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1. INTRODUCTION

This article is a survey of the author’s recent preprint entitled ” Actions of
symbolic dynamical systems on C*-algebras”, that is written based on the talk at
RIMS, Jan. 2004. Details are given in the preprint.

In [CK], J. Cuntz and W. Krieger have founded a close relationship between
symbolic dynamics and C*-algebras (cf. [C2]). They constructed purely infinite
simple C*-algebras from irreducible topological Markov shifts. They have proved
that their stabilization with gauge action is invariant under topological conjugacy
of topological Markov shifts, so that K-theoretic invariants of the C*-algebras with
gauge actions yield invariants of topological Markov shifts. The invariants are the
dimension group introduced by W. Krieger [Kr] and the Bowen-Franks group [BF).
They play a crucial role in the classification theory of topological Markov shifts.
R. F. Williams has classified topological Markov shifts in terms of an algebraic
relation of underlying matrices [Wi]. The algebraic relation is called a strong shift
equivalence. M. Nasu generalized Williams’s classification result to sofic shifts, that
are subshifts coming from finite labeled graphs [N].

In [Ma), the author introduced a notion of A-graph system, whose matrix version
is called symbolix matrix system. A A-graph system is a generalization of a finite
labeled graph and presents a subshift. Conversely any subshift is presented by a
A-graph system, and the topological conjugacy classes of the subshifts are exactly
corresponding to the strong shift equivalence classes of the symbolic matrix systems
of the canonical \-graph systems. He constructed C*-algebras from A-graph systems
[Ma3] as a generalization of the above Cuntz-Krieger algebras. It has been proved
that the outer conjugacy class of the stabilized gauge action is invariant under strong
shift equivalence of the symbolic matrix system of the A-graph system [Ma4]. Hence
K-theoretic invariants of the C*-algebras with gauge actions constructed from A-
graph systems yield invariants of topological conjugacy classes of subshifts.

In this survey article, we will study and generalize the above discussions in purely
C*-algebra setting. We will introduce a notion of C*-symbolic dynamical system,
that is a finite family {pq }aecs of endomorphisms of a unital C*-algebra A indexed
by symbols T satisfying the condition Yaes Pafl) > 1. A finite labeled graph
gives rise to a C*-symbolic dynamical system (A, p, Z) such that A is commutative
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and finite dimensional. Conversely, if the C*-algebra A is commutative and finite
dimensional, the C*-symbolic dynamical system comes from a finite labeled graph.
A \-graph system gives rise to a C*-symbolic dynamical system (A4, p, L) such that
A is commutative and AF. Conversely, if the C*-algebra A is commutative and
AF, the C*-symbolic dynamical system comes from a A-graph system ([Theorem
3.4]). We may prove that equivalence classes of the predecessor-separated A-graph
systems exactly correspond to the isomorphism classes of the predecessor-separated
C*-symbolic dynamical systems of the commutative AF-algebras ([Corollary 3.7]).

A C*-symbolic dynamical system (A, p,X) yields a nontrivial subshift A4 , x)
over T and a Hilbert C*-right A-module H%. Foray,...,a; € £, aword (eq,...,ak)
is admissible for the subshift if and only if (pg, 00 pa, )(1) # 0. The Hilbert C*-
right A-module H* has an orthogonal finite basis {uq}aex and a unital faithful
diagonal left action ¢, : A — L(H%). It is called a Hilbert C*-symbolic bimodule
over A, and written as (¢,, H, {ua}eex)-

We will consider C*-algebras constructed from the Hilbert C*-symbolic bimod-
ules (¢,, "%, {ua}taex). A general construction of C*-algebras from Hilbert C*-
bimodules has been established by M. Pimsner [Pim] (see [Ka] for the case of
von Neumann algebras). The C*-algebras are called Cuntz-Pimsner algebras. Its

ideal structure and simplicity conditions have been studied by Kajiwara-Pinzari-
Watatani [KPW] and Muhly-Solel [MS] (see also [KW], [Sch]). The constructed

C*-algebra from the Hilbert C*-symbolic bimodule (¢,, H%, {ta}aes) is denoted
by Ax,A, where A is the subshift A(4 , 5) associated with the C*-symbolic dynam-
ical system (A, p, ¥). We call the algebra A %, A the C*-symbolic crossed product
of A by the subshift A. As in [Pim] (cf. [KPW]), the gauge action, denoted by p,
on the algebra A x, A of the torus T = {2 € C | |z| = 1} is defined as a general-
ization of that of the Cuntz-Krieger algebras. We remark that Pimsner showed the
following fact [Pim]: For every Hilbert C*-bimodule E over a C*-algebra A, if A is
commutative and finite dimensional, and if E is projective and finitely generated,
the associated C*-algebra is a Cuntz-Krieger algebra. We present the following
theorem

Theorem A (Theorem 5.2). Let (A, p, ) be a C*-symbolic dynamical system
and A be the associated subshift A4, 5). Assume that A is commutative.

(i) If A= C, the subshift A is the full shift £Z, and the C*-algebra A x, A is
the Cuntz algebra Oz of order |L|.

(ii) If A is finite dimensional, the subshift A is a sofic shift Ag presented by
a left-resolving labeled graph G, and the C*-algebra A %, A is a Cuntz-
Krieger algbera Og associated with the labeled graph. Conversely, for any
sofic shift, that is presented by a left-resolving labeled graph G, there exists a
C*-symbolic dynamical system (A, p, L) such that the associated subshift is
the sofic shift, the algebra A is finite dimensional, and the algebra A x, A
18 the Cuntz-Krieger algbera Og associated with the labeled graph.

(iii) If A is an AF-algebra, there uniquely ezists a A-graph system £ up to equiv-
alence such that the subshift A is presented by £ and the C*-algebra A %, A
is the C*-algebra Qg associated with the \-graph system £. Conversely, for
any subshift, that is presented by a left-resolving A-graph system £, there
ezists a C*-symbolic dynamical system (A,p,X) such that the associated
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subshift is the subshift presented by £, the algebra A is a commutative AF-
algebra, and the algebra A x, A is the C*-algebra Og associated with the
A-graph system L.

We will introduce notions of strong shift equivalence and shift equivalence of
C*-symbolic dynamical systems, that are generalizations of those of square non-
negative matrices defined by Williams [Wi], of finite symbolic square matrices de-
fined by Nasu |[N] and Boyle-Krieger [BK] and of symbolic matrix systems defined
by [Ma]. They are generalizations of conjugacy of single automorphisms of C*-
algebras. Strong shift equivalence and shift equivalence of Hilbert C*-symbolic
bimodules are introduced. We know that two C*-symbolic dynamical systems
(4,p,%) and (A',p',T') are strong shift equivalent (resp. shift equivalent) if
and only if their associated Hilbert C*-symbolic bimodules (¢,, H%, {te}aex) and
(qSP:,Hf,;,, {u! }aes) are strong shift equivalent (resp. shift equivalent). A notion
of strong shift equivalence of C*-symbolic crossed products with gauge actions is
introduced. We finally obtain the following theorem.

Theorem B(Theorem 7.5). Let (A, p,T) and (A',p’,Z') be two C*-symbolic dy-
namical systems. Let A and A’ be their associated subshifts A(a,p5) and Aar,p,31)
respectively. If (A, p,T) and (A',p',Z') are strong shift equivalent, then
(i) the subshifts A and A’ are topologically conjugate,
(ii) the C*-symbolic crossed products (A x, A, p, T) and (A’ % A, p', T) with
gauge actions are strong shift equivalent, and
(iii) the stabilized gauge actions (A >, A®K,p®id,T) and (A’ @y A'QK,p' ®
id, T) are cocycle conjugate, where K denotes the C*-algebra of all compact
operators on a separable infinite dimensional Hilbert space.

The result (iii) is a generalization of the main result of [Ma4] (cf.[CK:3.8. The-
orem]).

We define the K-groups K, (A, p, T), the Bowen-Franks groups BF*(A, p, £) and
the dimension groups D.(A, p, ) for (A4, p,X) by setting for x =0, 1

K.(Ap, %)= Ka(Ax,A), BF*(A p5)=Ext,(Ax,A),
D.(A,p,%) =(K.((A %, A) Xp T):ﬁ*)

where p, is the automorphism of K.((A x, A) x; T) induced from the dual action

p of the gauge action p. The dimension groups and the Bowen-Franks groups are
generalizations of those groups for a finite square nonnegative matrix, that is re-
garded as a finite labeled graph for which labels are edges itself (cf.[BF], [Kr], [LM]).
Then Theorem B implies that all the abelian groups K.(A, p, L), BF*(A, p,Z) and
D, (A, p,T) are invariant under strong shift equivalence of C*-symbolic dynamical
systems (Proposition 7.6).

2. M-GRAPH SYSTEMS AND ITS C*-ALGEBRAS

Let ¥ be a finite set with its discrete topology. We call it an alphabet. Each
element of X is called a symbol or a label. Let £2 be the infinite product spaces



Hiez ¥;, where ¥; = ¥, endowed with the product topology. The transformation
o on £Z given by (o(x i))iez = (@i+1)iez is called the (full) shift. Let A be a shift
invariant closed subset of ©% i.e. o(A) = A. The topological dynamical system
(A,o|p) is called a subshift. We write the subshift as A for brevity. A finite
sequence p = ({1, ..., ux) of elements p; € ¥ is called a word of length |u| =
For a subshift A, we denote by A’ the set of all admissible words of length [ of
A. By a symbolic matrix B over ¥ we mean a finite matrix with entries in finite
formal sums of elements of £. A square symbolic matrix B naturally gives rise to
a finite labeled directed graph which we denote by Gg. The labeled directed graph
defines a subshift over ¥ which consists of all infinite labeled sequences following
the labeled directed edges in Gg. Such a subshift is called a sofic shift presented
by Gs and written as Ag, ([Fi],[Kr2],[Kr3],[We], cf. [Kit],[LM]). Throughout this
paper, a labeled graph means a labeled directed graph with finite vertices and finite
directed edges such as every vertex has at least one in-coming edge and at least one
out-going edge.

Let B and B’ be symbolic matrices over ¥ and % respectively. Let ¢ be a
bijection from a subset of 3 onto a subset of ¥/, that is called a specification.
Following M. Nasu in [N],[N2], we say that B and B’ are specified equivalent under
specification ¢ if B’ can be obtained from B by replacing every symbol o appearing

in B by ¢(a). We write it as B LB Let Z4 be the set of all nonnegative integers.

Recall that a A-graph system £ = (V, E, \,.) over T is a directed Bratteli diagram
with a vertex set V = Ujez, Vi, an edge set E = Uiezy Eri+1,andamap A : E = %,
and that is supplied with a sequence of surjective maps ¢(= ¢141) : Vi1 = W for
! € Zy. Here the vertex sets V;,l € Z and the edge sets Ej41,] € Z4 are finite
disjoint sets. An edge e in Ej;;; has its source vertex s(e) in V}, its terminal
vertex t(e) in V4, and its label A(e) in £. Every vertex in V has successors
and every vertex in V, except Vp, has predecessors. It is then required that for
u € Vi1 and v € Vj4,, there exists a bijective correspondence between the edge set
{e € Ei41]t(e) = v,¢(s(e)) = u} and the edge set {e € E;_; i|s(e) = u,t(e) = ¢(v)}
that preserves labels. The required property is called the local property.

Two A-graph systems £ = (V, E, \,¢) over £ and £' = (V', E',\,/') over &' are
said to be isomorphic if there exist bijections &y : V; = V/, ¥ : Eijy1 — El’,l+1
and a specification ¢ : ¥ — X’ such that &y (s(e)) = s(Pg(e)), By (t(e)) = t(Pg(e))
and X (@g(e)) = ¢(A(e)) for e € E, and /(v (v)) = By (¢(v)) for v € V.

A symbolic matrix system over ¥ consists of a sequence of pairs of rectangular
matrices (My141,11141),! € Z4. The matrices M; 4 have their entries in formal
sums of ¥ and the matrices I ;4; have their entries in {0,1}. The.matrices My 141
and I; ;41 have the same size for each | € Z, and satisfy the following relations

(2.1) Ly Mg e = My Ligy 142, leZ,.

The matrices Ij41,l € Z4 have one 1 in each column and at least one 1 in each
row. We denote it by (M, I). A A-graph system naturally arises from a symbolic
matrix system (M, I). The edges from a vertex v} € V; to a vertex v;"' are given
by the (4, j)-component M 11+1(2, ) of the matrix Mz d+1- The matrxx Iz 1+1 defines

a surjection ¢ ;43 from Vl+1 to Vi foreachl € Z.
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Two symbolic matrix systems (M, I) over ¥ and (M’,I') over ¥’ are said to be
isomorphic if there exists a specification ¢ from ¥ to &' and an m(l) x m(l)-square
permutation matrix P; for each ! € N such that

¢
PiMiipr = My Pria, Plygpr = I P for 1€Z,.

There exists a bijective correspondence between the set of all isomorphism classes of
symbolic matrix systems and the set of all isomorphism classes of A-graph systems.

Let G = (G,)\) be a labeled graph with finite directed graph G and labeling
M. Let {vi,...,v,} be the vertex set of G. Put V; = {vy,...,v,} foralll € Zy.
We regard the sets Vi, € Z; as disjoint sets. Define ¢ : Vi1 —= Vi by «(vi) = v;
for i = 1,...,n. Write labeled edges from V; to Vi41 for [ € N following the
directed graph G with labeling A. The resulting labeled Bratteli diagram with ¢
becomes a A-graph system. A labeled graph and also a A-graph system are said
to be left-resolving if different edges with the same label have different terminals.
Hence a lebeled graph defines a A-graph system such that if the lebeled graph is
left-resolving, so is the A-graph system. We call the resulting A-graph system the
associated \-graph system with the labeled graph graph. We note that any sofic
shift may be presented by left-resolving labeled graph ([Kr2],[Kr3],[We}).

A \-graph system £ gives rise to a subshift Ag on the sequence space of labels
appearing in the labeled Bratteli diagram. We say that £ presents the subshift Ag.
A canonical method to construct a A-graph system from an arbitrary subshift A has
been introduced in [Ma]. The A-graph system and its symbolic matrix system are
said to be canonical for the subshift and written as £ and (MA, I*) respectively.

Let £ = (V,E, \,¢) be a A\-graph system over X. For a vertex v € V;, we denote
by T'g ;(v) the set of all label sequences of length [ in £ that start at vertices of
Vo and terminate at v. We say that £ is predecessor-separated if for u,v € V
the condition I'g ,(u) = I'g ;(v) implies u = v. The canonical A-graph systems are
left-resolving and predecessor-separated.

We will introduce an equivalence relation of predecessor-separated A-graph sys-
tems. Let (M,I) and (M’,I') be the symbolic matrix systems over ¥ and X’
respectively. We denote by m(l) the row size of the matrix Mj 41 and by m/(l)
that of M}, respectively. We say that (M, I) and (M’,I') are equivalent if there
exist N € Z4 and a bijection 7 : ¥ — ¥’ such that for each | € Z., there exist an
m(l) x m'(N + 1) matrix H; over {0,1} and an m/(l) x m(N + [) matrix K over
{0, 1} satisfying the following equations: ‘

-1
w ] 7 w
My Hipn 2 HMign ients Mg K 2 KIMignN N+,
! !
L1 Hipr = Hilj N e N L 141 K41 = Kiliy Na4 N1
and

4 id !
HiKN+i = Lian+i, KiHnyi = I oN41-

We write this equivalence relation as (M, I) = (M',I'). Two A-graph systems
are called equivalent if their respect symbolic matrix systems are equivalent.



In the rest of this section, we briefly review the C*-algebra Og associated with
A-graph system £. The C*-algebras have been originally constructed in [Ma3] as
groupoid C*-algberas of certain r-discrete groupoids constructed from continuous
graphs in the sense of Deaconu ([De],[De2],[De3],cf.[Re]) obtained by the A-graph
systems. They are realized as universal unique C*-algebras as in the following way.
For a A-graph system £ = (V, E,\,.) over I, let {v!,... ’Uin(l)} be the vertex set
V1. We put

(2.2)
. . ]. ifse =vl,,\e =a,te :vl.+lforsomee€E ,
A (i, a,7) ={ ( ) isA(e) (€) J Li+1
0 otherwise,
(2.3)

Loif e (vl."'l

j )=’I)£,

I (i,5) = {

0 otherwise

fori=1,2,...,m(l), y=1,2,...,m(l+1), a € .

Lemma 2.1([Ma3; Theorem Al). The C*-algebra Og is the universal con-
crete C*-algebra generated by partial isometries Sy, € £ and projections E} i =
1,2,...,m(l), |l € Zy satisfying the following relations called (£):

(2.4) Y SpSp=1,
BET
m(l) m(l+1)
(2.3) Y EBi=1,  El= Y LGB,
. k=1 j=1
(2.6) SaSHE} = E{S.S%,
m(l+1)
(2.7) SiBiSa= 3, Auina(i,af)EH,
i=1

fori=1,2,... . m(l),l € Zs,a € X.

If £ satisfies condition (I), a generalized conditon of condition (I) for a finite
square matrix with entries in {0,1} defined in [CK], the algebra Og is the unique
C*-algebra subject to the above relations (£). Furthermore, if £ is irreducible, the
C*-algebra Og is simple and purely infinite ([Ma3],[Ma5]). The gauge action o
on Og is defined by an action of T = {2 € C | |z| = 1} such that &®,(S,) = 2Sa,
ot (Bly=Elfora€X,i=1,2,...,m(l),l € Zy.

3. C*-SYMBOLIC DYNAMICAL SYSTEMS

Let A be a unital C*-algebra. Throughout this paper, an endomorphism of A
means a *-endomorphism of 4 that does not necessarily preserve the unit 14 of A.
The unit 14 is denoted by 1 unless we specify. We denote by End(A) the set of all
endomorphisms of A. Let ¥ be a finite set. A finite family of endomorphisms p, €
End(A),a € T is said to be essential if po(1) # 0 for all @ € ¥ and Taespa(l) > 1.
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It is said to be fasthful if for any nonzero ¢ € A there exists a symbol o € ¥ such
that pa(z) # 0.
Definition. A C*-symbolic dynamical system is a triplet (A, p,X) consisting of
a unital C*-algebra A and a finite family of endomorphisms p, of A indexed by
a € ¥, that is essential and faithful.

Two C*-symbolic dynamical systems (A, p,X) and (A, p’',¥’) are said to be
isomorphic if there exist an isomorphism @ : 4 — A’ and a bijection 7 : ¥ — ¥’
such that ® o p, = p;‘_(a) o® for all o € X.

Proposition 3.1. For a C*-symbolic dynamical system (A, p,X), there uniquely
exists a subshift A4, 5) over ¥ such that a word ;- o} of £ 1s admissible for

the subshift if and only if (pa, 0+ 0 pa, )(1) # 0.

Suppose that A is a commutative C*-algebra C({2) of all continuous functions
on a compact Hausdorff space 2. An endomorphism of A bijectively corresponds
to a continuous map from a clopen set of {2 to 2. Hence a C*-symbolic dynamical
system (C(f2), p, ¥) bijectively corresponds to a family {f, Eq}acs of clopen sets
E, C Q and continuous maps f, : E, — £, @ € T such that

U B« =2 and | fa(Ba) =9
a€l a€ll
We will study this situation in more graphical examples for a while.

For a left-resolving labeled graph G = (G, A), let vy,...,v, be its vertex set.
Consider the n-dimensional commutative C*-algbera Ag = CE; @---® CE,, where
each minimal projection F; corresponds to the vertex v; for i = 1,...,n. Then we
may define an n x n-matrix for a € ¥ with entries in {0,1} by

(3.1) A%H,0,j) = {

fori,5 =1,...,n. We set

1 if there exists an edge e from v; to v; with A(e) = o,

0 otherwise

PS(E) =) A%(G,a,5)E;, i=1,...,n,a€3.
j=1
Then p¢,a € ¥ define endomorphisms of Ag such that (Ag, p%, ) is a C*-symbolic
dynamical system.

Conversely, let (A, p, L) be a C*-symbolic dynamical system such that A is n-
dimensional and commutative. Take Ey, ..., E, the orthogonal minimal projections
of A such that A = CE; @ --- @ CE,. Define an n x n matrix [A(i, o, j)]i j=1,...n
for a € ¥ by setting '

(3.2) A, a,5) = {

so that one has

n
pa(Bi) =) A(i,a,j)Ej, i=1,...,n,a€X%.

1 if Pa(Ei) 2 Ej,

0 otherwise

Jj=1 .
Let vq,...,v, be the vertex set corresponding to the projections Ej,..., E,. Define
a directed labeled edge € such as the source vertex s(e) = v;, the terminal vertex
t(e) = v; and the label A(e) = a if A(z,a,j) = 1. Then we have a left-resolving
labeled graph G which presents the subshift A(4 ,5). Hence we have



Proposition 3.2. For a left-resolving labeled graph G, there ezists a C*-symbolic
dynamical system (Ag,p%, %) such that the algebra Ag is commutative and finite
dimensional, and the associated subshift A(ag,p9 5 18 the sofic shift Ag presented by
G. Conversely, for a C*-symbolic dynamical system (A, p, %), if A is commutative
and finite dimensional, there ezists a left-resolving labeled graph G such that A = Ag
and the associated subshift Aa,p,x) s the sofic shift Ag presented by G.

Let us apply the above discussions to general subshifts and A-graph systems. For
a A-graph system £ = (V, E, \,¢) over I, let (M, I) be its corresponding symbolic
matrix system. Let A;;,; be the matrices defined by (2.2). We equip V; with
discrete topology. We denote by Qg the topological space of the projective limit

VeV

that is a compact, totally disconnected, second countable topological space. We
regard the algebra of all continuous functions on V; as the direct sum

C(Vi) = CE; @ CE; & --- @ CEL, ),

where the vertices v! € V},i = 1,... ,m(l) correspond to the minimal projections
EleV,i=1,. ..ym(l). We denote C(V;) by Ag:. Let Ag be the commutative
C*-algebra of all continuous functions on Qg, that is the inductive limit algebra,

t
IOI

Ii 2 I; 3 I; 4
Ago =+ Ag1 ¥ Agy =3 Ags = -+
Hence Ayg is a unital commutative AF-algebra. For a symbol a € 3 we set

m(l+1)
Pa(BD) = Y Ao, )EM  fori=1,2,...,m(l).
J=1

By the commutation relation (2.1), p£ defines an endomorphism of Ag. Since each
vertex v! € Vj except [ = 0 has an in-coming edge, the family {pZ}qcx is essential.
It is also faithful because each vertex v! € V; has an out-going edge. Thus we have

Proposition 3.3. For a \-graph system £ over S, there ezists a C*-symbolic dy-
namical system (Ag, p%, %) such that the C*-algebra Ag is commutative and AF,
and the associated subshift Aaz po 5y coincides with the subshift Ag presented by
L. :

Conversely

Theorem 3.4. Let (A,p,T) be a C*-symbolic dynamical system. If the algebra
A is commutative and AF, there exists a \-graph system £ over ¥ such that the
associated C*-symbolic dynamical system (Ag, p%,X) is isomorphic to (A, p, X).

A C*-symbolic dynamical system (A, p, ) is said to be predecessor-separated if
the projections {(pa, 0+ -0pa, )(1) | a1, ..., ok € T,k € N} generate the C*-algebra
A.
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Proposition 3.5.

(i) If a A-graph system £ i3 predecessor-separated, the associated C*-symbolic
dynamical system (Ag, p*, L) is predecessor-separated.

(ii) Suppose that an algebra A is unital, commutative and AF. If a C*-symbolic
dynamical system (A, p, L) is predecessor-separated, there ezists a predecessor-
separated \-graph system £ over T such that the associated C*-symbolic
dynamical system (Ag, p®,T) is isomorphic to (A, p,X).

Proposition 3.6. Let £ and £' be predecessor-separated \-graph systems over I
and ¥ respectively. Then (Ag, p®,T) is isomorphic to (.A;y,p‘gl,E') if and only
if £ and £ are equivalent. In this case, the presented subshifts Ag and Agr are
identified through a symbolic conjugacy.

Therefore we have

Corollary 3.7. The equivalence classes of the predecessor-separated A-graph sys-
tems are identified with the isomorphism classes of the predecessor-separated C*-
symbolic dynamical systems of the commutative AF-algebras.

We formulate here an action of a subshift to a C*-algebra. We say that a subshift
A acts on a C*-algebra A if there exists a C*-symbolic dynamical system (A, p, X)
such that the associated subshift A(4,, ) coincides with A.

4. HILBERT C*-SYMBOLIC BIMODULES

In this section we will construct a Hilbert C*-bimodule from a C*-symbolic
dynamical system. Let (A4, p, L) be a C*-symbolic dynamical system. We put the
projections Py = pa(l) in A for a € £. Let {ea}acs denote the standard basis
of the |X|-dimensional vector space C'®!, where |Z| denotes the cardinal number of
the set X. Set

HP = Z Ce, @ P, A.

o€l
Define a right A-action and an A-valued inner product on 4 by setting
(ea ® Paz)y := €o ® Pozy,

Py ifa=20,
<ea®Paw|eﬂ®Pﬂy>=={ y g

0  otherwise
for @, € £ and z,y € A. Then H’ forms a Hilbert C*-right A-module. We put
Ug i= €q @ Py, ac€X.

Lemma 4.1. The V}'am,ily Uy, € T forms an orthogonal finite basis of HY in the
sense of [KPW] such that

(4.1) Y (ualua) 2 1.

a€X



We say that a finite basis of a Hilbert C*-module is essential if the basis satisfies
the condition (4.1). We will next define a diagonal left action ¢, of A to the set of
all adjointable bounded .A-module maps L(H’) on H as follows:

¢p(a)uax = uapa(a)w, a,r € A,CY €Xx.

The above definition is well-defined. If u,z = u,y, then Pyz = P,y so that
pa(al)r = pa(al)y for a € A. Hence one has that uspa(a)z = ugpa(a)y. Since
the family {pq }aes is faithful, the left action ¢, of A on H% is faithful, that is, the
element ¢,(z) is nonzero for any nonzero z € A. Therefore we have

Proposition 4.2. For a C*-symbolic dynamical system (A,p, L), there ezists a
Hilbert C*-right A-module H% with an orthogonal essential finite basis {uq}aes
and a unital faithful diagonal left action ¢, : A — L(H%;) such that

$p(@)ua =uapa(a),
(4.3) (o | Ua) =pa(l), a€ A€l

We note that the above two conditions imply

(4.4) (o | $o(a)ua) = pala), a€Aacs.

Conversely

Proposition 4.3. For a Hilbert C*-right A-module H 4 with an orthogonal essen-
tial finite basis {uq}taex and a unital faithful diagonal left action ¢ : A — L(’HA),
define p, for a € ¥ by setting

Pa(a) = (uq | d(a)ua), a€ A

Then po gives rise to an endomorphism of A such that (A, p,X) yields a C*-symbolic
dynamical system.

A Hilbert C*-right A-module H 4 with a left action ¢ : A — L(H4) is called
a Hilbert C*-bimodule over A ([Pim], cf.[KW], [KPW], [MS]). Two Hilbert C*-
bimodules (¢, H4) and (¢',H/y) over A are said to be unitary equivalent if there
exists a bimodule isomorphism & : H 4 — H/y such that @ is unitary with respect
to their respect inner products.

Definition. A Hilbert C*-right A-module H 4 with an orthogonal essential finite
basis {uq }aey and a unital faithful diagonal left action ¢ : 4 — L(H 4) is called a
Hilbert C*-symbolic bimodule over A. Tt is written as (¢, H 4, {ta }aex)-

A Hilbert C*-symbolic bimodule (@, HA,{ta}aecx) over A bijectively corre-
sponds to a C*-symbolic dynamical system (A, p, L) by the above discussions.
Two Hilbert C*-symbolic bimodules (¢, H,{ua}taecx) and (¢, Hy, {uly tares)
over A are said to be unitary equivalent if there exists a bimodule isomorphism
d : Hg — H!y and a bijection 7 : ¥ — I’ such that & is unitary with respect
to their respect inner products and satisfies $(uq) = U r(q), @ € L. Let pg, 0 € X
and pl,,a’ € ¥’ be their respect endomorphisms of A. In this case, we have
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pa(a) = pl4(a),a € Abecause the equality (4.2) implies ¢'(a)®(uq) = B(Ua)pala)
and hence ¢'(a)ul .y = Ul q)Pala). This means that pa(a) = Pr(ay(@),a € A.

Two C*-symbolic dynamical systems (A, p, L) and (A, p’, £') are said to be inner
conjugate if there exists an element Uy g € A for @ € X, 8 € ¥’ such that

(i) pa(@)lUa,s = Ua,ﬂpéi(a)’

(ii) Eeezf Ua,eUJ e = da,vPa(1), 27@: USgUre = 5@5/’19(1) and
(i) pa(1)Ua,p = Uas = Ua,pp(1)
for a,y € £, B,e € &' and a € A. The family {Uq g}acs,gesr is called an inter-
twiner between (A, p, ) and (A, p',T).
Proposition 4.4. Two C*-symbolic dynamical systems (A,p,X) and (A,p', %)
are inner conjugate if and only if their associated Hilbert C*-bimodules (0, HY)
and (¢,,:,'Hf’4') are unitary equivalent as a Hilbert C*-bimodule.

We note that if (A, p,Z) and (A4,p’,L’) are inner conjugate with intertwiner
{Ua,p}aes ez, then the equalities for @ € X, 3 € S anda e A

pa(@) = D Uaept@)Use  £p(a) =D Us5p+(@)Uns;
€ET! vEX

hold. For (A, p,T), let D,(a) for a € A be the |Z| x |Z|-diagonal matrix D,(a) with
diagonal entries [po(a)]acs- One knows (A, p, ¥) and (A, p', ') are inner conjugate
if and only if there exists an |Z| X |Z’|-matrix U over A such that
(4.5) D,(a) =UDy(a)U* for a € A, and
(4.6) UU* =D,(1), U'U =Dy (1).

Let A be an n-dimensional commutative C*-algebra. By Proposition 3.2, a C*-

symbolic dynamical system (A, p, L) defines a left-resolving labeled graph G* =
(G®, \*) over ¥ with underlying finite directed graph G®. Let v1,...,v, denote the

~ vertex set of G?. We denote by A”(i,j) the cardinal number of the edges E*(3, j)

whose source vertex is v; and terminal vertex is v;. In this case, inner conjugacy is
completely characterized as in the following way.

Proposition 4.5. Let A be the n-dimensional commutative C*-algebra. Then C*-
symbolic dynamical systems (A, p, %) and (A,n,X) are inner conjugate if and only
if AP(i,§) = A"(i,j) for all i,j = 1,2,...,n. That is, the directed graphs G* and

G" are isomorphic.

5. CROSSED PRODUCTS BY SYMBOLIC DYNAMICAL SYSTEMS

We will study C*-algebras constructed from Hilbert C*-symbolic bimodules. A
general construction of C*-algebras from Hilbert C*-bimodules has been established
by Pimsner [Pim] (cf. [Ka]). The C*-algebras are called Cuntz-Pimsner algebras.
Its ideal structure and simplicity conditions have been studied by Kajiwara-Pinzari-
Watatani [KPW] and Muhly-Solel [MS], see also [KW], [PWY], [Sch]. For a C*-
symbolic dynamical system (A, p, %), we have a C*-algebra from the Hilbert C*-
symbolic bimodule (¢,,H%,{ta}aex) by using Pimsner’s general construction of
C*-algebras from Hilbert C*-bimodules. We denote the C*-algebra by A x, A,
where A is the subshift A(4,,x5) associated with (A4,p,%). We call the algebra
A %, A the C*-symbolic crossed product of A by the subshift A.



Proposition 5.1. The C*-symbolic crossed product A x, A is the universal unital
C*-algbera C*( A, So, o € L) generated by = € A and partial isometries Sy, a € T
subject to the following operator relations:

(5.1) Y SsSp=1, 8325, =palz), 5.5 =S8.Siz

BES

for all z € A and o € T. Furthermore for a;,...,ar € I, a word (ay,...,ax) 13
admissible for the subshift A = A4, v if and only if Sy, -+ So, #0.

As in [Pim] (cf. [KPW]), the gauge action, denoted by 5, on the algebra A x, A
of the torus T = {2z € C | |2| = 1} is defined by

~

ps(z) =z, pz(Sa) = 28q, t€AaeX,zeT.

We have the following theorem.

Theorem 5.2. Let (A, p,T) be a C*-symbolic dynamical system and A be the
associated subshift A4 ,v). Assume that A is commutative.

(i) If A= C, the subshift A is the full shift £%, and the C*-algebra A x, A is
the Cuntz algebra O|5; of order |Z|.

(i1) If A is finite dimensional, the subshift A is a sofic shift Ag presented by a
left-resolving labeled graph G, and the C*-algebra A x, A is a Cuntz-Krieger
algbera Og associated with the labeled graph. Conversely, for any sofic
shift Ag, that is presented by a lefi-resolving labeled graph G, there exists a
C*-symbolic dynamical system (A, p,X) such that the associated subshift is
the sofic shift Ag, the algebra A is finite dimensional, and the C*-algebra
A %, A is the Cuntz-Krieger algbera Og associated with the labeled graph.

(i) If A i3 an AF-algebra, there uniquely ezists a A-graph system £ up to equiv-
alence such that the subshift A is presented by £ and the C*-algebra A x, A
i3 the C*-algebra Og associated with the \-graph system £. Conversely,
for any subshift Ag, that is presented by a left-resolving A-graph system £,
there exists a C*-symbolic dynamical system (A, p,X) such that the associ-
ated subshift is the subshift Ag, the algebra A is a commutative AF-algebra,
and the C*-algebra A x, A i3 the C*-algebra Og associated with the A-graph
system L.

We remark that Pimsner showed the following fact [Pim|: For every Hilbert C*-
bimodule E over a C*-algebra A, if A is commutative and finite dimensional, and if
E is projective and finitely generated, the associated C*-algebra is a Cuntz-Krieger
algebra.

We will give some examples

(i) Let a;,...,am € Aut(B) be automorphisms of a unital C*-algebra B. Let
G = (G, \) be a left-resolving labeled graph with symbols ¥ = {e1,...,am}. Let
V = {v1,...,vn} be the vertex set. Let [A9(i, ax,j)]i j=1,.,» be the n x n-matrix
for a) € ¥ with entries in {0,1} defined by (3.1). Weput A =B & --- @ B the
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direct sum of the n-copies of B. For o) € T, define p¢, € End(A) by setting
ng(bla .+, bn)

-—(ZAgzak, Yo (b ZA Lagn)ak(d:),  (bry...,bn) € A

=1

Since we assume that every vertex of G has an in-coming edge, one has 3", _, pgk (1) >
1. Since we also assume that every vertex of G has an out-going edge, the family
{pgk}}::l is faithful. Hence we have a C*-symbolic dynamical system (A4, p9, ).
The associated subshift A4 ,¢ x) is the sofic shift Ag presented by the labeled
graph G. If the underlying directed graph G is irreducible with condition (I) in the
sense of [CK] and each automorphism aj has no nontrivial invariant ideal of B, the
associated crossed product A %, Ag is simple and purely infinite.

The following example is a special case of this example.

(ii) Let A = C(T) and £ = {1,2,...,n},n > 1. Take irrational numbers
8.,...,0, € R\Q. Define p;(f)(z) = f(e*™V~"12) for f € C(T),z € T. We have
a C*-symbolic dynamical system (C(T),p,X). Since the endomorphisms p;,i =
1,...,n are automorphisms and hence the associated subshift is the full shift Z%,
We denote by O, ... 6, the C*-symbolic crossed product C(T) Xg,,....0, TZ, As the
algebra Oy, ... g, is the universal unital C*-algebra generated by n isometries and
one unitary U satisfying the following relations:

Y S5i8r=1, SiSi=1, USi=e™TSU,  i=1,..,n

Hence Oy, ..., is realized as the ordinary crossd product On Xae,, ,, Z of the

Cuntz algebra O, by the automorphism ay, .. ¢, defined by ay, ... 4,(5;) = 2mV-18i G
It is simple and purely infinite whose K-groups are

Ko(Oy,,....0,) = K1(O,,....0,) 2 Z[(n — 1)Z.

(iii) Let A = [A(:,5)]i,j=1,..,n be an n X n matrix with entries in {0,1}. We
denote by A the compact Hausdorff space

AL ={(zi)ien € {L.-..,n}" | A(zi,2it1) = 1 for all i € N}

of the right one-sided topological Markov shift associated with the matrix A. Let
S;,i=1,...,,n be the generating partial isometries of the Cuntz-Krieger algebra
O such that 3°7_) 5;87 = 1,51 S: = Yj_; A(1,7)S;S}. The algebra A4 = C(A%)
of all continuous functions on A is identified with the subalgebra of © 4 generated
by the projections S5} for u = piy - - - px, where S, = S, -+ Sy, for py,...,pk €
{1....,n}. Let £ = {( (29-++s{ns)1+)2+---4)n} be 2n-brackets. We define 2n-
endomorphlsms of A4 by settmg

pé(a)=S;'aS',-, pﬁ(a)=S,-aS§", i=1,...,n, a € A,.



We have a C*-symbolic dynamical system (A4, p?,Z). If in particular all entries
A(1,7),1,7=1,...,nof Aarel, then Aj is the right one-sided full shift {1,...,n}N
and the associated subshift is the Dyck shift D,, of the 2n-brackets. Let £C#(Pr) be
the corresponding A-graph system for (A4, p4, ). It is called the Cantor horizon
A-graph system of the Dyck shift D,, that has been studied in [KM]. The C*-
symbolic crossed product C({1,...,n}) x,4 D, is a simple purely infinite C*-
algebra Ogonp,) that is the C*-algebra associated with £C#(D=)  Its K-groups
have been computed so that

o(C({L,...,n}Y) x4 Do) =Z/nZ & C(C, 2),
Ki(C({1,...,n}N) x,4 Dp) =0

where C(C,Z) denotes the abelian group of all Z-valued continuous functions on
the Cantor set C ([KM]).

For a general matrix A with entries in {0,1}, let £E*P4) be the corresponding
A-graph system to (A4, p?,T). It is easy to see that the associated subshift is a
subshift of Dyck shift D,, that has some forbidden words coming from the forbidden
words of the topological Markov shift A 4. The subshift is a version of topological
Markov shift of the Dyck shifts, and appeard in [HIK], [KM2]. We call it the
topological Markov Dyck shift associated with the matrix A and write it as D 4.
We then see that the C*-symbolic crossed product C(A7;) x ,4 D 4 is a simple purely
infinite C*-algebra Ogcn(p,) if the matrix A is irreducible. ,

6. STRONG SHIFT EQUIVALENCE OF C*-SYMBOLIC
DYNAMICAL SYSTEMS AND HILBERT C*-BIMODULES

As in the preceding section, we may regard a A-graph system as a C*-symbolic
dynamical system. The matrix interpretation of a A-graph system is called a sym-
bolic matrix system. In [Ma], we have formulated strong shift equivalence of sym-
bolic matrix systems, as a generalization of nonnegative square matrices ([Wi]) and
symbolic square matrices ([N]). Strong shift equivalence of symbolic matrix systems
is a basic equivalence relation related to topological conjugacy of subshifts. It has
been proved that two subshifts A and A’ are topologically conjugate if and only if
their canonical symbolic matrix systems (M2, IA) and (MA' )T A") are strong shift
equivalent ([Ma]).

In this section, we will formulate strong shift equivalences and shift equivalences

of C*-symbolic dynamical systems and of Hilbert C*-symbolic bimodules as gener-
alizations of those of A-graph systems.
Definition. Two C*-symbolic dynamical systems (A, p, X) and (A', p’, L') are said
to be strong shift equivalent in 1-step if there exist finite sets C' and D, two families
of homomorphisms . : 4 =+ A';c € C and {4 : A' = A,d € D and two into
bijections k : ¥ — CD and k' : £’ — DC such that

Pa = Cd, O e, if x(a) = Cqds, and p'a, =1, O Cda/ if ﬁ,’(a’) = dp'Co

and
Caone=0 if cdgr(X), and n.0¢=0 if dc¢g&'(T).
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We write this situation as (A4, p, L) o (A, p', Z).

We set A= A®A' and T = CUD disjoint union of C' and D. Define j5 € End(A)
for & € ¥ by setting

~'(.77 )={ (Oanc(m)) ifa=cedC,
g (C4(y),0) fa=deD

for (z,y) € A® A'. Then we have
Lemma 6.1. (Z, 2, f)) 1s a C*-symbolic dynamical system.

We call (A 5,%) the bipartite C*-symbolic dynamical system related to (A4, p, T)
and (A',p’,X'). If there exists an N-chain of strong shift equivalences in 1-step
between (A, p, ) and (A', p,¥'), they are said to be strong shift equivalent in N-
stepand written as (A, p, ) % (A',p',T"). They are simply said to be strong shift
equivalent.

Recall that two C *-symbohc dynamical systems (A, p, X) and (A', p’, L') are said
to be isomorphic if there exists an 1somorphlsm ¢: A— A of C*-algebras a.nd a
bijection 7 : & — L' such that po = ¢7! 0 p' (4 0 ¢ for all a € I

Lemma 6.2.

(i) If (A,p,X) and (A, p',T') are isomorphic, they are strong shift equivalent
in 1-step.

(i) Suppose that both sets = and ' are one points {a} and {a'} respectively
and both p, and p,, are automorphisms. Then (A,p,X) and (A, p',X') are
isomorphic if and only if they are strong shift equivalent in 1-step.

We next formulate shift equivalence of C*-symbolic dynamical systems
Definition. C*-symbolic dynamical systems (A, p,X) and (A',p’,¥’) are said to
be shift equivalent of lag N if there exist two finite sets C and D, two families 7, :
A— A ceCand(;: A = A,d e D of homomorphisms and four specifications
ko :EC = CY, kp : £'D — DX, kg : BV — CD and kg : £' — DC such that

Nc © Pa =P'a: o e if K‘C(ac) = c'a',
Car © P:xl =pq 0 (4 if K‘D(a’d') = da,
and
Pan ©°** 0 Pa, O Pa, =§donc if 52(0102"'01\1):6(1’

’ ' ' : ' PN ot
Pat, © """ O Py, O Poy =Ner © (it if ky(oqay---ay)=dc.

We write this situation as (A, p, T) ~ (A, 0, ZN.

The following proposition is proved by similar ideas to the case of matrices ([Wi],

of.[LM]).



Proposition 6.3. Let (A,p,X), (A, p,T') and (A",p",X") be C*-symbolic dy-
namaical systems.
(1) ( y Ps 2) ﬁ ( 7.0,’2,) implies (Aa P,E) ';]" (Al,pl’zl).
(1) (A, p,Z) ~ ~ (A, p', T} implies (A, p, T ) ~ (A',p',T') for all N' > N.
(i) (A,0,%) % (A, 5) and (A, ', ) (A", o, 5) imply (A,p,5) v/
(.A" pll 2")-

Thus shift equivalence of C*-symbolic dynamical systems is an equivalence rela-
tion.

We will next formulate strong shift equivalence and shift equivalence of Hilbert
C*-bimodules. Let A and A’ be C*-algebras. We define a Hilbert C*-symbolic right
A'-module (¢, AHar, {Wa }aes) over & with left A-action by a Hilbert C*-right A’-
module with orthogonal essential finite basis {wq }aex and a unital faithful diagonal
left action ¢ of A on 4H 4. Let (¢, sH 4', {wa}aex) be a Hilbert C*-symbolic right
A’-module over ¥ with left A-action and (¢, 4Har, {w), }oex’) a Hilbert C*-
symbolic right A”-module over ¥’ with left A’-action. Deﬁne the relative tensor
product

(¢ AHar, {Wataes) @ar (¥, aH A, {wi }arest)
i=(p @ 1, AH4 ®ar. aH a7, {wa ®ar Wo Ha,a')es@ 0 T")

where JH . @4 aHar is the tensor product Hilbert C*-right A''-module relative
to A’, and ¢ ® 1 is the natural left A-action on it. The finite set ¥ @4 X' is
defined as follows: As both the left action ¢ and 3 are diagonal with respect to the

bases {wq }aex and {w’, }arexs respectively, there exist nq(a) € A’ for a € A and
(o (b) € A" for b € A’ such that

p(a)wa = waNala), Y(b)why = whiCa (b).
The finite set ¥ @ 4+ &/ is defined by

YQa X = {(a,al) _€ T xX | ot (na(lA)) # 0}'

It is easy to check that

(p®1, Ha Ou aHa, {wa ®u Wiy Ha,oese o)

is a Hilbert C*-symbolic right A”-module over ¥ ® 4+ ¥’ with left A-action.

Definition. Let (¢, H4) be a Hilbert C*-bimodule over A and (¢', Ha) a Hilbert
C*-bimodule over A’. They are said to be strong shift equivalent in 1-step and
written as (¢, H4) & (¢', Ha) if there exist a Hilbert C*-right A'"-module (¢, 4Ha’)

with left A-action and a Hilbert C*-right A-module (3, 4H.4) with left A’-action
such that

(6.1) - ‘

{ (p®1, Ha ®ar aHA) = (¢, Ha) as a Hilbert C*-bimodule over A,

(v ®1, 4Ha®4 4Ha) = (¢',Ha) as a Hilbert C*-bimodule over A'.
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The above all equalities of Hilbert C*-bimodules mean unitary equivalences as
Hilbert C*-bimodules. In this situation, we say that (¢, 4H.4/) and (¢, 4#/H.4) satisfy
the strong shift equivalence relation between (¢, Ha) and (¢',Has). Consider the
direct sum

(o, AHa) ® (¥, A'HA) = (e ® ¢, dHa & 4HA)

that is a Hilbert C*-right A’ & A-module with left A @ A'-action. It is denoted by
(¢, Hx) and satisfies

AHa =E(AHx =Hx A,  aHa=EA)Hx =HxA

As Hyx is regarded as a Hilbert C*-right A® A'-module, (£, Hx ) is considered to be
a Hilbert C*-bimodule over A ® A’, that is called a bipartite Hilbert C*-bimodule
related to (¢, H4) and (¢’ H ). We note that the condition (6.1) is equivalent to
the condition: :

(@1, Hx Qupa Hx) = (¢, Ha)®(¢',Ha) as a Hilbert C*-bimodule over Ap A

If there exists an N-chain of strong shift equivalences in 1-step between (¢, H.4)
and (¢, H.a'), they are said to be strong shift equivalent in N-stepand we write it
as (&, Ha) ~ (¢',H.a). They are simply said to be strong shift equivalent.

In particular, Hilbert C*-symbolic bimodules (¢, H 4, {ta }aex) and (¢', Har, {ul, }ares)

are said to be strong shift equivalent in 1-step if there exist a Hilbert C*-symbolic

right A’-module (¢, sAH ', {w.}eec) with left A-action and a Hilbert C*-right A-
module (¥, 4H A, {w)}iep) with left A’-action such that the qualities (6.1) are

taken to be unitary equivalent as Hilbert C*-symbolic bimodules.

Definition. Let (¢, H.4) be a Hilbert C*-bimodule over A and (¢', Ha') a Hilbert
C*-bimodule over A'. They are said to be shift equivalent of lag N if there exist

a Hilbert C*-right A’-module (¢, 4H.4/) with left A-action and a Hilbert C*-right
A-module (¢, 4#H4) with left A’-action such that '

(6 HaA®A - @aHA) =(p B 1, AHa Qar aHa),
N
(¢, Har Qur -+ ®a Har) =(¢ @1, 4HA Ba AH ),
N

and
(‘P®1,AHA'®A'HA') = (¢, Ha®aAH ), (YL, 4HA®AHA) = (¢, Ha®u 4HA)

We write this situation as (¢, H4) ~ (qb’ Har).

We similarly define a shift equlvalence between Hilbert C*-symbolic bimodules
by equipping with finite bases.

The above formulations of a strong shift equivalence and a shift equivalence of
Hilbert C*-bimodules are generalizations of those of nonnegative square matrices
defined by Wiiliams (cf.[N],[Ma6]). The following proposition is parallel to Propo-
sition 6.3. ([Wi], cf.[LM]). .
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Proposition 6.4. Let (¢, Ha), (¢, Ha') and (¢",Har) be Hilbert C*-bimodules.
(i) (6. Ha) % (¢'sHa) implies (¢, Ha) ~ (@ Ha).
(ii) (¢, HA) ~ (¢',Ha) implies (¢, H 4) ot (¢',Ha) for all N' > N.
(i) (6 Ha) (¢, Hoa) and (', Har) o (8", Hoan) imply (9, Ha) v (', Han).
The similar statements hold for Hilbert C*-symbolic bimodules.

Therefore shift equivalence of Hilbert C*-bimodules and similarly shift equiva-
lence of Hilbert C*-symbolic bimodules are equivalence relations.

Proposition 6.5. If C*-symbolic dynamical systems (A, p,%) and (A',p',T') are
strong shift equivalent in 1-step, their associated Hilbert C*-symbolic bimodules
(bs Ho> {tataecx) and (dp, HAs {u), Yoresr) are strong shift equivalent in 1-step.

Its converse implication holds.

Proposition 6.6. If Hilbert C*-symbolic bimodules (¢, Ha, {ta}acs) and (¢', Hgr, {t'y }orexr)
are strong shift equivalent in 1-step, their associated C*-symbolic dynamical systems
(A,p, L) and (A',p', ') are strong shift equivalent in 1-step.

We may similarly see that two C*-symbolic dynamical systems (A, p, %) and
(A, p',X') are shift equivalent of lag N if and only if their associated Hilbert C*-

symbolic bimodules (¢,, H%, {uq}eex) and (qbpl,%i',, {ul, }orex) are shift equiva-
lent of lag N.

7. STRONG SHIFT EQUIVALENCE OF GAUGE ACTIONS

In this section we introduce the notion of strong shift equivalence of C*-symbolic
crossed products with gauge actions.
Definition. Two C*-symbolic crossed products (A %, A, 3, T) and (A’ % A’, p', T)
with gauge actions are said to be strong shift equivalent in 1-step if there exists a
C*-symbolic dynamical system (Ag, po, Zo) and full projections p,p’ € Ay X, Ag
satisfying p+p’ = 1 and g, (p) = p, fo,(p') = p' for z € T where Ag is the subshift
associated with (Ao, po, Xo), and

(p(AO >4po AO)p, ffO’T) =(~A >qp Aa ﬁsz)s
. R ~2
(pI(AO >qpo AO)pIaPOa T) :(AI >dp' A" P' 7T)

We write this situation as (A %, A, 5, T) ~ (A" %y A',ﬁ’,'ﬂ‘). If there exists an
N-chain of strong shift equivalences in 1-step, they are said to be strong shift
equivalent in N-step and written as (A x, A, g, T) ~ (A" % Ay p!',T). It is simply
said to be strong shift equivalent. ' ‘ :

Theorem 7.1. Let (A,p,X) and (A',p', L) be two C*-symbolic dynamical sys-
tems whose associated subshifts are denoted by A and A' respectively. If (A, p,X)
and (A, p’,X') are strong shift equivalent, the C*-symbolic crossed products (A X,

A, 5, T) and (A’ x A, p', T) with gauge actions are strong shift equivalent.
This theorem and its proof are generalizations of [Ma4:Theorem 3.15].
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Suppose that (A, p,X) and (A, p’, ') are strong shift equivalent in 1-step. There
exist finite sets C and D, two families of homomorphisms e A= A, ce C and
Ci: A = A,d € D and two into bijections k : £ — CD and &’ : T/ = DC that give
rise to the strong shift equivalence between (A, p,X) and (A’,p',Z'). Let (.A 5,%)
be the bipartite C*-symbolic dynamical system related to (A, p, ¥) and (A',p', T").

As A= A A', we 1dent1fy A and A’ with the subalgebras of A by regarding a € A
as (a,0) € Aand a’ € A as (0,a') € A respectively. The symbolic crossed product

A)d-A=C*(Sa,w|&€E,a:€A)

of (A g, Y‘) is the universal C*-algebra generated by partial isometries S5, & € Y=
C U D and elements ¢ € A that satisfy the relations (5.1). Let C* (Scp, A) and
C*(Spc,A') be the C*-subalgebras of A X p A defined by setting
C*(Scp, A) = C*(8codnr(a,0) | coda = K(a),a €T,a € A)  and
C*(Spc, A') = C*(Sa e (0,0") | dwea = K'(d'),a’ € T, d' € A)

respectively, where S¢, 4, = Sc, Sd, and Sa_,c,, = S4,,Sc,,. Put the projections

Po=Y 55, Pp=Y SSi indx;k
ceC deD

Hence Poc + Pp = 1.
We see that the following propositions hold.

Proposition 7.2.
C*(Scp, A) = Po(A x5 K)Pe, C*(Spc,A') = Pp(Ax;A)Pp.

Proposition 7.3. The C*-symbolic crossed products A x, A and A’ xp A’ are
canonically isomorphic to the algebras C*(Scp, A) and C*(Spc, A') respectively.

The following lemma shows that the subalgebras Po(A x P A)P¢ and Pp(A 5 A)Pp
are complementary full corners in A % A.
Lemma 7.4. The projections Pc, Pp are full in the algebra A X5 A
Proof of sketch of Theorem 7.1. By Proposition 7.2 and Proposition 7.3, we may

~

identify the algebras Ax,A with Pc(.;{ X5 X)PC, and A’ x » A’ with Pp(A x5 A)Pp.

By these identifications, one has

Py ~ ~2 ~
P2(sa) = $,(5c84),  p'(sh) = p,(SaSc)

for k(a) = c¢d € CD,k'(a') = dc € DC. Thus (A %, A, 3, T) and (A" 3y AL p',T)
are strong shift equivalent in 1-step. [

Remark. It is possible to generalize the above discussions such as strong shift
equivalent Hilbert C*-bimodules give rise to strong shift equivalent C*-algebras of
the Hilbert C*-bimodules. We will discuss this generalization in a forth coming
paper [Ma6].

We present the following theorem.



Theorem 7.5. Let (A, p,X) and (A', p’, L') be two C*-symbolic dynamical systems
whose associated subshifts are denoted by A and A’ respectwely If (A, p,X) and
(A, p',2') are strong shift equivalent, then we have

(1) the subshifts A and A’ are topologically conjugate,
(ii) the C*-symbolic crossed products (A x, A, p,T) and (A’ x A, p', T) with
gauge actions are strong shift equivalent, and
(iii) the stabilized gauge actions (Ax, AQK,p®id,T) and (A’ xy A'QK, P e
id, T) are cocycle conjugate, where K denotes the C*-algebra of all compact
operators on a separable infinite dimensional Hilbert space.

In the rest of this section, we will concern K-theory for the C*-algebra A x, A
constructed from a C*-dynamical system (A, p, ¥). The endomorphisms p, : A —
A for a € X yield endomorphisms pq, : K,(A) = K,(A) for a € T on the K-theory
groups of A. Define an endomorphism

px : Ki(A) = K, (A), x=0,1

by setting pu(g) = Y 4ex Pas(9),9 € Ki(A). By [Pim] (cf. [KPW]), one has the
following six term exact sequence of K-theory:

0(A) 22 Ko(A) — Ko(Ax, A)

I !

Ki1(A x,A) <———— Ki(A) «—— K;(A).

id—pe
Hence if in particular K;(.A) = 0, one has

Ko( Ay A) = Ko(A)/(id - pa) Kol A),
Ki(A %, A) =Ker(id — p.) in Ko(A).

This formula is a generalization of K-theory formulae proved in [C2] and [Ma3]. As
in [Ma3:Lemma 5.2], one sees that the fixed point algebra F( 4, 5) of A X, A under
the gauge action p is stably isomorphic to (A x, A) x; T. We define the K-groups
K.(A,p,X) and the dimension groups D.(A,p, ) for (4, p,X) by setting

K*('Aa P 2) = A;(.A Ap A)

D*('A’ p’z) = (I{*(f(A,P,E))$ﬁ*) *=0,1

where p, is the automorphism on the abelian group K,(F(4,,x)) induced by the

dual action p of the gauge action p. We also define the Bowen-Franks groups
BF*(A,p,Z) for (A, p,X) by setting

BF*(A,p,X) =Ext,(Ax,A), *=0,1

Then Theorem 7.5 (iii) implies
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Proposition 7.6. The abelian groups K.(A,p,X), BF*(A,p,X) and the abelian
group with automorphisms D.(A,p, %) for (A, p,T) are invariant under strong shift
equivalence of C*-symbolic dynamical systems.

The above results are generalization of [Mad] see also [C2], [CK], [Ma2].

In [Ma8], dynamical property of a ”subshift”

S(A,p,E) = {(Pm)iez | (Pa.' 6:--0 pﬁ’i+k)(1) # Oai € Z’k € Z+}

will be studied.
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[BF]

[BK]

[€]

[C2]

REFERENCES

R. Bowen and J. Franks, Homology for zero-dimensional nonwandering sets, Ann. Math.
106 (1977), 73-92.

M. Boyle and W. Krieger, Almost Markov and shift equivalent sofic systems, Proceedings
of Maryland Special Year in Dynamics 1986-87, Springer -Verlag Lecture Notes in Math
1342 (1988), 33-93.

L. G. Brown, Stable isomorphism of hereditary subalgebras of C*-algebras, Pacific. J.
Math. 71 (1977), 335-348.

L. G. Brown, P. Green and M. A. Rieflel, Stable isomorphism and strong Morita equiv-
alence of C*-algebras, Pacific. J. Math. 71 (1977), 349-363.

T. M. Carlsen, On C*-algebras associated with sofic shifts, J. Operator Theory 49
(2003), 203-212.

F. Combes, Crossed products and Morila equivalence, Proc. London Math. Soc. 49
(1984), 289-306.

J. Cuntz, Simple C*-algebras generated by isometries, Commun. Math. Phys. 57 (1977),
173-185. i '
J. Cuntz, A class of C*-algebras and topological Markov chains II: reducible chains and
the Ext-functor for C*-algebras, Invent. Math. 63 (1980), 25-40.

J. Cuntz and W. Krieger, A class of C*-algebras and topological Markov chains, Invent.
Math. 56 (1980), 251-268.

R. E. Curto, P. Muhly and D. P. Williams, Crossed products of strong Morita equivalent
C* -algebras, Proc. Amer. Math. Soc. 90 (1984), 528-530.

V. Deaconu, Groupoids associated with endomorphisms, Trans. AMS 347 (1995), 1779-
1786.

V. Deaconu, Generalized Cuntz-Krieger algebras, Proc. AMS. 124 (1996), 3427-3435.
V. Deaconu, Generalized solenoids and C*-algebras, Pacific J. Math. 190 (1999), 247-
260. :

R. Fischer, Sofic systems and graphs, Monats. fiir Math. 80 (1975), 179-186.

T. Hamachi, K. Inoue and W. Krieger, Subsystems of finite type and semigroup invari-
ants of subshifis, preprint.

T. Kajiwara, C. Pinzari and Y. Watatani, Ideal structure and simplicity of the C*-
algebras generated by Hilbert modules, J. Funct. Anal. 159 (1998), 295-322.

T. Kajiwara and Y. Watatani, Jones indez theory by Hilbert C*-bimodules and K-theory,
Trans. Amer. Math. Soc. 352 (2000), 3429-3472.

Y. Katayama, Generalized Cuntz algebras O | RIMS kokyuroku 858 (1994), 87-90.
B. P. Kitchens, Symbolic dynamics, Springer-Verlag, Berlin, Heidelberg and New York,
19938.

W. Krieger, On dimension functions and topological Markov chains, Invent. Math. 56
(1980), 239-250.

W. Krieger, On sofic systems I, Israel J. Math. 48 (1984), 305-330.



[Kr3]
(KM]

[KM2]
[KPRR]
[LM]
[Ma]
[Ma2]
[Ma3]
[Mad]
[Ma5]

[Mas]
[MaT]

[Ma8g]
[MS]

[N]
[N2]

[Pim]

[Re]

[Ri]
[Ri2]

[We]
[Sch]

[Tom]
[Wi]

W. Krieger, On sofic systems II, Israel J. Math 60 (1987), 167-176.

W. Krieger and K. Matsumoto, A lambda-graph system for the Dyck shift and its K-
groups,, Doc. Math. 8 (2003), 79-96.

W. Krieger and K. Matsumoto, A class of invariants of the topologically conjugacy of
subshifts, to appear in Ergodic Theory Dynam. Systems.

A. Kumjian, D. Pask, 1. Raeburn and J. Renault, Grephs, groupoids and Cuntz-Krieger
algebras, J. Funct. Anal. 144 (1997), 505-541.

D. Lind and B. Marcus, An tntroduction to symbolic dynamics and coding, Cambridge
University Press., 1995.

K. Matsumoto, Presentations of subshifts and their topological conjugacy snvariants,
Doc. Math. 4 (1999), 285-340.

K. Matsumoto, Stabilized C*-algebra constructed from symbolic dynamical systems, Er-
godic Theory Dynam. Systems 20 (2000), 821-841.

K. Matsumoto, C*-algebras associated with presentations of subshifts, Doc. Math. 7
(2002), 1-30.

K. Matsumoto, Strong shift equivalence of symbolic matriz systems and Morita equiva-
lence of C*-algebras, Ergodic Theory Dynam. Systems 24 (2004), 199-215.

K. Matsumoto, Purely infiniteness of C*-algebras associated with lambda-graph systems,
preprint.

K. Matsumoto, On strong shift equivalence of Hilbert C*-bimodules, preprint.

K. Matsumoto, A simple purely infnite C*-algebra associated with a lambda-graph sys-
tem of the Motzkin shift, to appear in Math. Z..

K. Matsumoto, Subshifts on C*-algebras (tentative title), in preperation.

P. S. Muhly and B. Solel, On the simplicity of some Cuniz-Pimsner algebras, Math.
Scand. 83 (1998), 53-73.

M. Nasu, Topological conjugacy for sofic shifts, Ergodic Theory Dynam. Systems 6
(1986), 265-280.

M. Nasu, Teztile systems for endomorphisms and automorphisms of the shift, Mem.
Amer. Math. Soc. 546 (1995). .

M. V. Pimsner, A class of C*-algebras generalizing both Cunitz-Krieger algebras and
crossed product by Z, in Free Probability Theory, Fields Institute Communications 12
(1996), 189-212.

J. N. Renault, A groupoid approach to C*-algebras, Lecture Notes in Math. Springer
793 (1980).

M. A. Rieffel, Induced representations of C*-algebras, Adv. in Math. 13 (1974), 176-257.
M. A. Rieffel, Morita equivalence for C*-algebras and W*-algebras, J. Pure Appl. Al-
gebra 5 (1974), 51-96.

B. Weiss, Subshifts of finite type and sofic systems, Monats. Math. 77 (1973), 462—-474.
J. Schweizer, Dilatiions of C*-correspondences and the simplicity of Cuntz-Pimsner
algebras, J. Funct. Anal. 180 (2001), 404-425.

M. Tomforde, C*-algebras of labeled graphs, preprint.

R. F. Williams, Classification of subshifts of finite type, Ann. Math. 98 (1973), 120-153,
erratum, Ann. Math. 99(1974), 380 — 381.

e-mail :kengo@yokohama-cu.ac.jp

47



