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INTRODUCTION.

In continuing my study on the solutions of partial differential
equations of the first order at the singular points, I have recently met
with a valuable memoir by Mr. Dulac’ He has completed and
developed, by his own methods, the researches of several mathema-

ticians, on the system of the ordinary differential equations of the first
order:

where §,, &,, ..., £, commence with terms of the first order in %, s, ...,
#,. His memoir may be divided into three parts: 1°. The case
where both of the Poincaré conditions® are satisfied; 2°. the case
where the second of the conditions is valid; 3°. the case where
neither condition is satisfied. For the second case he has devised a
special transformation of the variables, somewhat resembling that which

I used in my third paper? In his memoir, sometimes such partial
differential equations as

1 Bull. soc. math, Fr., t. 40 (1912).
2 My first paper; these Memoirs, vol. II, no. § (1917). p. 257.
3 Third paper; these Memoirs. vol. III, no. 5 (1920).
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e O 2 O Y
Xf=¢§, o +§&, dx2‘+ R oz =4f+¢

are employed and sometimes an auxiliary variable z It is not his
proper intention to discuss the partial differential equation Xf=o. I
have treated in the first part of my first paper, the case where the
characteristic equation

Aa—2 Ay Ain

:0’

where
Ei=lunF gt F A, .., =1, 2, ..,

has the multiple roots 4, 4, ...,4, (v<#) and they satisfy both of
Poincaré’s conditions. I have solved this case directly, considering
upon Xf, not by aid of changes of the variables of the system of
ordinary differential equations. But in my first paper, the case where
the roots 4, 4, ..., 4,, satisfy the second of Poincaré’s conditions but
not the first, is not discussed. This case is solved in the second part
of Dulac’s memoir. Since my considerations can easily be applied, 1
want here to discuss the case directly by my own method. After
this discussion, I shall enter the discussion of the system of partial
differential equations Xf=o0, Yf=o0 where (XY ) =o.

1. We transform, as usual!, the equation Xf=o by a certain
linear transformation of variables such that the determinant made by

the coefficients of the first orders of &, &, ..., §, becomes

L O ... 0
O L ... 0

(1)
0 O ... L,

where all the elements above the diagonal are zero and the diagonal
elements of Z, are the multiple root 4, of order #,, those of L,, the
multiple root 4, of order #, ...,those of Z,, the multiple root 4, of
order n, Moreover the multiple roots 4, 4, ..., 4, may be arranged®

1 The first paper, loc. cit.,, p. 268.
2 The second paper, these Memoirs, vol. IV, no. 3 (1919), p. 78.
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in the increasing order of their real parts and the number of the
relations such as

(8]

Pt A= 1=h=i<] (

)

are always finite. In the following we use the notations:

H=n+m+ ...+ 1,4,
IT=nm+nm+...4+n,_4,
J=mtmt+ .ty

and the like for other suffixes.

If 4, can not be expressed linearly by 4, 4, ...,4_; with some
positive integral coefficients (zero inclusive), then as I have proved,
we may obtain #, holomorphic solutions about (o, o, ...,0):

Jr=Zrat ...,
.................. (3)

f1+,,‘=x1+,,i+ csey
the dotted parts standing for terms of higher orders, such that

‘XY-I+1 = xifr+1,

X tin,=Aring fria+ Apins friat oo+ Aifrym,,
where

Erp=A xrut+ ...,
El-l—ni: 2I-}-nil Xt )‘1+ui2 Xryet .- ji Frin, +...
But for the equation Xf=4;/, the same considerations are fatal.

Suppose 4; the first coefficient which satisfies some number of relations
such as (2). Differentiate the equation

Xf=4/, (4)

2. times with respect to gy, ..., #; times with respect to #;, and put
n=rn=..=x,=0, then we obtain the equation
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2 2i
(ph}h +... +]>1x,) (xH+1. . .x1+1) +nens
2h 2

=A(Xprpre - Xrpa)-

The dotted part stands for a linear expression of quotients of lower
stages and of lower orders. Since by the relation

1),],. + ... +p;}7,= Zj,

Ph Pt
we can not determine the quotient (g, ... xr,). But if we consider
the equation ’

2 2
Xf=ljf+Ax]1+1 con x[_H,

where A is yet undetermined, we obtain the relation

On 2i
(ata+ -+ 2:4) (Hapgs - Zrp)+ -

p2 2
=2(Zyq - Xpa)F AP0 . 0]

The dotted part has the same meaning. Now we may take the
indeterminate coefficient 4 such that the equation is valid.
. /’h ‘pi . .
Since (#pyy ... #py1) Is arbitrary, we fix

p23 2
(Za41 +oe Zrp1)=o0.

2. Since the multiplicity of the root 4, is 7, such circumstances
will also occur when we require the quotients

g d s P
(Zrgs Targo oo Zign, - X)), g+r+..ts=p,

. - . q
for the coefficient of 1y, (1 =¢=n,) in §;,,, the coefficient of 4

()x]I-H,
is 4,. This is the same for the remaining multiple roots e.g., for 4,
Therefore we must add to the right hand side of (4), every possible
term, each multiplied by an indeterminate coefficient, such that

g r s g 7 s

Axyps Xayo - Ziny, + X141 Xryz oor Fhnp

gHr+..ts=p, .., gd+r+. . +s=p.
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Observing these, we consider therefore the equation

’ %

7 7 s g
Xf=4;f+ zAffH-lfsz "‘fH’+n""'.fI+1_fI+2 oo STyng (5)
2 denotes the sum of all possible terms such that
(g+7+ 4 + . (@ H + = (6)

The total number of such terms, as we have said, is finite. From
quotients of the lower stages to the higher, we calculate successively
by means of equation (5) and determine all the indeterminate coefficients
A where we take all

g > 5 q/ V4 14

(Zrrq1 Xrye - Trgn, oo Frps Xy - x1+ni)=0-

Thus we may calculate all the quotients of f which satisfy (5). As
the initial condition we take as usual.

(r)=...= (xJ) =(Lpp)— 1= (xJ+2) == («‘fn)= 9,
and the solution will be
fsz+1=xJ+1+ sesy

the dotted part being terms of higher orders.
3. Next consider the equation

S

q 7 s g’ 7 s/
Xf=Aif+ Anora S+ ZA'fHﬂf a2 oo Sagny, o St frve o o,
Quite in the same way, we obtain the solution

f=fJ+2:xJ+‘.’+ ceey

the dotted part being terms of higher orders. We continue the
process up to the solution

fsz+nj=xJ+”j+ cee
of the equation
Xf=4f+ XJ+nj St 2J+nj syefrpet ot ZA”-

The proof of the convergencies of these solutions may be done quite
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in the same way as stated in the first paper. For we have only to
add to 0' the série majorante of such series as
» ’

g » s 7 : §
D Af i firsa oo Favny -+ FriiSria oo Frin,

For the other multiple roots which may be expressed linearly by
the others, we may treat quite in the same way and obtain # indepen-
dent holomorphic solutions.

The dotted parts stand for terms of higher orders.
Now by the transformation

=7, t=I, 2,...n,

Xf will become .

0 J 0
Wgﬁl—dj%'f”?ra)fz*‘--- + 7 0}{ )

where

7/‘1(—1/):11.7/17
)=Ra i+ Ay
(7) ‘ 1.1 1

s g 4

( q ” q
el 3)=2 Vg + 2A7H+1_7H+2 s Iriny, - Ve Jrge «o- Vitnp

(8))77J+2(J’):/1J+? s dops A Yrat ZA’..., .

The coefficients not written here belong to the one or the other type

and the functions under the sign Z are polynomials. We notice that

1 The first paper, loc. cit., p. 276.
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the polynomials in (8) are the same, except their coefficients 4, A,
e A//

4. To solve the equation Xf=o is thus reduced to solving the
equation Yf=o0. TFor this purpose consider, as it is classical, the
system of the differential equations,

d}’ 1 . d)’ 2 _ _ d]’ n
/i 72 Dny
— & _ dJ’J«}-z o dy.l-l-nj — =
Nos Nrye [rin, - )
First consider the system
ay, - a, _ Ay, —r
71 77~z ) 777»1 ’

From the nature of the functions.,, 7, ..., Tnyp WE have the solutions

Mt
Nh=e

i (9)
J’P-_—-[CP« +ﬁ0/] (ty C;; C;b oo CP‘—I)]Z ! ’ [l=2, ceey Py,

where G, G, ..., Gy are constants. These processes are followed for
all the multiple roots 4,, ..., 4, and will obtain similar solutions. Next
to solve the system

Ay - Y _ dy.f+nj

Tors1 Nrye Nr4n;

=d,

at first we notice that by the relations (5) and (6), putting the values
of Yas1, -oes Vrtm, such as (7), we have

q r s g 7 4

Va1 Vmye -+ VEtny == Vi Vrt2 cer VEpn, = pOly (% Cyzy Chyo, oy CH+nh» e
)\jl
CI+1» CI+2) vesy CI+ni)e
Therefore the solutions are
).jz’
_j’J+p4:[CJ+p.+P0[_j/ (t, CH+1"") CI+7L’:; C7+1, veey CJ_HJ._I)]E , =1, 2, ... %

Hence the solutions of the partial differential equation ¥f=o are:
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M M _ M

A Mn Y
Vo Y1 + poly (log 1, Va1 y o I utpa N )
M=o, ..., H. ... ], ...;¢u==1,2,..., Um,

where for M=o, we commence ¢ by 2 and for the other case, we
cancel the expression poly, provided g=1; and

_M
W
Yo
M _M M M
N T meva %)
+ poly (log 31, Yam y oeos Vb, I 7787 "Ry ATy O

J=/ s p=1,2, .., m

When 4, is not the first coefficient which may be expressed linearly,
yet the solutions may be given by the latter forms. Thus owr
proposition s fully solved and we see that the transformation of Mr.
Dulac is unnecessary. The forms of the solutions written above are
allowed as the extensions of the forms of the solutions given in my
first paper.

5. We shall enter into the discussions of two simultaneous
partial differential equations

s L o

X = e b vee =

/=5 0%, ke 04, tot gz,

., of  _

Yr=mn 0x, + 0%, tot oz,
where Xf, Yf, are permutable to each other, ie., (X¥)/=o and all
the coefficients &, ..., 7, commence by terms of the first orders In x,
Ly, veey %, Since Xf and Y¥f are permutable, the matrices formed by
the coefficients of the first orders in the coefficients &, ...,7, are

permutable and hence they may be transformed to become normal
simultaneously, by a certain transformation of the variables.? There-
fore we suppose from the beginning :

. e 0 "y
A=< oj; th Lok

1 First paper, /oc. cit., p. 279.
2 First paper, Zoc. cit.,, p. 280.
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where using the same notations,
EM+1=lm Xari1s
EM+2=AM+2 My Xaypa T+ A, Xary2s

(10)

..............................

$M+nm=xll{+nm w1 Ko+ zm—nm IRE v DL LS e
provided 4, can not be expressed linearly by the others, and

’ 144 14 rn
y2 2 y:3 y2 1
Era =4 _;_IC '

Sopi =4 Lppat Faer oo Xiimy <o XLpL oo Xl

- S : '
’J+2—2J+2J+1 «'f./+1+}:7' Xyt E ...,

(11)

..............................

£ — - 4
gJ+n7. "ZJ+nj FPESN 2J+'nj J2 Xppet .ot lj 1J+nj + 2 ...,

provided 4; satisfies the relations (2). 2 denotes the same poly-

nomial, with the exception of the coefficients C, C',..., C”,.... By our
transformation ¥f does not change its form. So we have

. I o o
W“"?l OK‘I' %y 02’2 +... +77n dxn ,
B=py Xttt ppnt..., I=1,2,.,n (12)

The dotted part stands for terms of higher orders. We shall deter-
mine the forms of the coefficients of ¥ more closely.

6. Since Xf and Y¥f are permutable, corresponding to the root
4, we have the relations

X77M+1= A 41>
Xarr2= A Gaera~+ Aareo 2t Darsns
X7 Datyn,, ™ zm Pain, + AM+nm M Yt oo AJ&[—Pn,m Min,—1 77M+nm—1-
First we consider the equation

XV apas =4n 7 a1
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The variables belonging to 4, i.e., the variables which have 4, as
their coefficients of the first orders in &1, §44s, .., €u4 respectively,
are Xup1, Fatwy orer Xain: In the other coefficients, 4, does not occur.
Therefore between the quotients of the first orders, we have the

relations
xa (xA+na) = 'zm (xA+na) >
Ao (Zagr)t oo =(An Zayr), 1=r<n,.

The dotted part stands for a linear form of quotients of lower stages.
But if we notice the form of the determinant (), the quotients
contained in the form are only

(Fa11), (Fag2)s «oes (Fagr)-
Since A, == 4,, by the mathematical induction, we have
(Far) =(Faga)=-.. = (7‘4+na) =o.

Since by (12) the terms of first orders of 7, is a linear conbination
of xyy; and the other variables whose suffixes are less than M+ 1, we

conclude that
Dot = Py T oo
the dotted part being terms of higher orders. .
Next consider the quotients of the second orders. They are all

zero. For put
H=90—p Zarpr,

then /A commences at least by terms of second orders. Hence we
have the relations

24, (#3)=4n (27), 1 <=,
(xa + Xb) (xA+r xB+a) o= zm (IA+T xB—*—s)) I =s5= 2.

The dotted part stands for a linear form of quotients of lower stages.
It contains no quotients of the first order. Hence all the quotients of
second orders are zero. Therefore by the mathematical induction, we
may conclude that all the quotients of higher orders are zero, hence

we have

Vary1= [t Xarypy-
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7. We consider next %y, (2 ==¢=n,). Assume that

Varre = My TapprF e Taggat oo+ Mo Torpwr, 1< 7 <L (13)
For #=1, it is right. After the substitutions of the values of 7,4, ...,
Va1, In the equation

1Y7M+t:lm Narpe+ AM-H w41 Pyt oot AM+t M1 [ are—1»
we have

Xstp = A Yagye+ 61 Zypgr F oo FCa Ty, (14)
where ¢, ..., ¢, are certain constants. Now we prove that 7., has

the same form. First, it does not contain ., (4< M). Since as
before, after differentiations, we have

/a (xA+na)= Zm (xA+na))
Al ayr)t o= (Zarr)s 1=7< 2y

the dotted part being quotients of lower stages. Hence we are right.
Secondly, since 7y, has none of Fyy.yy, -+, %y, in the first orders, it
has except the terms of higher orders the same form with what is
assumed. Thirdly, put

H=nyp,— terms of first orders of apse.

Then we have, by (14),
XH:Z‘IIL H+€; xM+]+ ese +C; xM.',t,

where ¢, ..., are certain constants. Now all the quotients of the
first order of / are zero. Therefore noticing that the quotients of
the second order satisfy the relations

24, (x2)=="1,, (xn), [<=r=n

(la + lb) (xA+r xB+s)+ e =y, (xA+r xB+s): I =5 = m,
the dotted part being quotients of lower orders, we way conclude that
all the quotients of the second orders are zero. Continuing this

consideration, by mathematical induction, we may prove that all the
quotients of the higher orders are zero. Hence

H=o,
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i.e., 7. has the same form as (13). Therefore, all the coefficients
- ~

Da+ts Ysests +or Yaeen,, have the same forms as £t Saryar coes Sappn, TES

pectively.

8. Proceding further, consider the case of the multiple root 4;
which satisfies the relation (6) and the coefficients corresponding to
it are given by (11), where

?’hl +... +P/L” =P 4 5]’1:/ =/

...............

We assume as before 4, ...,4; can not be represented by the others.
D1 Yirgns -oes Y, MUSE satisfy the relations

X1 =495 + 2/’
X0 rio =R Yrpat Arps ot Jrn + 21’ (15)
15

..............................

’
X77J+nj =1,; 7/J+n7. + )'J+n7. FIRE/ R RE PO o )‘J-HLJ- T 77.I+n7._-1+ E .

The Z’ in the first equation is

’ " ’ ”
’ ‘.‘ ]’In ,PIL > Z’q‘,, Pi
E = CY(IH+1-..ZH+7,,h...xI+1 ces :rl_,_"i)
[ " ’ "
br—1 br, 2t 2i

— !, -
= E C{?h Natr Xpyy oo xH+”h von Kppq ven x1+ni

I4 1 ’ ”
Dhs P> Di» Pt —1I
" .
+...+p,; //I+"’,/xH+1...xH+"h... KI41 oo xI_,_ni }, (16)

and the like expressions for the other 2/. In the following, we shall

Pr f’s ,pt
use for products such as %, ... 4y .. %, the same definiton of stages'.

1 The first paper, loc. cit., p. 270.
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Then from the forms of 7y, ..., Jzn, all the products under the sign
2, are respectively of same or higher stages than those under the

sign 2 of (r1). All the products are constructed by the variables

Xyt -o» ¥ryme For example, the first equation of (15) is the conse-
quence of

X9J+1E YEJ+1-
Since by the proof of the preceding sections, we have

NEt1 =M X4,

Trpn, =M ¥ +ot Moy, X1tny

the calculation (16) of 2' teaches us that our statement is right.

9. After these considerations, we discuss the forms of 7z, ...,
Drin, which satisfy the equations (15). Since the polynomials of
orders higher than the first in the coefficients &’s of Xf can have
effect only upon the terms of higher orders of the coefficients 7's of
Y/, the terms of the first order in 7.1, %rps, wevs Drtn; have the same

forms as (13), namely
Dape =01 Tt P2 Xppat oo F 00 gt -y 1 ==,

01 Ps -+ P are certain constants and the dotted part stands for terms
of higher orders. Specially we have

Dr1==P ¥r1t...,

all the quotients of the first order, except (#41), being zero. First
consider the equation
3 !
X pp1 =4 Y + 2 . (17)

[o]

1°. When at least one of 4 and B is different from any of H,

..., 4, then we have
(Aot &) (Zatn, %2en) =t (Fa4n, Bin,)-

For no coefficients except 5A+"‘a’ 53.,_% have the variables Zagny FBin,
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lacks at

. . . - i)
in their first orders and moreover the coefficient &5, of 3
Xr41

least one of these variables. Hence the quotient (#44, ¥p4s,) is zero.
2°. Moreover we have
(Aot 4) (ff.4+r xB-}-s) oo =2 (Za4r ¥rps),

the dotted part being quotients of lower stages. For in the expressions
of the first order, x4, appears only in &4, ..., $44n, and xpy, only in

EBye '°"$B+"b’ and the quotients in the dotted part are of the forms

(Fatr Zniw)s r 7 =mn,

s< & =,
Therefore by mathematical induction all the quotients of the second
orders (%44, ¥5,.) are zero where at least one of A4 and 5 is different

from any one of A, ...,/. 3°. We may go further and conclude that
all the quotients

n v w
(xA +n, xB+nb e x6'+7lc)

of order #+v+...+ w are zero, provided at least one of 4, B, ..., C
is different from any one of /A, ..., /. Moreover we have

R I z v
(kg + VR4 oo +WA) (Xipr Zps oo Xops) T+ oon

22 v w
=4 (Zagr Xpta -+ Fore)s

the dotted part being quotients of lower stages. The considerations
are quite the same,... Thus applying the mathematical induction
again and again, we conclude that all the quotients

k4 k2 w
(Zatr Xpys -o» Foyd) =0,

where at least one of A4, B, ..., C is different from A, ..., I.
10. Let us put :

<4
HE?JH“PIJM_Z ,
where 2" is the polynomial in 7, constituting the terms of orders

not higher than any of those of SV Supstituting this in (17), we

have
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XH=3H+L 2+ —p > —x DV
Since 2" contains only the variables xp, vos Zippngy coor XLty ooy Xrym
and by the properties of the coefficients of Xf, X 2” is of the same
order as 2". Since the order of the terms of the lowest order of
H and hence of XA is higher than any of 2' 2/’ 2”, we must

have
XH=MH,

whence we may easily conclude that Z/=o and therefore we have
174
1= PXrp+ 2 ,

2” being of the same form as 2 and 2,.

11. Let us proceed to the discussion of %y, Consider the
second equation of (15)

X’iJ+2 =4 Qrsat Args v Y+ 2’.
Putting the value of 7., we have
Xra=A [rat PZ;rH st L+ 2”/,
where 2”’ is a similar polynomial as 2/’ 2”. As we have said

Tot2a=P1 Xyt Pa Xppatooey
the dotted part being terms of higher orders. To treat in the same
way, put

2= rre =Pt Xy, — P2 Xria

then we have
’ y "
Xyre=hki Yt D),

- " . 7t
where by the forms of 5,4, S E,l has the same meaning as E: )

Now we have only to repeat the processes carried out in the preced-
ing sections and the same result must follow. Continving these
considerations, we conclude that
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Nog1=P Xy + 2 L

Trp2== P01 ¥rp1t 02 Xppot E 2

!
77J+nj=[h ﬂ’J+1+P; Xrpat ... +|0nj 4’.1+nj+ 2 n;

where o, p, ..., Pn, are certain constants and all the E‘ indicate
certain polynomials of the variables xg.,, ..., Tatpny +oor Frp1y -oor X, and
of the same order as E:

12.  Proceeding further, consider the case for a multiple root
4, which is expressible by the other, some number of which are
already expressible by the other. Suppose for simplicity we have
such relations as '

Dobot i i+ L M=,

where 4, ..., 4, except 4; are not expressible by the other. For 4; we
have as before the relations such as

Pnlat ot A=A,

By these relations we see easily that in the coefficient §,,, there are
such products as

’ " ’ " ’ 1" ’ "
2q 29 2h 2 2i # Pj v 2x
K1 vee ;L’G+ng cee {IH+1 ee x}1+nh eee Xrpg vee xﬂ_"i}... KRl oee xK+nk, (18)
' 1" ' " ’ ”" ’ "
2 2y 2n 2h 2i bi Pi-m b2
KXoy xG+,,g...{xH+l...xH+nh...xI+l-..x1+ni} Xgpyvee XEpL oo xK+nk’ (19)

it 2 =2,

where # is a positive integer. If m==0 (19) becomes (18). Therefore
if we calculate the relation

leﬂl'l: YEL-{-I)
we have
Xpp =4+ S+ S,
where S, is obtained by putting such products as (18) in ¥f and S,

by putting such products as (19). If we put the product (18) in ¥f,
the result is a polynomial of the same order as (18). For all the
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coefficients which are introduced into the polynomial are of the first"
order. But if we put the product (19) in Y7, then, since the coefficients
Nartty =ens Yrnyy AS WE have proved, contain such products as

r s U 114
Dhs Prs Dis Pi»
F27I e xH+n]b coe Xppy oee x1+ni‘

the resulting polynomial is at most of order

Lot (Out i) (By—m)+m—1)+ (prt .. + )+ ...+

=p,t ..+t 2) (pj—m+ 1) F(— 1)+ ... F

Thus the polynomial S;+S, is of the same form as the polynomial in
the coefficient &;,,;; and the like for the others.

Moreover, to calculate the coefficients 7,,,, we may, as we have
done many times, conclude that all of their quotients which imply
some variables other than x4, eens X4n, are zero. Thus we may

conclude that all the coefficients 94, -.., Ditnyp have the same forms as
the cocfficients &,y ..., §140 ,» respectively.

13. We remark that for any suffix, all the coefficients cor-
responding to $yua, Sarye ...,EMMM, with respect to their terms of the
first order, have the forms:

Daet1= Hon Xappat ooy

Dors2= Mok sri1 Xara t M Lappg T eee,

Uatin, = Hatin, mi1 Xapr T oo+ i Xogpn o

The multiple roots g, ..., ¢, are different with the exception of some
special cases. Concise knowledge about these can not be obtained
from the idea of the permutability of two matrices. We may conclude
these results above obtained as follows :— When the infinitesimal trans-
Jormations Xf and Y are permutable with each other, where their
coefficients commence by terms of the first order and the chavacteristic
equation made &y the coefficients of the first ovder in those of Xf has
multiple voots whick satisfy the second of Poincaré's conditions, then the
other itufinitesimal transformation Yf has exactly the same form as the
infinitesimal transformation Xf. The special case of this was proved
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-in my first paper. We shall not here discuss the forms of the common
solutions of the simultaneous partial differential equations, for, after
the reductions have been made the next task is easy. In the follow-
ing, a simple example, to explain §12 is given.

12. Consider the transformations

Jvzx—g,«+(zy+xﬁ>§—j+<3z+m+4-3>(,i§-,

where 4,=1, =2, ;y=3, so that 24,=2,, 34=4;, 4, +4=4. For the
permutability we must have

1°. X&=¢,
2°. Xy=2n+ 245,
3° XE=30+ 2(fy+72)+ 32%

From 1°. we obtain
E=ix,
where 4 is arbitrary. Substituting in 2°. we have from the equation

Xyp=2p+ 242,
that
p=24y +va?,

where v is arbitrary. Substituting in the third equation, we have
Xe=3L462xy+ (2v+ 34)47,

from which we have
=3z+ 222y + wi,

where o is arbitrary.
Therefore the required expression for Yf is

Yf=) x—f—+(zly+m) +(3/z+wy+wf).f ,

A, v, o being arbitrary.
Thus we notice the coefficients have the same forms as those of Xf.
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The solutions of the equation Xf=o are

h=yxt—log x, fi=zx—(29x74+1) log x +(log x)°.
The common solution of the simultaneous equations is the arbitrary

function of f;—F— ;U:; /2, provided v == 4.

Two permutable linear homogeneous transformations have at least
a common pole. What is the case for Lie’s group? This is the
motive of my study. About ordinary points, the study is clear. So
we have to study the singular points. By these successive papers, I
think, the properties became a little clearer.




