}', \rho', \Sigma')$ for all $N' \geq N$.
- (iii) $(\mathcal{A}, \rho, \Sigma) \underset{N}{\sim} (\mathcal{A}', \rho', \Sigma')$ and $(\mathcal{A}', \rho', \Sigma') \underset{L}{\sim} (\mathcal{A}'', \rho'', \Sigma'')$ imply $(\mathcal{A}, \rho, \Sigma) \underset{N+L}{\sim} (\mathcal{A}'', \rho'', \Sigma'')$.

Thus shift equivalence of C^* -symbolic dynamical systems is an equivalence relation.

We will next formulate strong shift equivalence and shift equivalence of Hilbert C^* -bimodules. Let \mathcal{A} and \mathcal{A}' be C^* -algebras. We define a Hilbert C^* -symbolic right \mathcal{A}' -module $(\varphi, \mathcal{AH}_{\mathcal{A}'}, \{w_{\alpha}\}_{\alpha \in \Sigma})$ over Σ with left \mathcal{A} -action by a Hilbert C^* -right \mathcal{A}' -module with orthogonal essential finite basis $\{w_{\alpha}\}_{\alpha \in \Sigma}$ and a unital faithful diagonal left action φ of \mathcal{A} on $\mathcal{AH}_{\mathcal{A}'}$. Let $(\varphi, \mathcal{AH}_{\mathcal{A}'}, \{w_{\alpha}\}_{\alpha \in \Sigma})$ be a Hilbert C^* -symbolic right \mathcal{A}' -module over Σ with left \mathcal{A} -action and $(\psi, \mathcal{AH}_{\mathcal{A}''}, \{w'_{\alpha'}\}_{\alpha' \in \Sigma'})$ a Hilbert C^* -symbolic right \mathcal{A}'' -module over Σ' with left \mathcal{A}' -action. Define the relative tensor product

$$(\varphi, \mathcal{A}\mathcal{H}_{\mathcal{A}'}, \{w_{\alpha}\}_{\alpha \in \Sigma}) \otimes_{\mathcal{A}'} (\psi, \mathcal{A}'\mathcal{H}_{\mathcal{A}''}, \{w'_{\alpha'}\}_{\alpha' \in \Sigma'})$$

$$:= (\varphi \otimes 1, \mathcal{A}\mathcal{H}_{\mathcal{A}'} \otimes_{\mathcal{A}'} \mathcal{A}'\mathcal{H}_{\mathcal{A}''}, \{w_{\alpha} \otimes_{\mathcal{A}'} w'_{\alpha'}\}_{(\alpha, \alpha') \in \Sigma \otimes_{\mathcal{A}'} \Sigma'})$$

where $_{\mathcal{A}\mathcal{H}_{\mathcal{A}'}}\otimes_{\mathcal{A}'}\mathcal{A}'\mathcal{H}_{\mathcal{A}''}$ is the tensor product Hilbert C^* -right \mathcal{A}'' -module relative to \mathcal{A}' , and $\varphi\otimes 1$ is the natural left \mathcal{A} -action on it. The finite set $\Sigma\otimes_{\mathcal{A}'}\Sigma'$ is defined as follows: As both the left action φ and ψ are diagonal with respect to the bases $\{w_{\alpha}\}_{\alpha\in\Sigma}$ and $\{w'_{\alpha'}\}_{\alpha'\in\Sigma'}$ respectively, there exist $\eta_{\alpha}(a)\in\mathcal{A}'$ for $a\in\mathcal{A}$ and $\zeta_{\alpha'}(b)\in\mathcal{A}''$ for $b\in\mathcal{A}'$ such that

$$\varphi(a)w_{\alpha}=w_{\alpha}\eta_{\alpha}(a), \qquad \psi(b)w'_{\alpha'}=w'_{\alpha'}\zeta_{\alpha'}(b).$$

The finite set $\Sigma \otimes_{\mathcal{A}'} \Sigma'$ is defined by

$$\Sigma \otimes_{\mathcal{A}'} \Sigma' = \{(\alpha, \alpha') \in \Sigma \times \Sigma' \mid \zeta_{\alpha'}(\eta_{\alpha}(1_{\mathcal{A}})) \neq 0\}.$$

It is easy to check that

$$(\varphi \otimes 1, {}_{\mathcal{A}}\mathcal{H}_{\mathcal{A}'} \otimes_{\mathcal{A}'} {}_{\mathcal{A}'}\mathcal{H}_{\mathcal{A}''}, \{w_{\alpha} \otimes_{\mathcal{A}'} w_{\alpha'}'\}_{(\alpha,\alpha') \in \Sigma \otimes_{\mathcal{A}'} \Sigma'})$$

is a Hilbert C^* -symbolic right \mathcal{A}'' -module over $\Sigma \otimes_{\mathcal{A}'} \Sigma'$ with left \mathcal{A} -action. **Definition.** Let $(\phi, \mathcal{H}_{\mathcal{A}})$ be a Hilbert C^* -bimodule over \mathcal{A} and $(\phi', \mathcal{H}_{\mathcal{A}'})$ a Hilbert C^* -bimodule over \mathcal{A}' . They are said to be *strong shift equivalent in* 1-step and written as $(\phi, \mathcal{H}_{\mathcal{A}}) \approx (\phi', \mathcal{H}_{\mathcal{A}'})$ if there exist a Hilbert C^* -right \mathcal{A}' -module $(\varphi, \mathcal{A}\mathcal{H}_{\mathcal{A}'})$ with left \mathcal{A} -action and a Hilbert C^* -right \mathcal{A} -module $(\psi, \mathcal{A}\mathcal{H}_{\mathcal{A}})$ with left \mathcal{A}' -action such that

(6.1)
$$\begin{cases}
(\varphi \otimes 1, {}_{\mathcal{A}}\mathcal{H}_{\mathcal{A}'} \otimes_{\mathcal{A}'} {}_{\mathcal{A}'}\mathcal{H}_{\mathcal{A}}) = (\varphi, \mathcal{H}_{\mathcal{A}}) \text{ as a Hilbert } C^*\text{-bimodule over } \mathcal{A}, \\
(\psi \otimes 1, {}_{\mathcal{A}}\mathcal{H}_{\mathcal{A}} \otimes_{\mathcal{A}} {}_{\mathcal{A}}\mathcal{H}_{\mathcal{A}'}) = (\varphi', \mathcal{H}_{\mathcal{A}'}) \text{ as a Hilbert } C^*\text{-bimodule over } \mathcal{A}'.
\end{cases}$$

The above all equalities of Hilbert C^* -bimodules mean unitary equivalences as Hilbert C^* -bimodules. In this situation, we say that $(\varphi, \mathcal{AH}_{\mathcal{A}'})$ and $(\psi, \mathcal{AH}_{\mathcal{A}})$ satisfy the strong shift equivalence relation between $(\phi, \mathcal{H}_{\mathcal{A}})$ and $(\phi', \mathcal{H}_{\mathcal{A}'})$. Consider the direct sum

$$(\varphi, \mathcal{AH}_{\mathcal{A}'}) \oplus (\psi, \mathcal{A'H}_{\mathcal{A}}) := (\varphi \oplus \psi, \mathcal{AH}_{\mathcal{A}'} \oplus \mathcal{A'H}_{\mathcal{A}})$$

that is a Hilbert C^* -right $\mathcal{A}' \oplus \mathcal{A}$ -module with left $\mathcal{A} \oplus \mathcal{A}'$ -action. It is denoted by (ξ, \mathcal{H}_X) and satisfies

$$_{\mathcal{A}}\mathcal{H}_{\mathcal{A}'}=\xi(\mathcal{A})\mathcal{H}_{X}=\mathcal{H}_{X}\mathcal{A}',\qquad _{\mathcal{A}'}\mathcal{H}_{\mathcal{A}}=\xi(\mathcal{A}')\mathcal{H}_{X}=\mathcal{H}_{X}\mathcal{A}.$$

As \mathcal{H}_X is regarded as a Hilbert C^* -right $\mathcal{A} \oplus \mathcal{A}'$ -module, (ξ, \mathcal{H}_X) is considered to be a Hilbert C^* -bimodule over $\mathcal{A} \oplus \mathcal{A}'$, that is called a *bipartite* Hilbert C^* -bimodule related to $(\phi, \mathcal{H}_{\mathcal{A}})$ and $(\phi', \mathcal{H}_{\mathcal{A}'})$. We note that the condition (6.1) is equivalent to the condition:

$$(\xi \otimes 1, \mathcal{H}_X \otimes_{\mathcal{A} \oplus \mathcal{A}'} \mathcal{H}_X) = (\phi, \mathcal{H}_{\mathcal{A}}) \oplus (\phi', \mathcal{H}_{\mathcal{A}'})$$
 as a Hilbert C^* -bimodule over $\mathcal{A} \oplus \mathcal{A}'$.

If there exists an N-chain of strong shift equivalences in 1-step between $(\phi, \mathcal{H}_{\mathcal{A}})$ and $(\phi', \mathcal{H}_{\mathcal{A}'})$, they are said to be strong shift equivalent in N-step and we write it as $(\phi, \mathcal{H}_{\mathcal{A}}) \approx (\phi', \mathcal{H}_{\mathcal{A}'})$. They are simply said to be strong shift equivalent.

In particular, Hilbert C^* -symbolic bimodules $(\phi, \mathcal{H}_{\mathcal{A}}, \{u_{\alpha}\}_{\alpha \in \Sigma})$ and $(\phi', \mathcal{H}_{\mathcal{A}'}, \{u'_{\alpha'}\}_{\alpha' \in \Sigma'})$ are said to be strong shift equivalent in 1-step if there exist a Hilbert C^* -symbolic right \mathcal{A}' -module $(\varphi, \mathcal{A}\mathcal{H}_{\mathcal{A}'}, \{w_c\}_{c \in C})$ with left \mathcal{A} -action and a Hilbert C^* -right \mathcal{A} -module $(\psi, \mathcal{A}\mathcal{H}_{\mathcal{A}}, \{w'_d\}_{d \in D})$ with left \mathcal{A}' -action such that the qualities (6.1) are taken to be unitary equivalent as Hilbert C^* -symbolic bimodules.

Definition. Let $(\phi, \mathcal{H}_{\mathcal{A}})$ be a Hilbert C^* -bimodule over \mathcal{A} and $(\phi', \mathcal{H}_{\mathcal{A}'})$ a Hilbert C^* -bimodule over \mathcal{A}' . They are said to be *shift equivalent of lag N* if there exist a Hilbert C^* -right \mathcal{A}' -module $(\varphi, \mathcal{A}\mathcal{H}_{\mathcal{A}'})$ with left \mathcal{A} -action and a Hilbert C^* -right \mathcal{A} -module $(\psi, \mathcal{A}\mathcal{H}_{\mathcal{A}})$ with left \mathcal{A}' -action such that

$$(\phi, \underbrace{\mathcal{H}_{\mathcal{A}} \otimes_{\mathcal{A}} \cdots \otimes_{\mathcal{A}} \mathcal{H}_{\mathcal{A}}}_{N}) = (\varphi \otimes 1, {}_{\mathcal{A}}\mathcal{H}_{\mathcal{A}'} \otimes_{\mathcal{A}'} {}_{\mathcal{A}'}\mathcal{H}_{\mathcal{A}}),$$
$$(\phi', \underbrace{\mathcal{H}_{\mathcal{A}'} \otimes_{\mathcal{A}'} \cdots \otimes_{\mathcal{A}'} \mathcal{H}_{\mathcal{A}'}}_{N}) = (\psi \otimes 1, {}_{\mathcal{A}'}\mathcal{H}_{\mathcal{A}} \otimes_{\mathcal{A}} {}_{\mathcal{A}}\mathcal{H}_{\mathcal{A}'}),$$

and

$$(\varphi \otimes 1, {}_{\mathcal{A}}\mathcal{H}_{\mathcal{A}'} \otimes_{\mathcal{A}'}\mathcal{H}_{\mathcal{A}'}) = (\phi, \mathcal{H}_{\mathcal{A}} \otimes_{\mathcal{A}}\mathcal{A}\mathcal{H}_{\mathcal{A}'}), \qquad (\psi \otimes 1, {}_{\mathcal{A}'}\mathcal{H}_{\mathcal{A}} \otimes_{\mathcal{A}}\mathcal{H}_{\mathcal{A}}) = (\phi', \mathcal{H}_{\mathcal{A}'} \otimes_{\mathcal{A}'}\mathcal{A}'\mathcal{H}_{\mathcal{A}})$$

We write this situation as $(\phi, \mathcal{H}_{\mathcal{A}}) \sim_{N} (\phi', \mathcal{H}_{\mathcal{A}'})$.

We similarly define a shift equivalence between Hilbert C^* -symbolic bimodules by equipping with finite bases.

The above formulations of a strong shift equivalence and a shift equivalence of Hilbert C*-bimodules are generalizations of those of nonnegative square matrices defined by Wiiliams (cf.[N],[Ma6]). The following proposition is parallel to Proposition 6.3. ([Wi], cf.[LM]).

Proposition 6.4. Let $(\phi, \mathcal{H}_{\mathcal{A}})$, $(\phi', \mathcal{H}_{\mathcal{A}'})$ and $(\phi'', \mathcal{H}_{\mathcal{A}''})$ be Hilbert C*-bimodules.

- (i) $(\phi, \mathcal{H}_{\mathcal{A}}) \approx (\phi', \mathcal{H}_{\mathcal{A}'})$ implies $(\phi, \mathcal{H}_{\mathcal{A}}) \sim (\phi', \mathcal{H}_{\mathcal{A}'})$.
- (ii) $(\phi, \mathcal{H}_{\mathcal{A}}) \approx (\phi', \mathcal{H}_{\mathcal{A}'})$ implies $(\phi, \mathcal{H}_{\mathcal{A}}) \approx (\phi', \mathcal{H}_{\mathcal{A}'})$ for all $N' \geq N$.
- (iii) $(\phi, \mathcal{H}_{\mathcal{A}}) \stackrel{\sim}{\underset{N}{\sim}} (\phi', \mathcal{H}_{\mathcal{A}'})$ and $(\phi', \mathcal{H}_{\mathcal{A}'}) \stackrel{\sim}{\underset{L}{\sim}} (\phi'', \mathcal{H}_{\mathcal{A}''})$ imply $(\phi, \mathcal{H}_{\mathcal{A}}) \stackrel{\sim}{\underset{N+L}{\sim}} (\phi'', \mathcal{H}_{\mathcal{A}''})$.

The similar statements hold for Hilbert C*-symbolic bimodules.

Therefore shift equivalence of Hilbert C^* -bimodules and similarly shift equivalence of Hilbert C^* -symbolic bimodules are equivalence relations.

Proposition 6.5. If C^* -symbolic dynamical systems (A, ρ, Σ) and (A', ρ', Σ') are strong shift equivalent in 1-step, their associated Hilbert C^* -symbolic bimodules $(\phi_{\rho}, \mathcal{H}^{\rho}_{A}, \{u_{\alpha}\}_{\alpha \in \Sigma})$ and $(\phi_{\rho'}, \mathcal{H}^{\rho'}_{A'}, \{u'_{\alpha'}\}_{\alpha' \in \Sigma'})$ are strong shift equivalent in 1-step.

Its converse implication holds.

Proposition 6.6. If Hilbert C^* -symbolic bimodules $(\phi, \mathcal{H}_{\mathcal{A}}, \{u_{\alpha}\}_{\alpha \in \Sigma})$ and $(\phi', \mathcal{H}'_{\mathcal{A}'}, \{u'_{\alpha'}\}_{\alpha' \in \Sigma'})$ are strong shift equivalent in 1-step, their associated C^* -symbolic dynamical systems $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}', \rho', \Sigma')$ are strong shift equivalent in 1-step.

We may similarly see that two C^* -symbolic dynamical systems $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}', \rho', \Sigma')$ are shift equivalent of lag N if and only if their associated Hilbert C^* -symbolic bimodules $(\phi_{\rho}, \mathcal{H}^{\rho}_{\mathcal{A}}, \{u_{\alpha}\}_{\alpha \in \Sigma})$ and $(\phi_{\rho'}, \mathcal{H}^{\rho'}_{\mathcal{A}'}, \{u'_{\alpha'}\}_{\alpha' \in \Sigma'})$ are shift equivalent of lag N.

7. STRONG SHIFT EQUIVALENCE OF GAUGE ACTIONS

In this section we introduce the notion of strong shift equivalence of C^* -symbolic crossed products with gauge actions.

Definition. Two C^* -symbolic crossed products $(\mathcal{A} \rtimes_{\rho} \Lambda, \hat{\rho}, \mathbb{T})$ and $(\mathcal{A}' \rtimes_{\rho'} \Lambda', \hat{\rho'}, \mathbb{T})$ with gauge actions are said to be strong shift equivalent in 1-step if there exists a C^* -symbolic dynamical system $(\mathcal{A}_0, \rho_0, \Sigma_0)$ and full projections $p, p' \in \mathcal{A}_0 \rtimes_{\rho_0} \Lambda_0$ satisfying p + p' = 1 and $\hat{\rho_0}_z(p) = p, \hat{\rho_0}_z(p') = p'$ for $z \in \mathbb{T}$ where Λ_0 is the subshift associated with $(\mathcal{A}_0, \rho_0, \Sigma_0)$, and

$$(p(\mathcal{A}_0 \rtimes_{\rho_0} \Lambda_0) p, \hat{\rho_0}, \mathbb{T}) = (\mathcal{A} \rtimes_{\rho} \Lambda, \hat{\rho}^2, \mathbb{T}),$$
$$(p'(\mathcal{A}_0 \rtimes_{\rho_0} \Lambda_0) p', \hat{\rho_0}, \mathbb{T}) = (\mathcal{A}' \rtimes_{\rho'} \Lambda', \hat{\rho'}^2, \mathbb{T}).$$

We write this situation as $(\mathcal{A} \rtimes_{\rho} \Lambda, \hat{\rho}, \mathbb{T}) \approx (\mathcal{A}' \rtimes_{\rho'} \Lambda', \hat{\rho'}, \mathbb{T})$. If there exists an N-chain of strong shift equivalences in 1-step, they are said to be strong shift equivalent in N-step and written as $(\mathcal{A} \rtimes_{\rho} \Lambda, \hat{\rho}, \mathbb{T}) \approx (\mathcal{A}' \rtimes_{\rho'} \Lambda', \hat{\rho'}, \mathbb{T})$. It is simply said to be strong shift equivalent.

Theorem 7.1. Let $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}', \rho', \Sigma')$ be two C^* -symbolic dynamical systems whose associated subshifts are denoted by Λ and Λ' respectively. If $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}', \rho', \Sigma')$ are strong shift equivalent, the C^* -symbolic crossed products $(\mathcal{A} \rtimes_{\rho} \Lambda, \hat{\rho}, \mathbb{T})$ and $(\mathcal{A}' \rtimes_{\rho'} \Lambda', \hat{\rho'}, \mathbb{T})$ with gauge actions are strong shift equivalent.

This theorem and its proof are generalizations of [Ma4:Theorem 3.15].

Suppose that $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}', \rho', \Sigma')$ are strong shift equivalent in 1-step. There exist finite sets C and D, two families of homomorphisms $\eta_c : \mathcal{A} \to \mathcal{A}', c \in C$ and $\zeta_d : \mathcal{A}' \to \mathcal{A}, d \in D$ and two into bijections $\kappa : \Sigma \to CD$ and $\kappa' : \Sigma' \to DC$ that give rise to the strong shift equivalence between $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}', \rho', \Sigma')$. Let $(\widetilde{\mathcal{A}}, \widetilde{\rho}, \widetilde{\Sigma})$ be the bipartite C^* -symbolic dynamical system related to $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}', \rho', \Sigma')$. As $\widetilde{\mathcal{A}} = \mathcal{A} \oplus \mathcal{A}'$, we identify \mathcal{A} and \mathcal{A}' with the subalgebras of $\widetilde{\mathcal{A}}$ by regarding $a \in \mathcal{A}$ as $(a, 0) \in \widetilde{\mathcal{A}}$ and $a' \in \mathcal{A}'$ as $(0, a') \in \widetilde{\mathcal{A}}$ respectively. The symbolic crossed product

$$\widetilde{\mathcal{A}} \rtimes_{\widetilde{\alpha}} \widetilde{\Lambda} = C^*(S_{\widetilde{\alpha}}, x \mid \widetilde{\alpha} \in \widetilde{\Sigma}, x \in \widetilde{\mathcal{A}})$$

of $(\widetilde{\mathcal{A}}, \widetilde{\rho}, \widetilde{\Sigma})$ is the universal C^* -algebra generated by partial isometries $S_{\widetilde{\alpha}}, \widetilde{\alpha} \in \widetilde{\Sigma} = C \sqcup D$ and elements $x \in \widetilde{\mathcal{A}}$ that satisfy the relations (5.1). Let $C^*(S_{CD}, \mathcal{A})$ and $C^*(S_{DC}, \mathcal{A}')$ be the C^* -subalgebras of $\widetilde{\mathcal{A}} \rtimes_{\overline{\rho}} \widetilde{\Lambda}$ defined by setting

$$C^*(S_{CD}, \mathcal{A}) = C^*(S_{c_{\alpha}d_{\alpha}}, (a, 0) \mid c_{\alpha}d_{\alpha} = \kappa(\alpha), \alpha \in \Sigma, a \in \mathcal{A}) \quad \text{and} \quad C^*(S_{DC}, \mathcal{A}') = C^*(S_{d_{\alpha'}c_{\alpha'}}, (0, a') \mid d_{\alpha'}c_{\alpha'} = \kappa'(\alpha'), \alpha' \in \Sigma', a' \in \mathcal{A}')$$

respectively, where $S_{c_{\alpha}d_{\alpha}} = S_{c_{\alpha}}S_{d_{\alpha}}$ and $S_{d_{\alpha'}c_{\alpha'}} = S_{d_{\alpha'}}S_{c_{\alpha'}}$. Put the projections

$$P_C = \sum_{c \in C} S_c S_c^*, \qquad P_D = \sum_{d \in D} S_d S_d^* \qquad \text{in } \widetilde{\mathcal{A}} \rtimes_{\widetilde{\rho}} \widetilde{\Lambda}.$$

Hence $P_C + P_D = 1$.

We see that the following propositions hold.

Proposition 7.2.

$$C^*(S_{CD}, \mathcal{A}) = P_C(\widetilde{\mathcal{A}} \rtimes_{\widetilde{\rho}} \widetilde{\Lambda}) P_C, \quad C^*(S_{DC}, \mathcal{A}') = P_D(\widetilde{\mathcal{A}} \rtimes_{\widetilde{\rho}} \widetilde{\Lambda}) P_D.$$

Proposition 7.3. The C^* -symbolic crossed products $\mathcal{A} \rtimes_{\rho} \Lambda$ and $\mathcal{A}' \rtimes_{\rho'} \Lambda'$ are canonically isomorphic to the algebras $C^*(S_{CD}, \mathcal{A})$ and $C^*(S_{DC}, \mathcal{A}')$ respectively.

The following lemma shows that the subalgebras $P_C(\widetilde{\mathcal{A}} \rtimes_{\tilde{\rho}} \widetilde{\Lambda})P_C$ and $P_D(\widetilde{\mathcal{A}} \rtimes_{\tilde{\rho}} \widetilde{\Lambda})P_D$ are complementary full corners in $\widetilde{\mathcal{A}} \rtimes_{\tilde{\rho}} \widetilde{\Lambda}$.

Lemma 7.4. The projections P_C, P_D are full in the algebra $\widetilde{\mathcal{A}} \rtimes_{\bar{\rho}} \widetilde{\Lambda}$.

Proof of sketch of Theorem 7.1. By Proposition 7.2 and Proposition 7.3, we may identify the algebras $\mathcal{A} \rtimes_{\rho} \Lambda$ with $P_C(\widetilde{\mathcal{A}} \rtimes_{\tilde{\rho}} \widetilde{\Lambda}) P_C$, and $\mathcal{A}' \rtimes_{\rho'} \Lambda'$ with $P_D(\widetilde{\mathcal{A}} \rtimes_{\tilde{\rho}} \widetilde{\Lambda}) P_D$. By these identifications, one has

$$\hat{\rho}_z^2(s_\alpha) = \hat{\tilde{\rho}}_z(S_c S_d), \qquad \hat{\rho'}_z^2(s'_{\alpha'}) = \hat{\tilde{\rho}}_z(S_d S_c)$$

for $\kappa(\alpha) = cd \in CD$, $\kappa'(\alpha') = dc \in DC$. Thus $(\mathcal{A} \rtimes_{\rho} \Lambda, \hat{\rho}, \mathbb{T})$ and $(\mathcal{A}' \rtimes_{\rho'} \Lambda', \hat{\rho'}, \mathbb{T})$ are strong shift equivalent in 1-step. \square

Remark. It is possible to generalize the above discussions such as strong shift equivalent Hilbert C^* -bimodules give rise to strong shift equivalent C^* -algebras of the Hilbert C^* -bimodules. We will discuss this generalization in a forth coming paper [Ma6].

We present the following theorem.

Theorem 7.5. Let (A, ρ, Σ) and (A', ρ', Σ') be two C^* -symbolic dynamical systems whose associated subshifts are denoted by Λ and Λ' respectively. If (A, ρ, Σ) and (A', ρ', Σ') are strong shift equivalent, then we have

- (i) the subshifts Λ and Λ' are topologically conjugate,
- (ii) the C*-symbolic crossed products $(A \rtimes_{\rho} \Lambda, \hat{\rho}, \mathbb{T})$ and $(A' \rtimes_{\rho'} \Lambda', \hat{\rho'}, \mathbb{T})$ with gauge actions are strong shift equivalent, and
- (iii) the stabilized gauge actions $(A \rtimes_{\rho} \Lambda \otimes \mathcal{K}, \hat{\rho} \otimes \operatorname{id}, \mathbb{T})$ and $(A' \rtimes_{\rho'} \Lambda' \otimes \mathcal{K}, \hat{\rho'} \otimes \operatorname{id}, \mathbb{T})$ are cocycle conjugate, where \mathcal{K} denotes the C^* -algebra of all compact operators on a separable infinite dimensional Hilbert space.

In the rest of this section, we will concern K-theory for the C^* -algebra $\mathcal{A} \rtimes_{\rho} \Lambda$ constructed from a C^* -dynamical system $(\mathcal{A}, \rho, \Sigma)$. The endomorphisms $\rho_{\alpha} : \mathcal{A} \to \mathcal{A}$ for $\alpha \in \Sigma$ yield endomorphisms $\rho_{\alpha_*} : K_*(\mathcal{A}) \to K_*(\mathcal{A})$ for $\alpha \in \Sigma$ on the K-theory groups of \mathcal{A} . Define an endomorphism

$$\rho_*: K_*(\mathcal{A}) \to K_*(\mathcal{A}), \qquad * = 0, 1$$

by setting $\rho_*(g) = \sum_{\alpha \in \Sigma} \rho_{\alpha*}(g), g \in K_*(\mathcal{A})$. By [Pim] (cf. [KPW]), one has the following six term exact sequence of K-theory:

$$K_{0}(\mathcal{A}) \xrightarrow{id-\rho_{*}} K_{0}(\mathcal{A}) \xrightarrow{\iota_{*}} K_{0}(\mathcal{A} \rtimes_{\rho} \Lambda)$$

$$\uparrow \qquad \qquad \downarrow$$

$$K_{1}(\mathcal{A} \rtimes_{\rho} \Lambda) \xleftarrow{\iota_{*}} K_{1}(\mathcal{A}) \xleftarrow{id-\rho_{*}} K_{1}(\mathcal{A}).$$

Hence if in particular $K_1(A) = 0$, one has

$$K_0(\mathcal{A} \rtimes_{\rho} \Lambda) = K_0(\mathcal{A})/(\mathrm{id} - \rho_*)K_0(\mathcal{A}),$$

$$K_1(\mathcal{A} \rtimes_{\rho} \Lambda) = \mathrm{Ker}(\mathrm{id} - \rho_*) \text{ in } K_0(\mathcal{A}).$$

This formula is a generalization of K-theory formulae proved in [C2] and [Ma3]. As in [Ma3:Lemma 5.2], one sees that the fixed point algebra $\mathcal{F}_{(\mathcal{A},\rho,\Sigma)}$ of $\mathcal{A}\rtimes_{\rho}\Lambda$ under the gauge action $\hat{\rho}$ is stably isomorphic to $(\mathcal{A}\rtimes_{\rho}\Lambda)\rtimes_{\hat{\rho}}\mathbb{T}$. We define the K-groups $K_*(\mathcal{A},\rho,\Sigma)$ and the dimension groups $D_*(\mathcal{A},\rho,\Sigma)$ for $(\mathcal{A},\rho,\Sigma)$ by setting

$$\begin{split} K_*(\mathcal{A}, \rho, \Sigma) &= K_*(\mathcal{A} \rtimes_{\rho} \Lambda) \\ D_*(\mathcal{A}, \rho, \Sigma) &= (K_*(\mathcal{F}_{(\mathcal{A}, \rho, \Sigma)}), \hat{\rho}_*) \\ &\quad * = 0, 1 \end{split}$$

where $\hat{\rho}_*$ is the automorphism on the abelian group $K_*(\mathcal{F}_{(\mathcal{A},\rho,\Sigma)})$ induced by the dual action $\hat{\rho}$ of the gauge action $\hat{\rho}$. We also define the Bowen-Franks groups $BF^*(\mathcal{A},\rho,\Sigma)$ for $(\mathcal{A},\rho,\Sigma)$ by setting

$$BF^*(\mathcal{A}, \rho, \Sigma) = \operatorname{Ext}_*(\mathcal{A} \rtimes_{\rho} \Lambda), \qquad * = 0, 1$$

Then Theorem 7.5 (iii) implies

Proposition 7.6. The abelian groups $K_*(A, \rho, \Sigma)$, $BF^*(A, \rho, \Sigma)$ and the abelian group with automorphisms $D_*(A, \rho, \Sigma)$ for (A, ρ, Σ) are invariant under strong shift equivalence of C^* -symbolic dynamical systems.

The above results are generalization of [Ma4] see also [C2], [CK], [Ma2].

In [Ma8], dynamical property of a "subshift"

$$\mathcal{S}_{(A,\rho,\Sigma)} = \{ (\rho_{\alpha_i})_{i \in \mathbb{Z}} \mid (\rho_{\alpha_i} \circ \cdots \circ \rho_{\alpha_{i+k}})(1) \neq 0, i \in \mathbb{Z}, k \in \mathbb{Z}_+ \}$$

will be studied.

Acknowlegement: The author would like to thank Yasuo Watatani for his useful suggestions and discussions on Hilbert C^* -bimodules.

REFERENCES

- [BF] R. Bowen and J. Franks, Homology for zero-dimensional nonwandering sets, Ann. Math. 106 (1977), 73-92.
- [BK] M. Boyle and W. Krieger, Almost Markov and shift equivalent sofic systems, Proceedings of Maryland Special Year in Dynamics 1986-87, Springer -Verlag Lecture Notes in Math 1342 (1988), 33-93.
- [Bro] L. G. Brown, Stable isomorphism of hereditary subalgebras of C*-algebras, Pacific. J. Math. 71 (1977), 335-348.
- [BGR] L. G. Brown, P. Green and M. A. Rieffel, Stable isomorphism and strong Morita equivalence of C*-algebras, Pacific. J. Math. 71 (1977), 349-363.
- [Ca] T. M. Carlsen, On C*-algebras associated with sofic shifts, J. Operator Theory 49 (2003), 203-212.
- [Co] F. Combes, Crossed products and Morita equivalence, Proc. London Math. Soc. 49 (1984), 289-306.
- [C] J. Cuntz, Simple C*-algebras generated by isometries, Commun. Math. Phys. 57 (1977), 173-185.
- [C2] J. Cuntz, A class of C*-algebras and topological Markov chains II: reducible chains and the Ext-functor for C*-algebras, Invent. Math. 63 (1980), 25-40.
- [CK] J. Cuntz and W. Krieger, A class of C*-algebras and topological Markov chains, Invent. Math. 56 (1980), 251-268.
- [CMW] R. E. Curto, P. Muhly and D. P. Williams, Crossed products of strong Morita equivalent C*-algebras, Proc. Amer. Math. Soc. 90 (1984), 528-530.
- [De] V. Deaconu, Groupoids associated with endomorphisms, Trans. AMS 347 (1995), 1779-1786.
- [De2] V. Deaconu, Generalized Cuntz-Krieger algebras, Proc. AMS. 124 (1996), 3427-3435.
- [De3] V. Deaconu, Generalized solenoids and C*-algebras, Pacific J. Math. 190 (1999), 247–260.
- [Fi] R. Fischer, Sofic systems and graphs, Monats. für Math. 80 (1975), 179-186.
- [HIK] T. Hamachi, K. Inoue and W. Krieger, Subsystems of finite type and semigroup invariants of subshifts, preprint.
- [KPW] T. Kajiwara, C. Pinzari and Y. Watatani, Ideal structure and simplicity of the C*-algebras generated by Hilbert modules, J. Funct. Anal. 159 (1998), 295-322.
- [KW] T. Kajiwara and Y. Watatani, Jones index theory by Hilbert C*-bimodules and K-theory, Trans. Amer. Math. Soc. 352 (2000), 3429-3472.
- [Ka] Y. Katayama, Generalized Cuntz algebras \mathcal{O}_N^M , RIMS kokyuroku 858 (1994), 87-90.
- [Kit] B. P. Kitchens, Symbolic dynamics, Springer-Verlag, Berlin, Heidelberg and New York,
- [Kr] W. Krieger, On dimension functions and topological Markov chains, Invent. Math. 56 (1980), 239-250.
- [Kr2] W. Krieger, On sofic systems I, Israel J. Math. 48 (1984), 305-330.

- [Kr3] W. Krieger, On sofic systems II, Israel J. Math 60 (1987), 167-176.
- [KM] W. Krieger and K. Matsumoto, A lambda-graph system for the Dyck shift and its K-groups,, Doc. Math. 8 (2003), 79-96.
- [KM2] W. Krieger and K. Matsumoto, A class of invariants of the topologically conjugacy of subshifts, to appear in Ergodic Theory Dynam. Systems.
- [KPRR] A. Kumjian, D. Pask, I. Raeburn and J. Renault, Graphs, groupoids and Cuntz-Krieger algebras, J. Funct. Anal. 144 (1997), 505-541.
- [LM] D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press., 1995.
- [Ma] K. Matsumoto, Presentations of subshifts and their topological conjugacy invariants, Doc. Math. 4 (1999), 285-340.
- [Ma2] K. Matsumoto, Stabilized C*-algebra constructed from symbolic dynamical systems, Ergodic Theory Dynam. Systems 20 (2000), 821-841.
- [Ma3] K. Matsumoto, C*-algebras associated with presentations of subshifts, Doc. Math. 7 (2002), 1-30.
- [Ma4] K. Matsumoto, Strong shift equivalence of symbolic matrix systems and Morita equivalence of C*-algebras, Ergodic Theory Dynam. Systems 24 (2004), 199-215.
- [Ma5] K. Matsumoto, Purely infiniteness of C*-algebras associated with lambda-graph systems, preprint.
- [Ma6] K. Matsumoto, On strong shift equivalence of Hilbert C*-bimodules, preprint.
- [Ma7] K. Matsumoto, A simple purely infinite C*-algebra associated with a lambda-graph system of the Motzkin shift, to appear in Math. Z..
- [Ma8] K. Matsumoto, Subshifts on C*-algebras (tentative title), in preperation.
- [MS] P. S. Muhly and B. Solel, On the simplicity of some Cuntz-Pimsner algebras, Math. Scand. 83 (1998), 53-73.
- [N] M. Nasu, Topological conjugacy for sofic shifts, Ergodic Theory Dynam. Systems 6 (1986), 265-280.
- [N2] M. Nasu, Textile systems for endomorphisms and automorphisms of the shift, Mem. Amer. Math. Soc. 546 (1995).
- [Pim] M. V. Pimsner, A class of C*-algebras generalizing both Cuntz-Krieger algebras and crossed product by Z, in Free Probability Theory, Fields Institute Communications 12 (1996), 189-212.
- [Re] J. N. Renault, A groupoid approach to C*-algebras, Lecture Notes in Math. Springer 793 (1980).
- [Ri] M. A. Rieffel, Induced representations of C*-algebras, Adv. in Math. 13 (1974), 176-257.
- [Ri2] M. A. Rieffel, Morita equivalence for C*-algebras and W*-algebras, J. Pure Appl. Algebra 5 (1974), 51-96.
- [We] B. Weiss, Subshifts of finite type and sofic systems, Monats. Math. 77 (1973), 462-474.
- [Sch] J. Schweizer, Dilations of C*-correspondences and the simplicity of Cuntz-Pimsner algebras, J. Funct. Anal. 180 (2001), 404-425.
- [Tom] M. Tomforde, C*-algebras of labeled graphs, preprint.
- [Wi] R. F. Williams, Classification of subshifts of finite type, Ann. Math. 98 (1973), 120-153, erratum, Ann. Math. 99(1974), 380 381.

e-mail:kengo@yokohama-cu.ac.jp