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Introduction. 

Consider a mathematical expression 

where z is a complex variable. We call it a series (more strictly a 
power-series). If lim S,.(z), where -"' 
be finite and determinate, the series is convergent. When the limiting 
value is oo or indeterminate, the series is divergent. In the former 
case, put 

Then the equality lim S,.(z) = oo means that lim JA,. + iB,.I = oo ; but not 
n-+oo n-),tYJ'"' 

at the same time lim A,.=oo and lim B,.=oo. Even when these 
limits are indeterminate, yet S,.(z) may tend to oo. Let us call the 
series injinz"te when both A,. and B.,. tend to definite limiting values 
and JA.,. + B,. I tends to infinity. When at least one of A,. and B,. 
becomes indeterminate, we call the series indeterminate. 

In the present paper, the intervals in which a power-series is 
convergent, infinite or indeterminate, are discussed. Next, it is proved 
that an analytic element outside its circle of convergence and in the 
part of the plane toward which the element may be continued, is 
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indeterminate. Thirdly, the relation between Leibnitz's theory and 
Borel's generalised sums are considered. Finally, some special cases 
of the theorems of Fabry and of Hadamard concerning singular points 
are viewed from our standpoint. 

r . Consider a power-series 

whose radius of convergence may in general be suppos~d to be unity. 
The other case is now out of question. If the series be convergent 
at a point, say z= I, on its circle of convergence, then the power­
series F(z), when z converges to unity, takes the value F(r). Thus 
the extension of Abel's theorem is due to Stolz.1 In his book,2 Mr. 
Stolz proved furthermore that if the series be infinite at z = r, then 
the coefficients being supposed real, along · the real axis of z-plane, 
lim F(x)=CXJ. 
,,-H 

By aid of these theorems, we may easily conclude that if F(z) 
may be continued over z= I, then the series F(z) must be convergent 
or indeterminate at z = I. Put 

Z=x+&, c,.=a,.+ib.., n=o, I, ... n, ... , 

f(x)=ao+a1x-+ ... + a,..x"+ .•• , 

t;_(x)=b0 +b1x+ ... +b,..x"+ ... , 
and let 

F(zlz0)=P+iQ, 

be the continuation of F(z) over x= I, where z0 is a point within the 
interval ( o, I). If z varies along the x-axis, then in the vicinity of 
z=I, (x<r), we havef(x)=P, J;.(.i-)=Q. Therefore, neither f(1) nor 
fi(1) can be infinite. Suppose, for example, ./(r)=CXJ, then by Stolz's 
theorem 

Hence for any given positive number G, we have 

f(x)>G, 

provided x is sufficiently near to unity. On the other hand, since 
F(zlzo) is in the vicinity of z= I, is convergent, we may suppose G 
such that 

1 Goursat, Cour d'Analyse II (1918), p. 22. 

2 · Stolz-Gerneiner, Funktionentheorie (1905), p. 289. 
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IF(z!zo)I< G. 

395 

This is absurd, and the same may be said for J;_(x). Thus, any power­
series must be convergent or indeterminate at the points on its circle of 
convergence, over which the series may be continued. Therefore if F(z) 
be infinite, then F(z) can not be continued over z= I. 

2. For example, consider the series 

F(z)= I-z+z2- ... , 

whose radius of convergence is unity and the series may be continued 
over z= 1. But for z= 1, 

F(1)=1-1+1- ... , 

as is well known, is indeterminate and several objections1 are made 
against Euler's assumption. I shall present one: 
Since, n being a positive integer, 

(n+llr. 

-;-J sin xdx=(- 1)"'+1
, 

mr 
we have 

«) 'it 21t 

I"'=...!... J sin xdx=...!... J+__!_ J + ... 
2 2 2 • 

0 0 ~ 

On the other hand, we have 
<X 

Io:=...!... J sin xdx 
2 0 

<X 

= I - I + ... + ( - I)'H + --;- J sin xdx. 
mt 

7T: 
Putting a=mr+A, where A is an angle less than , we have 

2 

I Io:=-(1 ± cos A). 
2 

So that for a-.oo, our series F(1) would take any value in (o, 1). 
Nevertheless for lzl< I, 

F(z)=-1 -. 
1+z 

t Borel, Series divergentes ( 1901 )· 
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Therefore the analytic function defined by the analytic element F(z) 

takes_!_ at z= I and Euler's assumption is to some degree not absurd. 
2 

A complete discussion will be given later. 
3. In the following we shall show some theorems concerning 

indeterminate series. 
Consider a series 

which is indeterminate. Construct two series 

S' =ao'+a/+ ... +a,.'+ ... , 
S''=ao'' +a/'+ ... +a .. "+ ... , 

the 6rst being made of all positive terms in S, taken in order, and 
the second, negative terms with signs changed. Then both series S' 
and S II must diverge to infinity. Consequently the number if varia­
tions if signs if each two successive terms of the series must be infinite. 

4. Next consider a power-series 

For simplicity we suppose this real. Put 

If the series be convergent in an interval, then in it 

lim Sn(x)=finite and determinate, 
n➔00 

which means that S,.(x) tends to one and only one value, independent 
if the mode of summation. By our last expression, we mean to increase 
n in any manner and yet S,.(x) converges to a number. But we do 
not mean to change the order of the terms of the series f(x). On the 
contrary, if the series be indeterminate, then lim Sn(x) depends upon -"' the mode of summation. 

Suppose for any value of n, 

/5~(x)I< G, 

where G is a positive number, we write it as 

1/(x)I < G, 
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and say that the series f(z) is limited. .!f f (.x) be limited at a point 
z= z0, then the series f(z) is convergent for lzl< lxol- For the proof of 
this, consider the series 

Since by our assumption, all S..(z) are limited, the senes is absolutely 
convergent. Therefore the product of the two series : 

is also absolutely convergent, and hence the order of its terms may 
be changed. Hence it is equal to the series 

=a0 +a1z+ ... + anx"+ ... 

=fix). 

Thus f(z) must be convergent. This is an example of the theorem 
that if all the terms of the series f(z) be limited at z=z0, then it is 
convergent for Ix!< [zol-1 Hence if f (z) be divergent in an interval 
(z1, .x-2) where o<z1<z2, tlzen it can not be limited within the interval. 
Moreover, since f(.x) can not be convergent for z>z2, it can not be 
limited in the interval (.x-1*, .x2). .x-1* means the exclusion of the point 
z=z1• The series I -.x+.x-2- ... is such an example for .the interval 
(1*, oo). 

Moreover, we may prove that if f (.x) be indeterminate in an 
interval (.x1, .x2), it must not be limited in one way,. namely neither 

f (z) > G, nor f(.x)< G' 

may be true, where G and G' are certain numbers. We shall prove 
e.g., the case where f(x)>G. In this inequality we may suppose 
G>o. For this inequality means that for any value of n, S,.(.x)>G. 
Hence if G be negative, we have only to add a certain positive 
number. to a0• Consequently, we may suppose that all Sn(z) are 
positive in the interval. 

1 Goursat, Cours d'analyse I (1917). p. 446. 
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Now x0 being a number in the interval (x1, ..r2), 

n f 1(_.::_)" S,.(x)= ~ lS,.(xo)-S,._i(.ro)J Xo 

-{ n-1 (_.::_) h 1 ( X ) (_.::_)" - tt S,.(xo) Xo J I- Xo +S,.(xo) Xo ' 

where S_i(xo)=o. 

(r) 

Let x take any value within the interval (x1, x0). To prove our pro­
position, three cases may occur: 1st. If the series 

be convergent, then we must have 

Therefore by aid of the equality (1), f(x) must be convergent, and 
this is against our hypothesis that the series f (x) is indeterminate. 

2nd. If the series l'Six0)( ;

0 

)" be determinate and infinite, then since, 

by the preceding equality (r), 

(2) 

Hence f (x) must be divergent and infinite. This again contradicts 
our hypothesis. 3rd. The only remaining possible case is that the 
series 

should be indeterminate. But if so, by the theorem of §3, the varia­
tions of the signs of the series must be infinite. But this is contrary 
to the assumption that 

Hence this assumption cannot but be absurd. Since x2-%0>o may 
be however small, f(x), in the interval, ran not be limited in both 
ways. The discussion is unvalid at x=x1• Moreover, suppose that 
at a point x=x0, (x1<x0<x2), f(x0) be limited in one way e.g., 
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f(.z-0)>G>o, then as we have just proved, within the interval (.z-11 z 0), 

it must give subintervals in which fix) is not limited in either way. 
Let z be such a point in one of them. Then by aid of the inequality 
(2), f(z) must be limited in the negative way. This is absurd. 
Therefore we may conclude these as follows : 

If the series 

be divergent and indeterminate in the interval (z1, z2), then the series 
f(z) can not be limited in either way at any point in the interval 
(z1*, z2*), z 1>0. Therefore if f(z) be limited only in one way, then it 
must diverge to infinity. This result may be extended to the field of 
complex numbers. 

Remark I. As we have proved, an indeterminate power-series 
can not be limited, i.e., Sn(x) may take, at general points, values 
greater than any positive number, respectively any number less than 
any negative value. But for general functions, this is not true. For 

example f (x) = sin__!_ is indeterminate for z-o, but it is not greater 
z 

than unity, i.e., limited in both ways. 
Remark 2. Though an indeterminate power-series can not be 

limited in both ways, it may at certain points take finite determinate 
values for certain modes of summations. For example let f(z) be 

f(x)=z0-( I +7) z-zo-r+ (I+ t) .r+ ··· 

+ (- 1)"zo,r"+ (-1t+1(1+ I )z2n+1± ... ' 
(2n+ 1)1 

where z 0 ts a number greater than unity. The radius of convergence 
is unity. This series may be continued over z= I ; for if Ix!< I, then 
clearly 

Thus f(z) is a sum of functions which may be continued over z= I. 

Hence it may be continued. If at z=Zo, we sum up f (xo) by two 
successive terms from the beginning, we heve 

On the contrary 

• 
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From the theorem of § r, we naturally come to inquire whether 
a power-series be indeterminate outside the arc of its circle of con­
vergence over which the series may be continued. For a special case 
it is clear. For example, the series 

F(z)= I -z+z~- ... 

may be continued over z= r and is indeterminate for z>r. We shall 
enter into the discussion of the general case where the answer is 
affirmative. 

5. If a convergent power-series 

whose radius of convergence is unity, be determinate and infinite at 
x=x0, (x0 >r), then for r<x.:::;x0 .f(x) must also be infinite. For proof 
of this, consider as usual the identity 

= { So(zo) + Si(zo) ( :
0

) + ... + Sn_1(z0)( ;

0

) n-l } 

x(r- ;J+ Sn(zo)(;)"· 

I O
• If the series J: Si.x0)( ;

0 

)" be convergent, then since 

lim Sn(.xo)(~)" =O, .-x Xo 

S,.(x) must converge to a number, and this is impossible. 2°. The 

senes 2 Sil.x0)( ;

0 

)" can not be indeterminate, since the variations of 

signs are finite. 3°. Consequently it must diverge to infinity. So 
that the series f(x) is infinite in 1<x::;;x0. This is true also for 

.f(:co)= -00. 

From this result, it follows that if .f (x) be indeterminate for 
r>x0, then it must be so for any x>x0• If not, it gives at least a 
point r>x0, for which .f(.x') is oo, (or -oo). Hence for any x<x', 
f(x) must be oo (or -oo) which is contrary to our assumption: Thus 
the points x>o, are divided, if possible, into three parts: r O • o<x< r, 
2°. r<x<x0, 3°. x0<.x. In the first interval .f(.r:) is convergent; 
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in the second it is infinite; and in the third, it is indeterminate (by the 
preceding theorem, it oscillates between - oo, + oo ). 

conv. inf. ind. 
-I l·--1 ->-,"t" 

0 I Xo 

6. Let us give an example. In the formula 

Sn(x) =( I- ;J{so(xo) +Si(.~o) + ... + Sn_i(.x-o)( ;J-1

} + Sn(Xo)( ;J," 
put 

h=o, r, 2, ••• , n. 

Then for x= 2.x-0, we have 

Assume 

Since 

we have for n=2m, 

S2m( 2.X-o) = - 2( 2 + 25 + •.. + 45m-3) + 24m+l 

=24••+1(1 -~)+__±_>o. 
rs 15 

For n=2m+ I, we have 

Hence for m-► oo, 
Jim S2,,.(2.x-0)= +~, _., 

Iim S2m+1C 2Xo) = - ~, _., 
and consequently our series f(x) for x= 2x0 is indeterminate and not 
limited in both ways. 
Now to find the concrete form of the series, we must solve the fol­
lowing equations with an infinite number of unknowns : 

s1=a0 +a1x0, 

S2= a0 + a1xo + a2x0
2

, 
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This is a special case of the systems which are treated in Volterra's 
equation's.1 For our case, the treatment is easy. 
We have 

Si-So a1=---, 
Xo 

Therefore substituting the values of s,., we have 

a0 =2, 
22h+L _ 22(h-l) 

a2,.=-----­
Xo2" 

I 2 2h+l 

fl2h+1=---- • 
2 x/"+1 

The required series is 

1(2) 7(2)2 1(2)3 

f(x)=2-- - x+- - x2-- - .i3+ .... 
2 Xo 4 Xo 2 Xo 

Specially for x0= 2, we have 

f(x)=2-.2...x+1-x3_.2... .x-~+ ... , 
2 4 2 

whose radius of convergence is unity and 

f(I)=OO, f(z x 2)= ±oo. 

The point which divides the intervals where the series f (x) becomes 

infinite, respectively, indeterminate is found to be l__. For at this 
2 

point 

a21,x2" + a2,.+1 x2h+
1 = ( : --+ ~ )( + Y" = o , 

-1 • ( I 7 7 )( 7 )2h-l a2,.-1 x2" +a2,.r"= - 2 + 4 2 2 >o. 
--------

1 Volterra, Lerons sur /es Equations integrales et ... , (1913), p. 40. 
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Thus sn( ~ ) is limited in one way. Therefore by the theorem of 

§ 5, for z just less than L, the series must be determinately infinite. 
2 

Concluding these, for 
into four parts: · 

our series (I), the whole interval of x is divided 

+inf. conv. +inb. 
---------------l 

t'nd. 

-I 3·5 

At x= 3,5, f(z) oscillates between o and oo. 
7. In § 1, we have proved, by aid of Stolz's theorem, that a 

power-series F(z) which may be continued over z= 1, must be con­
vergent or indeterminate at z= I. If it be indeterminate at z= 1, then 
by § 5, it must be indeterminate for z>1 along the real axis of the 
z-plane. But if it be convergent at z= 1, whether it is indeterminate 
for z>1 is not known. In the following we shall prove it. As before, 
instead of considering F(z), we discuss its real or imaginary part for 
real values of z which is divergent for z>1, namely 

Since F(z), by our assumption, may be continued over z= 1, its real 
and imaginary parts may also be continued over x= 1. Therefore 
f (x) may be continued over x= I. 

8. For the general proof, we take a quite different method which 
is nothing but to connect three theorems proved by Borel, Hardy and 
Vivanti. In the following the process is briefly stated. 

Since the series 

f(x)=ao+a1x+ ... +a,.z"+ ... 

may be continued over x= 1, the analytic function defined by f(x) is 
holomorph about x= 1. Now draw two concentric circles, center at 

the point x = _!_ . Let the radius of the inner circle be __!_ . Make 
2 2 

that of the outer one just greater than this ; so that in and on the 
circle, the analytic function may be holomorph. This circle intersects 
the real axis at O' and A. Let the circle be called C. By Cauchy's 
theorem for the analytic function f (x), we have 

a,, =-I-ff (z) dz 
27ri zn+l ' 

C 

n=0, I, 2, ... 
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Consider the associated function of /(x) : 

where t is a real variable. This function is clearly an integral func­
tion. Putting the values of an, we have for any value of t, 

So we have 
e-'A(t)= _1 __ ff (z) /(f-1) dz, 

211:Z Z 
0 

Therefore for any z of a certain ellipse whose major axis is O'A, 
our series f(x), is absolutely summarble. Thus the polygon of sum­
mability may be determined. These are due to Mr. Borel.1 
Now after Mr. Hardy2

, writing for simplicity, 

we have 

But the series u0 + u1 + ... + u,. + . . . is, as we have seen, summable. 
Therefore 

is finite and determinate; so that our series Iu,. admits both of Borel's 
definitions of summability. 
Next suppose our series /(x) i.e., Iu,. be oo, then we can determine 
a positive number N, such that given a number however great G, 

Therefore 
"' t'° N-1 t" 

e-1
~ s,,.-1 >e-1

~ (s,,.-G)-, +G, n. n. 
n-o n-o 

and hence 

1 Borel, loc. cit., p. 123. 

2 Hardy, Quarterly J. (1904), p. 34. 
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This proof is due to Mr. Vivanti1
• This result is contradictory. Thus 

our series must be indeterminate. Now by aid of the theorem of § 5, 
our proposition is true: 

Wizen a power-series, whose radius of convergence is unity, f (x) 
=a0 +a1x+•·•+a,.x"+ ... may be continued over x=I, then it must be 
indeterminate for all points x > 1. For x= 1, the series may sometimes 
be convergent or sometimes be indeterminate. Moreover when f(x) may 
be continued over x= I, this is also the case for any derivatives of 
f(.x), Therefore, at the same time, all derivatives of f(x) are indeter-
minate, for x>1. 

9. The above theorem is a necessary condition of the analytic 
continuation, but not clearly sufficient. Or, take, for example, Mr. 
Fredholm's series, changing a into -a, 

2 2 

f(x) =I-ax+a2x2
-- ••• +(-1tanx"± ..• , 

where a is a positive number. The circle of convergence is the 
natural limit of the function. But for x > 1, 

provided n is sufficiently great. Therefore 
2 2 

(1 -ax)+(a2.x2--a3x1)+ ... =-oo, 
2 2 2 

1 -(ax-a2x2)-(a3.i-3--a4.x4)- ••• = + oo, 

so that f (x) is indeterminate for x>r ; likewise for its derivatives. 
10. In remark 2, § 4, we have given a power-series which takes 

a value by a certain mode of summation. From that series, we 
obtain a new one, 

=Xo-.x-xaz2+ .xs+ •·• + (-1 )"xox2n+ ( - 1t+1.x2n+1 ± ••• . 
We see that. 

1 Vivanti, Theorie der Funktionen (1906), p. 329. 
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Here we notice that o is the value of the analytic function f(x). 
Therefore we naturally come to conjecture that such .would be a 
general property. But this is at once proved to be wrong. For, 
consider the series 

f(x)= I -x+x2
- ••• + (- itx"± .... 

For this series S2n+h)=o. But the value of the analytic function at 

x = I is _:_, different from zero. \Ve notice that o is the lower 
2 

limit of S,.( I). This is not the case for the preceding series. The 
second conjecture is that when the limit of Sn(x0) at some point 
x= x0 for a certain mode of summation converges to a number differ­
ent from the upper respectively lower limit of Sn(x0), that limit would 
be the value of the analytic function at x=x0• This conjecture is 
also destroyed by the consideration of the following series ; 

I + COS O + COS 2 0 + , .. + COS n O + .... 

This series is divergent and {} being 
I 1 

integral sum is easily found to be - . 
2 

not· equal to 2m11:, its Borel's 

Let us consider a power-series 

f(x)= I +xcos O+rcos 20+ ... +x"cos nO+ ... , 

which is convergent within the circle of radius unity. At the 
x= r, it is divergent. Now put 

Then 
S,.(I)= I +cos 8+cos 20+ ... + cos n8, 

sin zn+ 1 0 
2 

2 S,.(1)=1+--.-
8
--

sm -
2 

Specially consider the case O = .!!._ , then 
4 

sin (2n+ r); 
2 S,.(1)=1+-----

• 11: 
sm-

8 
=I+ I, na:,o, 3 (mod. 8), 

11: =I +cot-, 
8 

= I - I, 
11: 

=I-cot-, 
8 

:;:;2, I 

=4, 7 
=6, 5 

1 Bromwich, Theory of infinite series (1908), p. 275. 

" 

" 
,, 

point 
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Therefore for n = 8m + 4, 
Sn=lim Sn=O. 

Since 2 < cot .!!_ < 3, this value lies between the upper and the lower 
8 

limit of the sums. 
The analytic function can easily be found to be 

v2+x-x3 I 
f(x)= -i/2(

1 
+x4) , f(r)= 2 · 

Hence for our mode of summation 

The third conjecture is that when Sn tend to several values, among 
them there should occur the value of the analytic function. This is 

also fatal. For by aid of the last example, If Sn( I) tend to _!_ , by 
2 

a certain mode of summat_ion, then 

lim sin(2n+ 1)~ =O. 
-., 8 

And this is impossible. All the conjectures are proved to be wrong 

on the circle of convergence. 
1 I. Now we notice in the preceding problem that 

lim S 8k+,,,(1)=finite and determinate, h=o, I, 2, ••• , 7, 
k-►oo 

and their arithmetical mean _!_ is nothing bnt the value of the analy-
2 

tic function at x= 1. Consequently we come to the fourth conjecture. 

Namely, given a divergent series 

if 
h=o, 1, ... , m-1, 

be all finite and determinate, then 

~ ( S(O) + S(l) + • • • + 5(m-l)) 

zs equal to the generalised sum of the given series. This supposition 

is true: 
At first we shall consider Cesaro's generalisation. Since the 

sequence of numbers 
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converges to s<h>, we have 

lim s,.+sm+h+ ... +Skm+h =S(I,) 
~., k 

= lim sh+Sm+h+ ... +Skm+h 
~., km+m-1 

• l' .S',. + Sm+h + ... + Skm+h •• 1m ---~----~ 
~"' km+m-1 

km+m-1 
k 

yh) 

-- , h=o, 1, ... , m-1. 
m 

Adding these m equations side by side, we may conclude that 

_I_( yOJ + 5<1) + • • • + 5<m-l)) • 
m 

Hence, in general, 

Jim So+ S1 + • • • + Sn= _I_ ( sco) + set) + .. • + ,s<m-1)) • (I) 
n➔., n m 

Q.E.IJ. 
And our series is simply indeterminate. 

Next, we consider Borel's generalisation. For this purpose con­

sider the limits 

I. E"(t) 1m --, 
t➔oo e' 

h=o, 1, ... , m- 1, 

where 

The functions E,.(t) satisfy the differential equation 

d"'E --=E. 
dr 

Therefore let r0( = I), r1, ••• , r m-i be the roots of the characteristic 

equation 

then we have 
r""=I, 

Eit)= C"°erot + Ch1er1t + ... + C,,m_1erm-1t, 

h=o, 1, ... , m- 1, 

where C's are the integration-constants. These constants are to be 

so determined that 
c,.o + C,,1 + • • • + C,.,,._1 = o, 

C,,oro + Ch1r1 + •, • + C,.,,,_1r m-1 = O, 
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.................. 

To find Cho, its denominator is equal to 

I = ±(r0-r,)(r0-r2) 

r ,,,,_1 (r1 - r2) 

The numerator is equal to 

0 I 

r.,.._1 = ± r1 

0 ~1 

=M(r1 -r2)(r1 -r3) 

(r:i-r3) 

,,-r-1 ~] 

(ri-rm-1) 

(r2-rm-1) 

(ro-rm-,) 

(re-rm-,) 

where Min a certain factor to be determined. Since 

ym_ I =(r- r)(yn>-1+ r-"'-2+ ... + r) 
=(r- r)(r-r1)(r-r2) ... (r-rm-1), 

for r= r0( = r ), we have 

(ro-r1)(ro-r2) ... (ro-rm-1)=m. 

On the other hand, with respect to the equation 

we have the relations 

r +r1+ ... +rt"+ ... +r1m-1 =0, 

409 
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Hence we have 

l r 

I Y1 

l r ,,,_1 
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,,;n-1 =O. 

This equation must be identical with (4). The coefficients of ym-1 is 

± (r1 - r2)(r1 - rs) . . . (ri- r m-1) 

(r2-rs) ... (r2-rm-1) 

That of r" is nothing but ± LlhO. Hence, noticing that the coefficients 
of the equation (4) are all unity, we have 

M=±r. 
Hence by (3) we have 

h=o, r, ... , m-r. 

On the other hand, since the real parts of r's except r0= 1 are all 
less than unity, we have 

. er,.t 
hm --=o, 

-"' et 

h=r,2, ... ,n-1. 

Therefore we have from (2) 

lim Eit) =C,,o=-r-, 
t➔00 et m 

h=o, 1, 2, ;.,, m- 1. Cs) 

(This is clear, since we must take the + sign.) 
Now since the sequence Sh, Sm+M ••• , Skm+h> converges to 5chl, 
we have 

S(h) 

' 
h=O, 1, ... , m- 1. 
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Whence by aid of (5), 

= lim S(h) Elt) = s<h) . 
t➔"' c' m 

So we reach the result 
t t" So+S1-+ ... +S,.- + ... 

lim 1! n! 
t➔c,, e' 

S (0) + S(l) + ., • +s<m-1) 

11Z 
Q.E.D. 

Applying this result to the analytic function defined by 

411 

(6) 

which as often said may be continued over z= I, the value of the 

analytic function f(z) at = 1 is equal to the arithmetical mean ef 
5coJ + S(l) + .. · + 5cm-1), where 

h=o, 1, ..• , m-1, 

are all supposed to be finz'te and determinate. 
Outside the circle of convergence z>r, these limits can not all be 

finite and the theorem is clearly untrue. 
12. Afrer the fourth conjecture has been proved, we may give 

a complete discussion according to the series 

After Mr. Borel\ Euler and others took 2._ as the value of the series. 
I Now, by aid of § 11, -
2 

2 

the arithmetical mean is equal to the 

generalised sums. If we consider the function defined by the series. 

f(x)=r-z+.r- ... , 

the arithmetical mean ~ is equal to the value of Borel's integral 
2 

sum at z= I, which is the value of the analytic function defined by 

1 Borel, loc. cit. PP· 4-7. 



412 Toskizo Matsumoto 

f (z). That Leibnitz1 gave __!__ as the value of the series from the 
2 

standpoints of the theory of probability, corresponds by our side, to the 
equality ( 1) of the last article. 
For Lagrange's serier1

. 

using the same notations as before for x= 1, 

according as h=o, 1, 2, 3, 4. 

Hence by our theorem, 2- is the value of the analytic function 
5 

f(z)= 1-%1= ..r+z+I 
1-%° z4+z8+z2+x+ 1 

at z= 1. To give another value does not rest upon any theoretical 
standpoint. 

Returning to the series (1) the discovery of Borel's sum verifies 
the fact that Leibnitz's theory is not incorrect. But whether this is 
generally true or not, is not known. By our proof, the gap between 
Leibnitz's theory and Borel's generalisation has been crossed. At the 
same time, Pringsheim's objection looses any value as Mr, Borel has 
already declared. 2 

We shall add another example. 

S=o+sin O+ ... +sin nO+ ..• , 

n+ I (} cos--
{} 2 

2S= cot-------
2 . (} 

For simplicity put 0=.!!.., then 
4 

Slll-
2 

2S,.=o, n=o, 7 (mod. 8), 

= cot _!!_ - r 
8 ' 

=cot_!!_+ r 
8 ' 

t Borel, loc. cit., p.p. 4-7. 
2 Borel, toe. cit., p. 7. 

=1 1 6 
" 

=2, 5 " 



Some Properties of Analytic Elements 

7r 
=2cot-, 

8 
=3, 4 ,, 

I 7r 
Hence the generalised sum is equal to - cot - , which can easily 

2 8 
be calculated by Borel's integral.1 

13. Let us return to the discussion of singular points on the 
circle of convergence. 

If the series 

may be continued over %= 1, then as we have proved in § 8, /(%), 
for %>1, (sometimes z= 1 inclusive) must be indeterminate. There­
fore by § 3, the number of variations of signs in f(z) must be infinite. 
Consequently we nave the following result: 

Given a series of real coefficients 

if between the coeffecients 

then tke point z= I must be a singular point of the analytic function 
defined by f(x). If the radius of tke convergence be unity, and if 

lim~>O, 
....+oo an+l 

the point %= I is a singular point of tke function. If a,.= o, suppose 
. a,.+1 to be the consecutive of a,.._1• This is a special case of Fabry's 

theorem.2 A special case of his theorem is that given a power-series 

F(%)=c0+c1z+ ... +c,.z"+ ... , 

if between the coefficients 

lim ---5.!._= I , 
n➔oo Cn+l 

hen z= 1 is a singular point of the analytic function defined by F(z). 
But our result is wider than this special case. For consider the series 

F(x)=(I +i)+ (r-i)z+ ... +(1 + ( - r)"z)z"+ .... 

1 Bromwich, loc. cit., p. 275. 
2 Hadamard, La Serie de Taylor, (1901) p. 25. 
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lim --5!:.._= + i. 
-"' Cn+l 

lim __!!!!_= I, 
n➔oo a,.+1 

and z= I is a singular point. 
If, moreover, 

where e< 1, then at the point x= 1, f(x) becomes infinity. This point 
is a pole of the first order, For 

in the vicinity of the point x= I. This implies the special case of 
Mr. Hadamard's theorem.1 

From these considerations, we notice that several researches are inti­
mately related to the simple property that the analytic element F(z) 
must be indeterminate outside the circle of convergence to which it 
may be continued. 

14. If in the preceding conditions, A be zero, i.e., when 

where :Sen is convergent, then the point x = l is not to be a pole 
and is either an essential singularity or a branch-point of the analytic 

function defined by f(x). For by the second condition f(1) is con­
vergent. While by the first condition, the point must be a singular 
point. Examples are these : 

2 " 
,x2 _z-2 ;i;-2 

f(x)=1+ -+-+ ... +-+ .... 
12 22 n2 

f(x)= 1 _..:::_ __ 1_ (..::..)
2
- ... _ 1•3·5· ... (2n-3) (..::..)~ .... 

2 2! 2 n! 2 

The first series has its circle of convergence as its natural limits. 

1 Hadamard, loc. cit., p. 39. 

2 Hadamard, /oc. cit., p. 32. 
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For the second which is an element of (1 -x)½, x= I is the branch­

point. Both are convergent at x= I. 

I 5. At the end we shall shortly consider some divergent double 

series. 
Consider as usual the series 

Suppose it may be continued over x= I, then taking a point x=a 
within the interval ( o, 1 ), the series 

is convergent for certain values of x. This may be stated as follows 

The double-series, writing x-a=~, 

S= ao 

+a1a+aJ 

+ a2a
2 + 2a2a~ + ~2 

+ ........ . 
+ a,.a'" + na,.a"-1

~ + ... + ~ 
+ ........ . 

is convergent, if we sum up first by columns and then by rows. But 

if we sum up first by rows and then by columns, the sum is indeter­

minate. Pushing such considerations further, we may give several 

cases. 


