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CHAPTER L

CONGRUENCE OF CIRCLES.

§ 1. CoOORDINATES OF A POINT ON A CIRCLE.

Any circle in non-euclidean space may be given by the simultane-
ous equations

(1) (ax)= cos »%(xx)(aa),

(bx)=0,
where
(aa)=F#, (0b)=F, (ab)=o,

and (a) is the coordinates of the center of the main sphere,' (6) that
I

/é?
the measure of curvature of the space. The center of the circle
coincides with the center of the main sphere.

of the plane of the circle, R the radius of the main sphere and

(1), See T. Nishiuchi, ¢Oriented Circles in Non-Euclidean Space,’ these Memoirs,
Vol. iv, no. 6, p. 273...... .
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When ay, a, @, as; &, by, b, &; R are functions of two para-
meters # and », we have a congruence of circles, by allowing unlimited
variations to the parameters.

Let (2’) be the coordinates of a point €’ on the plane of the
circle which is orthogonal to the center C of the circle and (a’a’)=£],
then

(ad’)=o0, (a'4)=o0,

and the coordinates of any point on the circle may be given by the
equations

R ; . R
Xo=a, COS——+a, sin ——

£ &’

R . R
= a Cos— - +a, sin 5

Xy=a,cos- ~+a, sin -

2 é »

R“
k

R

R .
Y=a, cos——é— +a’ sin = -

Next, consider an absolute polar triangle in the plane of a circle
of which one of the vertices is the center C of the circle, and the
remaining two vertices 4 and B, then the point 7/, 4 and B must
lie on the plane axis' of the circle whose axial coordinates are

‘a; a;
Ty= | , (Gj=0,1,2,3; iF)
b, &

Let (§) and (3) be the coordinates of the vertices 4 and B re-
spectively, and 6 the angle between the two lines C4 and CC’,
then

(3) =&, cos+7y;sinl, (=0, 1, 2, 3)
and

O
g | & a a; as

Zélzz Y ~ ;-‘
o §1 S22 S3

o o o T %2 s

(1) See T. Nishiuchi, ¢Oriented circles in Non-Euclidean Space,’ loc. cit.

2
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EE)=(m)=#,
(ag)=(ay) = (Ep)=o0,

)
(%)
wn

where 2 is a proportional factor.

Then, the coordinates of a point on the circle given by (2)
will be

Zy==a COS —f—-*— (&, cos 01+ 7, sin 6) sin {2 ,

x=a, cos é} +(&; cos 8+ 7, sin ) sin »éj-,
(4)

r,=a, Cos %— + (&, cos 0+ 7, sin 0) sin }/;—,

X3 =0 COS % + (S5 cos 0+ 75 sin ) sin _]/},

where
(aa)=(83)=(p7) = 4,

(a€)=(a) = (Fp)=o0.

§ 2. Focar Point.

Consider a congruence of circles defined by the equations

(5) x;=a; cos —{; +(&; cos 8+, sin 6) sin %,

(f=o, 1, 2, 3),

where a;, §;, 3 (/=0, 1, 2, 3), R are analytic functions of the two
parameters # and v, and @ is a variable along the circle.

The parameters # and v determine the circle and 6 a point upon
the circle.

If we establish a relation between # and o, say

v=/ ()

the circles of the congruence whose parameters satisfy this relation
depend upon the single parameter # and consequently form a surface;
the parametric equations of this surface are given by (3), when v has
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been replaced by f(x). The surface will evidently be changed accord-
ing as the function f(x) changes, and are called the surface of the
cougruence by Prcf. Darboux.!

The equation of the tangent plane to the surface of the congruence is

X, X X, X |
X Xy X, X3
I
(6) I, 0% o7 9% | =o,
1 06 BY] a0 00 ’

(S840 S ) S84 S GBS
where X; ({=o0, 1, 2, 3) are current coordinates and the accent denotes
differentiation. And we easily have the following theorem of Darboux :

Theorem. For any four surfaces of a congruence containing the same
circle of the congruence, the ankarmonic ratio of the langent planes to
these surfaces at a point 1s constant when the point moves along the
circle.

From (6) it is seen that when (x) satisfies the condition

/ X, A X i Xy A A J
0% 0n x| 0n dn Ox
L o8 o8 ad | ot o o8
| |
| 0%, % 0z 0z 0% O
| Ou Ou Ou | ou  0u  On |
(7) = = C (const.),

J/ ENE T Fy A A i
0%y, Ox 0m, On 0xy 0w
o 98 96 | o0 o8 o

| 9w 0% Ox 5 0% 0z

| dv 0v oo dov  dv dv |

the equation of the tangent plane is independent of the function /(%)
and consequently is the same for all surfaces of the congruence through

(1), (2) See Darboux, Legons sur la théorie générale des surfaces, Vol. ii.
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the corresponding point. These points are called the focal point and
their locus the focal surface by Prof. Darboux.!
The equation (7) may be represented by

A A A

0xy O0x; Az Oxy

o0 ot 90 o6

0% 0z 0% 0%
on Odu On Ou

0%y Oxy 0z, Oxy
dv oOv oJv Ov

from which we have the relation

f)xq; (();'*'*-V“ (Z—-O i, 2, 3)

o =t

where 4, ¢ and v are a parameter respectively.
Multiplying through by x; and adding, we get

A=0,

and have the following relation

(8) 0417,0 . O;r@ v ()x,,;

0 ~ou ov’ » (=0, 1,2, 3).

Again, multiplying through by @; and adding, we get

9 A e ()4

and the relation (8) will be

R oa/ of Oa; R | 0a) . R
(10) A% sin - o0 111[%(()” cos -E+ o Sin

—(a- sin R a/ cos 5)((1 da’ )]-}—
¢ £ oun

(1) See Darboux, Lecons sur la théorie générale des surfaces, Vol. ii.

SN—_—”
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2 doa;’ . R)_( R, R) 0a’ )]
[,é fcos + o sin P a; sin 7 a;’ cos 2 (zz 0 ) 1

238

(i=o0,1, 2, 3).

Here we adopt the following notation in analogy to Kummer’s
classical method'

a) o a)l a

F(dada) —(d/da)=
da, da, das da;

= Endi’ + (B + Ey)dudv + Eydv?, (Ejs= Ey)
\\‘ a o &y a4 ]\

B (dd da')—(ada') —i ‘}
‘1 day) da) da) da)

(11) =B did+ Bl do*+ Byl db+ (El + E'y)dodt
+(E;1, + E]g’)dﬁdﬂ -+ (‘E;ﬂ, + E_)]’)dud‘v, (E“:— -E;'i) i, j’: I, z, 3)

a, a, a, as a, @& a @&

#(dadd) =

da) da da) da)

Y da, day, da, da,

a) & a) a a o & af

da, da, da, da,

!/ 14
da, da) da, da,

=eudi* + 6,00 + e3,d0* + (6’23 + &30 )dvdll
+ (33‘ + e13)dﬁa,” + (312 + fg])ll’lld?/,
(e e, 4,7=1, 2, 3, i57)

ﬁ_[ ﬂar oa ¢
,EL’) aat)u r)z/} DAY

2

5 | da’ 0a’ ()a’ .

’.‘ - r R = i E 2

4 £ ( #laa u dv S
AL’/_\M= ’ €y F-

(1) See ¢ Allgemeine Theorie der geradlinigen Strahlensysteme,’ Crelles Journal
LVII, p. 189-230, 1860.
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Multiplying through (10) by 052’ , 0;;, and 051(;’ respectively and
adding

sin -{;E 5 = /{eu cos §+ £,/ sin % + u[encos y + £,/ sin !;—_

(13) sin {;E%’ = /1[312 cos §+ £, sin -{;:‘+ u[ezgcos {Z 4+ E, sin {;—_

sin %Eas’ =l 13 COS %—+ Ey sin %:I + »[ezscos f— + By sm%;.

Similarly, we have

sin #em— /4[Eu cos 1}; + e, sin” 7 J u{ Eycos - + 39 8in - J

(14)

. R . R : R . B
sin %»43: ,a':Em cos % + ¢, sin kJ + vJ522 cos 7,'é_+ g2 SiN %J

From the above two equations, we can find the value of ¢ and v.
Eliminating 4 and v from (13), we get

R R R, ;. , . R
€41 COS _,5+E‘1 sin = 7 encos iéa+}121’ sin ,’é,_ FORE -
' R RI_
(15) |e,,cos §+E2 sin ? 522COS?+E77 sin f« E, sm—lg =0.
| R . R R . R R
€15 COS - + E/ sin 7 emcos + £, sin 3 Ey' sin 3

This equation can be looked upon as an equation in @ having its
coefficients functions of # and ». When # and v are given particular
values of § satisfying this equation define the focal points upon the
corresponding circle. 'When this equation is solved for @ the various
solutions are substituted in (5), the latter will define the sheets of
focal surface.

When the fixed point is common to all the planes of the circles
of the congruence, the equation for the focal point (taking the center
of the circles as the fixed point) will be
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Ey E/ E/
(16) E) Ey Ey |=o.
Ed By Ey
Next, multiplying through the equation (10) by 4; and adding

we get
oa ()a . R
,u[(b 5 ) cos +(& s n _,éJ

+ [(5 )cos £ (bg_‘;') sin %]:o.

. Eliminating ¢ and v from this equation and the equation (9) we
get another form of equation for the focal points:

, O oR oR
( o )*kw ( 0v>+k
(17) =0,

oa R oa R Oa R oa’' R
(bW)COS—,é (6_0”—)5111 % (b d—v)cos—é-+(é 5 )sm}

or

i3 /R R
(é dv>c050+(b sin U-}-(bw-) cos v

This equation leads to four values of § in general, which settle
the focal points of the circle, so that there are four focal points upon
a circle in a general congruence.

When the planes of the circles all pass through a fixed point,
taking it as the center of the circles, then the equation for the focal

points will be
OR  (,"0%\ OR"
[(é“*)—oa— (655) G| cos®
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IR
+[( au) oo édv)d sin § =o.

And this equation leads to two values of 6 determing two focal
points upon each such a circle.

From the results above we get the following theorem :

Theovem. Upon a circle of a geneval congruence theve are four focal
points at which all the swfaces of the congrucnce through the civcle
admiit the same tangent plane, whatever be the law according to whick
the circles have been assembled to generate the surfaces.

§ 3. SoME PROPERTIES OF THE FocaL PoINT.

We know that, in rectilinear congruences, certain selected con-
secutive rays intersect one another; the points of intersection of any
ray with the different rays which meet it, are the focal points of the
ray.! It is natural to enquire which circle (if any), consecutive to a
given circle, do intersect. Now we shall find such circles.

Any circle

R . R
X;=a; Cos —— +a; sin —,

Y. Y
a/=%&;cos0+7:sinl, (i=o, 1, 2, 3)

intersects with a consecutive circle, if

@; cos R +a; sin R =(a;+ da;)cos R+dR + (@ + da/) sin M,
£ V4 £ V4
(=0, 1, 2, 3)
or
cos’t /'@_I_( o R R) —
(19) da; cos'é + da/ sin 5 p\aisin o —a cos—g dR=o0,

(=0, 1, 2, 3).
Multiplying through by «;, and adding

1 See Fibbi, ¢I sistemi doppiamente iofiniti di raggi negli spazii di curvatura
costante,” Annali della R. Scuola Normale Superiore, Pisa, 1891. Also, see Coolidge, Non-
Euclidean Geometry.
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(20) (ada’)="rdR.

Rewriting the equation (19)

[/z ( da; cos = + dat sin=- )

. R da’
__(ai sin s a; cos ~)<am~ Jdu

(21) +P€2( Oa; R+~a—”—— sin R>

ov £ ov k
- (a. sin LS —a, cos R)(a@i)jldz,
Tk ‘ y ov

+ [,é’ 0(;1(;' sin f —-<ai sin f —a; cos !\1)( ?;l; )Jdﬁ >

(Z=o0, 1, 2, 3).
! Ay !
Multiplying through by 0(;;; , 00‘;: , ggé~ and adding respectively,
we get

R .
[eu cos = + E, sin ) ]zz’u ~{-[e’.21 cos - + E, sm%]a’y
+ B/ sin f;a’ﬂ —o,
: ., . R R . R
(22) [em cos —f; + £, sin %—]du+[egg cos & + £,/ sin kadv
+ £, sin %n’ﬁ =0,

[eh cos R+E,3 sin - » la’u—}—l £x COS - +E23 Sir :|dzz

+ £, sin A~d0 0.

Eliminating d#: dv: d0, we have
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. R R . R
11 COS §+Eu’ sin —- en cos —E+Eﬂ’ sin — E,/ sin

= a»{w

R R R
€42 COS —E+E12 sm? €39 COS —{;—}—E,z sin 3 £, sin Z |=o,

R . R . R,
€15 €S — + £y sin % €5 COS §+ £yl sin 7 Ey sin %3_

which is the same equation as (15) giving the focal points of the circle.
Hence we have the following theorem :

Theorem. The points of intersection of a civcle with the consecutive
circles are its focal points.

Again, multiplying through (21) by 4, and adding, we get
oa 04
[(& S ) cos S ( ) sm—]a’u
oa' R
+[<b )cos (6 e )sm ?Ja’v o,

and from (20)

(o) 45 b (o 5) 435 o=

Eliminating du:

dv from the above two equations, we get

da oR da’' oR
(“'5‘;4 ) ~Fow (" o) E
. =0,
da R oa . R da R (,0d\ . R
(b S ) cos + (6 ()u~) sin “- <b—d;) cos = +&5 W) sin -

and this is the same equation as (i17) which gives the facal points on
the circle.

Rewriting the above two equations, we have
R aﬂ 05 ()E
[( )d +( )dv:‘+ sin f[(b o >a’u+ (& Tv)dv] cos
+ sin »[( 9 >a’u+ (6 07 )va sin f=o,
oR oR
(R atu+ 28 )| (o5 *Vau+(a ) | cos 6




244 Hidetosh: Kashiwagi.

- [(aﬁl)du + (ad—v )a’v] sin § =o.
o ov

Eliminating cos § and sinf/, we get
/ <5—0—E—)a’u+( 0% )dw < 97 )a’ﬂ+( U/ )dw I
ou oy
3 A ()77) 07\
(a ou)a’u—l—( T) v ( o a’u+(a—0;/dv '

sin &1 (89 Y-+ (85 Yo | cos KT (690 Vatu (592 )|

(33
= Ry

(R T
(24)

sm-/; (& 3’7 du +(bl)_’_)a’vJ cos —[<b )a’ +(5——)a’v]

’ J

( ’7)a’u+( v)dd k( +%Rd) '

The circles, that are consecutive and intersect, are determined by
quantities #+du, v+dv; and the common point with the consecutive
circle is given by the value of 8+49 on that consecutive circle. Now
the above relation is an equation for du:dv; its coefficient are func-
tions of # and v only; and therefore it determines four consecutive
values of # and », which give consecutive values of @;, &; (!=0, 1, 2,
3) and R, and therefore give fous consecutive intersecting circles,

Theorem. In a general congruence of civcles, every circle meels four
other consecutive civcles ; it intersects each of the civcles at a single point,
the four points being the focal points of the civcle.

Two circles in space can not intersect at more than two points.
So we can consider such a congruence of circles that two of the four
focal points of a circle shall lie on one consecutive circle, and the
other two lie on another consecutive circle. In this case, there will
be two (and not four) values of 4 :dv which give two consecutive

- intersectlng circles; for each of these two values of & : dv, there will
be two values of #, giving the two points upon the consecutive circle
which are focal points of the first. In order that this may be possible,
the two equations
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cos %(ba’a) + sin %(ba’é) cos 04 sin %(&a’?)) sin =0,

kAR —(adf) cos §— (ady) sin =0,

can not be independent; for if not, they would determine cos#f and
sin 6 uniquely for an assigned value of d%:dv, and so there would be

only a single focal point on the consecutive circle. Hence, all the
determinants of the matrix

(bda)  tan Z(sa8)  tan £(oa)
(25) # #

—kdR (add) (ady)

must be zero, and these equations are to determine two values of 6.

But, since, if two circles (consecutive) intersect at two points they
are cospherical and the conditions for that is

[72% ay 223 as

by 6 & b

=0.
day, da, da, da,
db, db, db, db,
and all the determinants of the matrix
h . R dR R . R dR R
‘“ @, sin 7 +da, cos 7 a, sin Ve + da, cos =
[
‘ | b() &1
| db, b,
. R dR R . R dR . R
a, smz —k—+a’a.2 cos —  assin 7~'é—+a’a3 cos?
ég &3
db, b,

are equal to zero.! From these relations we can also find the condi-
tions (25) easily.

1 See, T. Nishiuchi, ¢ Oriented Circles in Non-Euclidean Space,’ loc. cit.
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Next, from the conditions (25) we can find two quantities 4 and p
such that

0z
on

+/l

+(

0¢

v

tan— Al &

tan —[l (&
(

0§ 0R
(oG )+ o) =4
of ()77) 0R
l(a ()7/)+ /x(ad—v ,évd;
Therefore, the two conditions represented by the following
equations

3

(a

$IR

297
du

Ou

) (a 0F
v
dy

) (“‘07
OR

# o0

) (¢

o

U

w)

03

)

) (b)) (5%

must be satisfied by the magnitudes that occur in the expression of the

congruence.
‘ 0%
| (a %>du +

05
( i )a’u +

0

o )a’v

05
oy ) d

(o
(6

oy
“ou

(s
(&

97
adu

07
o

i
0y

),

=0.

)dv |

The two values of du:dv are the roots of the quadratic

97 Y +(a
)a’u + (b

And the two values of 6, which correspond to one of the values
of du:dv are the roots of the equation

o

ov

du +2@

)

(_); )a’u + (a-di)dv]cos d
Ou ov

+ I:(azl)du + (aoi)dv:l sin §=o0.
7 dv
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CHAPTER. 1L
CYCLICAL SYSTEMS OF CONGRUENCES OF CIRCLES.

§ 4. ConpITION THAT A CONGRUENCE OF CIRCLES HAS AN
ORTHOGONAL SURFACE.

The Plicker line-coordinates of the tangent to any circle of a

congruence represented by

(1) r=a; cos§+ (§; cos 8+, sin 6) sin %,

(f=o0.1, 2, 3)

at a point (x) are given by

0%, 0x; |’ G j=0,1, 2, 3; &)
00 o0
Hence if every line at that point whose Pliicker line coordinates
are
xi x]' o - ' .
, (67=0, 1, 2, 3; #=7)
a’xt dg{’

perpendicular to the tangent to the circle, must satisfy the relation

L x ©n m ‘ F ¥ X X ,
|
i

(2)

:O’
dx, dx, dx, dx,

0%, Oxy 0z 0% ||
o6 08 o6 0f }

0
(3 (a—';a’x>=o.
Now, we put

U=_" 0_4:%)
T . R (00 ou

sin=—

)

0a R . da R k\. R
= —(E Fu—> cos - sin 0+ (775{[)(:05 = cos 0+ (77 W)sm x
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1 ox Ox
(@ Vr=—p (‘o(T ‘a?)
sin

k
_ da R . oz R o5 ) . R
= _(EW) cos ~- sin 0+ (77%) cos - cos 0+ (r,—a-; sin 7

o 0xr Ox\_ .. R
6=—"r (G Sr)=#sin
z

then the equation (3) will be
(5) Udu+ Vv + 0di =o.

And the necessary and sufficient condition that there is a system
of surface which cuts the circle of the congruence orthogonally, is that
the differential equation (5) shall be integrable, i. e. for all values of
u, v and 0, the condition of integrability

©) 6 "‘;f 0K]+U QK_Q_@;"J

060U
o T V[ 0u 0 ""]“o’

_On of

must satisfy. When the values of U, V7 and 6 are substituted, the
condition will be

() A+ Bsinl+ Ccosf=o0.

where

= e B )2 ) o) )]
it 5 5 (i )5 (o))

© o= R K[ () 5)- (22 ) )

G G (G Gt
C=sin oo 3 (5 )5 )- () )

ol o) Ca ) [ A (rse) o () o )
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and 4, B and C are manifestly independent of 6.
If the condition be satisfied identically, then

A == O, B = O, C: 0.
In this case, let
@ =const.

be the integral solution of the differential equation; it is the equation
of the family of surfaces cutting the circles of the congruence orthogo-
nally. If the condition is not satisfied identically, it is possible that
the two solutions of the equation (7) will satisfy (5), and thus deter-
mine two surfaces orthogonal to the circles of the congruence. Hence
we have the theorem of Ribaucour!:

Theovem. If the circle of a congrucnce ave novmal to more than two
surfaces, they form a cyclical system.

§ 5. A SeprciaL CoNGRUENCE OF CIirRCLEs WHIcH FroM

A CycrLiCAL SYSTEM.

Consider a congruence of circles, which lie in the tangent planes
to a surface and have their centers at the point of contact of the
tangent plane with the surface.

Let the surface be referred to the lines of curvature as the
parametric curves; then we can take the points (§) and () on the
tangents to the parametric curves v =const, #z=const. respectively, so that

§i=la; +n (();;” du,

7;=/1’ai+/1’%%£dv, ((=0,1, 2, 3)

where 4, ¢ and 4, ¢ are parameters.
But since

(‘l’:) =0, (‘m) =0,

E)=0m) =4,

1 See Ribaucour, ¢ Mémoire sur la théorie générale des surfaces courbées,’ Journal des
Mathématiques, Ser. 4, Vol. vii, 1891.
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we have
£ da; __

£ __%a _ % 0%
_) o G ov, ((=0,1,2,3)

" =
Jdv  dv

and
o~ 0&! _ /_
(C )=t E (;W)

(1), L o
T 2y EG Ov

0*G | I’E

Substituting these relations above to (8), we have
* o

, R pz
ey AW

A=#, EG~#/EG sin* 4,
0E ( ~0E | 0G
G2% 4 57);)}]

I G 0E 0G I
2EG ‘W(%ﬁ’f o )‘ SEC 00 \T o
=0R

— Al ool
B=#yE,

2 —OR
C=#y/ Gwéu_"
Let K be the total relative curvature of the surface, then

t E, F, G are fundamental coefficients of the first order, and
ox 6x)

2= oy aw) (Ew

But in this case, from the hypothesis, (x)=(a) and
0z Oa de 02 (0a da

=  — — . F: - — = =y —_— — ).

£ (()u ()u), (()u ()'u) °o ¢ \ow 07/)
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B0 0 -G
0o E o 109G
. P I A 2 Ou
CFEG FEG| , o G 1 0G|
2 ov
g LIE _LOE (0 o)
2 On 2 0v \ du® 077

but

2 2 2 2 2 2
(% 90)ot (2. (0Y) LI C)
0u* 07 4EG dv du 2 | 0v ou

we have

§ B (PG PE 1 0G(~0E  ,.0G
N
==l 'Y oEc T T 32 on\Cow T
/]
J

I ()E( 0E -()G)

55 0o\ "o

therefore

A =k‘-’/E§(r + # sin? ?K)

In order that the congruence of the circles may form a cyclical
system, we are to have

A=0, B=o0, C=o.
Hence, we must have

R =constant,

K=— r (constant),

léz Sinzz

1 D, I/, D/ are fundamental coefficients of the second order, and

£0% 0% &x | 1 ox 0x 0% ‘ ‘xa_xi’ﬁ Ugid
D= ou gv 02 pr o 0v ougv | | DN = 0w ov 9vt | |
VEG-F? VEG-F: VEG—-F?
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and the total Gaussian curvature! of the surface will be constant and
_r

s..0a R

£ tan = |

Therefore, we get the following result:

A congruence of circle of constant radius whick lie in the tangent
planes to a surface, whose total Gaussian curvatuve is constant and its
absolute valve is equal to the square of the curvature of the civeles, and
have their centers at the point of contact of the tangent plane with the

surface, form a cyclical system.

equal to—

§ 6. FormuLa FOR A CyCLICAL SYSTEM.

Let S be an orthogonal surface of a cyclical system and take
lines of curvature on S as parametric curves. Then through every
point (x) on S, a circle (#, »), which is orthogonal to the surface S,
passes.

Take points (X) and (¥) on the tangents to the parametric curves
v=const. and #=const. respectively, such that

(Xx)=0, (Yr)=o0, (XX)=F, (YY)=4#.

Then as the lines of curvature are parametric,
(XY)=o,

and (X), (¥), (#) will be the vertices of a moving self-conjugate
triangle respectively.

Again, let i}—w be the angle between the parametric curve v=

const. and the plane of the circle, and (z) the coordinates of the point
of intersection of the line joining the points (X) and (V) with the
plane of the circle, then

(9) g;=X;cos w+ V;sin o, (z2)=7.
(f=o, 1, 2, 3).

But the point (2) will be the absolute pole of the tangent to the

1 See Coolidge, Non-Euclidean Geometry, p. 204.
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circle at the point (x), the coordinates of the center of the circle will
be given by

(10) @;= x; COS §+(}Q cos w+ ¥ sin ) sin 5,

(i=0, 1, 2, 3)

Next, let (Z) be the absolute pole of the tangent plane to the
surface S at the point (), the point (Z) will lie on the plane of the
circle and the line joining the points (x) and (Z) will be the tangent
to the circle at the point (x), and

(xZ)=o0.
Hence, we can put
(11) §;=(X; cos w+ Y, sin ®) cos %——ri sin %,
7/11=Zi,
(f=o0, 1, 2, 3).
But
k ox, bk Ox;
X;;=——_—_— h"’, V=% _ ¥7"1,,,
Vv E Ou VG o
9Z,_ v on _ vVE
(12) M pan T % é—t;*; !
% E
07, Vv G .
Tov = 5 Yo (1=0, 1, 2, 3)
Atan ZL
~
where ! and ! are the curvatures of the normal sections
Atan 7L Atan 22

% %
through the tangents to the lines of curvature z=const. and z=const.
respectively, and
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EY V3 o 0

9% 5 g 0

ou

DZ=-1_ . -
EG| ox; 0 0 G , (f=0, 1, 2, 3)

ov

0x _p 1 0E .1 0E

02 2 Ou 2 dv

we have

Fr, _ 1 0E ox

1 J0E 1 0E ox, _E DZ,
02 2E Ou Ou

2G 0y v B F

(f=0, 1, 2, 3).
and similarly

(13) ()21’1; I 0E 0}.’5 I aG 01{

ooy 2E 0v ou  2G ou ov’

O 1 0G 0x 1 G 0xm G D'Z
0v* 2E ou o0u  2G dv ov B g
(i=o, 1, 2, 3).

Hence we have

oX, __ % WE E VE

—_ == —_— Y,;—1 Xi— Z‘i)
Oxn Vv'G v £ Etan 72
]
oY, & WE
(9 5 =yF o
X, _ & WGy
v VE ou 7
(—)111: =—i__ ().I/G/Y;;'—-I/Gl‘i— .I/G Zir
ov V' E Ou ¥ ktan%

(i=o0, 1, 2, 3).

From the results above we have
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( da) k{ /E cos o+ OR}

O 0
oa 0R
(5 d'v) {1/ G sin @ +T}
oa Ry Ecosw
(15) (77 o —/ksin 5- o
ta n7

( 04) kstVGsmw,
ov £ tan/L
Y

( 05) kCOR/Ecosa),
ou V4 tanl2
¥

(ﬂ_;) éCOSRVGsmw’
dv k tan1
an?

Hence, the differential equation (5) will be

[V Ecosw o OR}.
hﬁ_[{ R +erfﬁﬂ?1‘$“0

V' E cos w
16 + (1+ 0 ]du
"o s VTRt e
£
v/ G sin w 1 0R } .
+[ 7 +R’(I+R’2) o sin ¢/
VG dno —(1+ cos 0)]du
- tant ~/1+R
%
where
R'=tan %

255
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R, [ = OR\ ..
ktan—'é—dﬁ—[{VEcosw+W}sm0

(x7) +M sin —R—(I + cos 0):Ia’u
tan’2 £

£

+[{1/?sin w+di} sin 0+1—/—G—S@—w sin%([ + cos 0)]a’z/.

o tan’t

£

Therefore, as remarked before, if there are three surfaces orthogo-
nal to a congruence of circles, the congruence form a cyclical system.

The conditions of integrability will be reduced to the following
two equations :

i_(/?sinw) ] Vfcosw\=ol

O tani; dv tfam»fE }

£

(18) _0_( Irl 1/55511“’)___0_( I Vfcos w)

ou R v ¥ R
tanz— tan—g tan % tan—'é—
+1{EGsinwcosw ( 11 )=o.
~ tanzﬁ tan 72 tan 7L
Y £ k

Hence, if the surface S be a sphere or a plane, the second
equation of the conditions will be reduced to the first. And we have
incidentally the following theorem :

Theorem. A congrnence of circles orthogonal to a sphere (or a plane)
and to any other surface constitutes a cyclical system.

Next, we assume that the surface S is not the sphere, then from
the relation

i(/? 1 G

du tan %— tan’/;2 u
(19) - _
1( VE )__ 1 Oy E!
v A n dv
tan? t n?

1 These relations can be obtained from the equation of Gauss (13) essily.



Congruence of Circles in Non-Euclidean Space. 257

and the conditions (18), we have

0 tan % R dw I ()-l/E— .
F—g, =Ftan7 cot ‘"('a'z? /G —o{)‘VE cos @
(20)
R .
Otan — Val
Y] R dw r 0y —
y o =—ktan7tanw —07/_+7£=Z o )—-/Gsinw.

From the first condition of (18) the expression

(21) v E cos wdu+1/7@<sjig @
tan—k— tan—é—

is the total differential. If we take the unknown complementary func-
tion ¢, then we can put

(22) VEcsw __k 0 VGsna_ _ & o)
tan% ¢ ou tan% ¢ dv

and the second condition will be reduced to the following Laplace
_equation by the aid of the relation (19):

(23) ¢ _OologyE of  Ologv/'G o
3 p ov ou ; a

Conversely, if ¢ be a solution of this differential equation, then
the corresponding cyclical system of circles can be given by the
following equations :

1 B (Ologgb)z_*_/é'z(dlogglz)z’

LR E Oxn G v
tan®-—-
%
(24) '
R
FROE 510 ¢

CoOs w= — 'l/AE‘ ()u E]



258 Hidetoshi Kashiwags.

R
) N k tan jé; 9 log ¢
sin W= — 1/G d'y .
Let
g=(a)+C

where (@) is the coordinate of a fixed point and C constant, then
0% %
— = d—
0udv ( dudv)
=dlog1/F(a2{)+ 010g/§(ad_x>.
ov O ou ov

Hence
g=(ax)+C

is a particular solution of the Laplace equation (23) and the corres-
ponding cyclical system of circles is orthogonal to the surface S and
a sphere whose equation is

(axp=C".

This is the fact which we discussed before. When ('=0, the
sphere will be a plane.

§ 7. Tue THEOREM OF RIBAUCOUR.

Now, we consider a family of surfaces of a triply orthogonal

system
x,,=f,,(u, 7/))
(25) 5=8(v, w),

xi=¢i(wy u)’ (i:O, I) 2) 3)}

whose lines of curvature are parametrie curves, and the system of the
osculating circles of the parametric curves @ of an orthogonal system
at their point of intersection with a surface w=const. (x;=f(%, v)).

Then the geodesic curvature L of the osculating circles on the
g

surface w=const. is given by
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1 sin w? '
Po &
% tan %
(26) ‘
__ 1 WH
vVGH ov '’
and
cosw 1 0/H
(27) von X VEH ou
£
where

_(90x ox _ (9% ox _(0x ox
=\, @7)' G"(FJW)’ H‘(W“a‘za)'

The coordinates of the pole of the tangent plane to the surface
w=const. at that point are

pmpe D SO im0y, 2, 3)
Vv EG 07, 0 dv | r T Ih
)=#.
But since
( 0x_ Bﬁd_x)_(ﬂza_X) o
dw) (Ou ow v ow/)
we get

where 4 is a parameter.
And therefore, we have

(28) yi=1/ﬁ o (f=0, 1, 2, 3)

and

1 See Coolidge, Non-Euclidean Geometry, p. 188, 208.
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/_ 0x )_

(29) D “(y udv =0
D,,_( ) WG WG

07* 1/]17 dw

Hence

I 1 0y/G
/étanﬁ-__VGf[17 de
)

(30) -
1 WE
ktan!l_— VEH Ow

)

And the equations of Lamé' will be

OQVF= 1 G WE 1 0WH WE
dwow G 0w v TyH o ow

b

G DVE__L W WG, + WE wH
Y owou T F  ou Y Tow ou

BH_ L WEWE, WG WE
ouor  /E Ov on VG Ou dov

) 4ty Aoy HE

ou\yE ou VG o H ow
0 oWH\, 0 G 01/[{ /G _
(32) 07/(-,/10 ov >+5—<]/IAI 0w> o
0 ( 1 WWE NH 01/H NE _
FJ(,TF} ()w_)+ dlu e Tou ) R

When these values which can be got from (26), (27) and (30)
are substituted in the equation (18), the first vanishes identically, like-
wise, the second, in consequence of the equations (31) and (32). Hence
we get the following theorem of Ribaucour:?

1 See Lamé, Lecons sur les coordonnées curvilignes et leurs diverses applications, p.

73-79, 1859.
2 See Ribaucour, Comptes Rendus, Vol. LXX, p. 330-333, 1870.
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Theovem. Given a family of surfaces of a triply orthogonal system
and their orthogonal trajectories ; the osculating civcles to the latter at
their point of meeting with any surface of the family form a cyclical
system.

§ 8. A SpuiErRE AND A CycrLicAL SySTEM.

Let a sphere

RI

(ex)*=(aa)(xx) cos’—k—

be orthogonal to a cyclical system of circles, and take the lines of
curvature on the sphere (i. e. a system of great circles which are .
perpendicular to each other) as the parametric curves. Then the

coordinates of the center of the circles of the cyclical system are given
by (see § 6, (10))

a;=x; cos—jg + (X cos w+ ¥} sin ) sin £

k £
(f=o0, 1, 2, 3).

As a tangent plane to a sphere is perpendicular to the diameter
through the point of contact, the coordinates of the center of the sphere
will be given by

!

/
Z +Z; sin»R— (i=0,1, 2, 3)

a;=x; coS 7
where (%) is the coordinates of the point of contact, and (Z) that of
the absolute pole of the tangent plane.

Hence, we get

(a@)=F# cos i:— cos %,
and since the point (Z) i. e. the pole of the tangent plane to the
sphere, lies on the plane of the circle, the center of the sphere (a)
must lie on the planes of the circles.
From these results, we derive the following theorem :
Theorem. If a sphere be orthogonal to a cyclical system, then the
planes of the circles of the system pass through the cenler of the sphere
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and the sphere is orthogonal to every main spheve of the circles of the
system.

Conversely, we can prove the following theorem easily :

Theorem. If the planes of the circles of a cyclical system pass
through a fixed point, then the civeles ave cut orthogonally be a spheve
with its center at that point.

These properties of the circles and the spheres have been discussed
already by Prof. T. Nishiuchi.!

In conclusion the author wishes to express his sincere thanks to
Prof. T. Nishiuchi for his kind guidance and encouraging remarks.

1 Sce T. Nishiuchi, ¢ Oriented Circles in Non-Euclidean Space,” loc. cit. .



