# On the Congruence Conjugate to a Surface. 

By

Jôyô Kanitani.

(Received February 10, 1922.)

## Introduction.

Darboux has proved the following theorem. ${ }^{1}$
When, passing through all the straight lines in a fixed plane, tangent planes to two surfaces $(S),\left(S_{1}\right)$ are drawn, the straight lines joining the contact points form a congruence whose developables cut both surfaces $(S)$ and $\left(S_{1}\right)$ in a conjugate net.

Let us now suppose that a surface ( $S$ ) with a conjugate net on it is given and consider the surface $\left(S_{1}\right)$ which is in the following relation to $(S)$.
$I^{\circ}$ There is a congruence whose developables cut $(S)$ in given conjugate net and ( $S_{1}$ ) also in a conjugate net.
$2^{\circ}$ Intersections of the tangent planes of $(S)$ and $\left(S_{1}\right)$ at the corresponding points describe a plane.

We shall say that such surfaces as $\left(S_{1}\right)$ are in the relation $(D)$ to ( $S$ ).

We shall determine all the surfaces which are in the relation ( $D$ ) to ( $S$ ) and investigate their geometrical properties.

We assume the given surfaces is not developable surface and take as the parameter-curves the given conjugate net on $(S)$.

Green has proved that in this case the homogeneous coordinates $(x)$ of the points on $(S)$ are a fundamental system of the solutions of a

[^0]completely integrable system of partial differential equations of the second order. ${ }^{1}$
\[

\left.$$
\begin{array}{rr}
\frac{\partial^{2} x}{\partial u^{2}}=a \frac{\partial^{2} x}{\partial v^{2}}+b \frac{\partial x}{\partial u}+c \frac{\partial x}{\partial v}+d x  \tag{I}\\
\frac{\partial^{2} x}{\partial u \partial v}= & b_{1} \frac{\partial x}{\partial u}+c_{1} \frac{\partial x}{\partial v}+d_{1} x
\end{array}
$$\right\}
\]

where $a, b, c, d, b_{1}, c_{2}$ and $d_{1}$ are functions of $u, v$.
We shall call, hereafter, (I) the equations of the given surface.
The higher derivatives of $(x)$ can be expressed by linear combinations of $\frac{\partial^{2} x}{\partial v^{2}}, \frac{\partial x}{\partial u}, \frac{\partial x}{\partial v}$ and $x$ by (I)
In particular, we have

$$
\begin{aligned}
& \frac{\partial^{3} x}{\partial u \partial v^{2}}=a_{2} \frac{\partial^{2} x}{\partial v^{2}}+b_{2} \frac{\partial x}{\partial u}+c_{2} \frac{\partial x}{\partial v}+d_{2} x \\
& \frac{\partial^{3} x}{\partial v^{3}}=a_{3} \frac{\partial^{2} x}{\partial v^{2}}+b_{3} \frac{\partial x}{\partial \tau}+c_{3} \frac{\partial x}{\partial v}+d_{3} x
\end{aligned}
$$

where

$$
\begin{aligned}
& a_{2}=c_{1}, \quad b_{2}=b_{1}^{2}+\frac{\partial b_{1}}{\partial v}, \quad c_{2}=b_{1} c_{1}+\frac{\partial c_{1}}{\partial v}+d_{1} \\
& d_{2}=b_{1} d_{1}+\frac{\partial d_{1}}{\partial v}, \quad a_{3}=\frac{1}{a}\left(a b_{1}-c-\frac{\partial a}{\partial v}\right), \quad b_{3}=\frac{1}{a}\left(b_{1} c_{1}+\frac{\partial b_{1}}{\partial u}-\frac{\partial b}{\partial v}+a_{1}\right) \\
& c_{3}=\frac{1}{a}\left\{b_{1} c+c_{1}\left(c_{1}-b\right)+\frac{\partial c_{1}}{\partial u}-\frac{\partial c}{\partial v}-d\right\} \\
& d_{3}=\frac{1}{a}\left\{b_{1} d+d_{1}\left(c_{1}-b\right)+\frac{\partial d_{1}}{\partial u}-\frac{\partial d}{\partial v}\right)
\end{aligned}
$$

The functions $a, b, c, d, b_{1}, c_{1}, d_{1}$, are restricted by conditions of the integrability one of which is

$$
\frac{\partial}{\partial v}\left(b+2 c_{1}\right)=\frac{\partial}{\partial u}\left(a_{3}+b_{1}\right) .
$$

Hence we can find a function $p$ such that

[^1]$$
b+2 c_{1}=\frac{\partial p}{\partial u}, \quad a_{1}+b_{1}=\frac{\partial p}{\partial v}
$$

As (x) are the fundamental system of solutions of (I), the general solution of (I) is

$$
x=C_{1} x_{1}+C_{2} x_{2}+C_{3} x_{3}+C_{4} x_{4}
$$

where $C_{1}, C_{2}, C_{3}, C_{4}$, are arbitarily constants.
Therefore we know that all the surfaces whose equation are (I), are the projective transforms of $(S)$.

Denote by $B$ and $C$ the functions

$$
\begin{aligned}
& B=b_{1}-\frac{1}{4} \frac{\partial p}{\partial v}-\frac{3}{8 a} \frac{\partial a}{\partial v} \\
& C=c_{1}-\frac{1}{4} \frac{\partial p}{\partial v}+\frac{1}{8 a} \frac{\rho a}{\partial u}
\end{aligned}
$$

Then the functions $a, B$ and $C$ are invariant of the transformation

$$
\bar{x}=\lambda\left(u_{1} v\right) x .
$$

which do not alter, evidently, the surface nor the parameter-curves.
§ I. A congruence $\Gamma$ whose developables correspond to given conjugate net.

Consider two points $(\mu),(\sigma)$ such that

$$
\begin{aligned}
& (\rho)=\left(\frac{\partial x}{\partial u}\right)+\mu(x) \\
& (\sigma)=\left(\frac{\partial x}{\partial v}\right)+\lambda(x)
\end{aligned}
$$

The points ( $\rho$ ), ( $\sigma$ ) evidently lie on the tangent lines at $(x)$ of the curves $C_{u}$ ( $v=$ const.), and $C_{v}$ ( $u=$ const.) respectively which meet at ( $x$ ).

When $(x)$ moves on the given surface, the lines $(\rho)(\sigma)$ form a congruence which is called by Green conguence $\Gamma$.

If the lines $\left(\sigma^{\prime}\right)(\sigma)$ form a developable surface when $(x)$ moves along a curve $C_{u}$, the four point $\left(\frac{\partial \rho}{\partial u}\right),\left(\frac{\partial \sigma}{\partial u}\right),(\rho)$ and $(\sigma)$ must lie in a plane.

But we have

$$
\begin{aligned}
& \left(\frac{\partial \rho}{\partial u}\right)=\left(\frac{\partial^{2} x}{\partial u^{2}}\right)+u\left(\frac{\partial x}{\partial u}\right)+\frac{\partial \mu}{\partial u}(x), \\
& \left(\frac{\partial \sigma}{\partial u}\right)=\quad\left(b_{1}+\lambda\right)\left(\frac{\partial x}{\partial u}\right)+c_{1}\left(\frac{\partial x}{\partial v}\right)+\left(d_{1}+\frac{\partial \lambda}{\partial v}\right)(x) .
\end{aligned}
$$

Hence the points $\left(\frac{\partial \sigma}{\partial u}\right),(\rho),(\sigma)$ are in the tangent plane at $(x)$, while the point $\left(\frac{\partial \rho}{\partial u}\right)$ is not on the tangent plane, for the point $\left(\frac{\partial^{2} x}{\partial u^{2}}\right)$ does not lie in the tangent plane unless the surface $(S)$ is developable.

Therefore if the points $\left(\frac{\partial \rho}{\partial u}\right),\left(\frac{\partial \sigma}{\partial u}\right),(\rho),(\sigma)$ lie in a plane, the three points $\left(\frac{\partial \sigma}{\partial u}\right),(\rho),(\sigma)$ must lie in a straight line, that is, $\left(\frac{\partial \sigma}{\partial u}\right)$ must be of the form

$$
\omega_{1}(\rho)+\omega_{2}(\sigma)
$$

Eliminating $\omega_{1}$ and $\omega_{2}$ we have

$$
\frac{\partial \lambda}{\partial u}-\lambda \mu-c_{1} \lambda-b_{1} \mu+d_{1}=0
$$

Similarly if the lines $(\rho)(\sigma)$ describe a developable surface when ( $x$ ) moves along a curve $C_{v}$, we must have

$$
\frac{\partial \mu}{\partial v}-\lambda \mu-c_{1} \lambda-b_{1} \mu+d_{1}=0
$$

Hence we know that the developables of the congruence formed by lines $(\rho)(\sigma)$ correspond to the given conjugate net, if, and only if

$$
\begin{align*}
\frac{\partial \lambda}{\partial u} & =\frac{\partial u}{\partial v} \\
\frac{\partial^{2} \theta}{\partial u \partial \partial v} & =b_{1} \frac{\partial \theta}{\partial u}+c_{1} \frac{\partial \theta}{\partial v}+d_{1} \theta \tag{II}
\end{align*}
$$

where $\theta$ is a function such that

$$
\lambda=-\frac{\mathbf{I}}{\theta} \frac{\partial \theta}{\partial v}, \quad \mu=-\frac{\mathbf{I}}{\theta} \frac{\partial \theta}{\partial u} .
$$

Hence the points ( $\rho$ ), ( $\sigma$ ) which satisfy the above conditions may be expressed in the form :

$$
\left.\begin{array}{l}
(\rho)=\theta\left(\frac{\partial x}{\partial u}\right)-\frac{\partial \theta}{\partial u}(x)  \tag{I}\\
(\sigma)=\theta\left(\frac{\partial x}{\partial v}\right)-\frac{\partial \theta}{\partial v}(x)
\end{array}\right\}
$$

where $\theta$ is a solution of the partial differential equation of the second order (II).

In this case the points $(\rho),(\sigma)$ are focal points, for we have by differentiation

$$
\begin{aligned}
& \left(\frac{\partial \rho}{\partial v}\right)=\left(b_{1}+\frac{\mathbf{1}}{\theta} \frac{\partial \theta}{\partial v}\right)(\rho)+\left(c_{1}-\frac{\mathrm{I}}{\theta} \frac{\partial \theta}{\partial u}\right)(\sigma) \\
& \left(\frac{\partial \sigma}{\partial u}\right)=\left(b_{1}-\frac{\mathrm{I}}{\theta} \frac{\partial \theta}{\partial v}\right)(\rho)+\left(c_{1}+\frac{\mathbf{1}}{\theta} \frac{\partial \theta}{\partial u}\right)(\sigma)
\end{aligned}
$$

We shall nextly find the condition that the line $(\rho)(\sigma)$ given by (I) may describe a plane when $(x)$ moves on the given surface $(S)$.

If the lines $(\rho)(\sigma)$ describe a plane the four points $(\sigma),(\rho)$, $\left(\frac{\partial \sigma}{\partial v}\right),\left(\frac{\partial \rho}{\partial u}\right)$ must necessarily lie in a plane.

But we have

$$
\begin{aligned}
& \left(\frac{\partial \sigma}{\partial v}\right)=\theta\left(\frac{\dot{\partial}^{2} x}{\partial v^{2}}\right)-\frac{\partial^{2} \theta}{\partial v^{2}}(x) \\
& \left(\frac{\partial \rho}{\partial u}\right)=a \theta\left(\frac{\partial^{2} x}{\partial v^{2}}\right)+b \theta\left(\frac{\partial x}{\partial u}\right)+c \theta \frac{\partial x}{\partial v}+\left(d \theta-\frac{\partial^{2} \theta}{\partial u^{2}}\right)(x)
\end{aligned}
$$

Therefore if the points $(\sigma),(\rho),\left(\frac{\partial \sigma}{\partial v}\right),\left(\frac{\partial \rho}{\partial u}\right)$ lie in a plane we must have

$$
\left|\begin{array}{cccc}
o & \theta & o & -\frac{\partial \theta}{\partial u} \\
0 & 0 & \theta & -\frac{\partial \theta}{\partial v} \\
\theta & 0 & o & -\frac{\partial^{2} \theta}{\partial v^{2}} \\
a \theta & b \theta & c \theta & d \theta-\frac{\partial^{2} \theta}{\partial u^{2}}
\end{array}\right|=0
$$

or

$$
\frac{\partial^{2} \theta}{\partial u}=a \frac{\partial^{2} \theta}{\partial v^{2}}+b \frac{\partial \theta}{\partial u}+c \frac{\partial \theta}{\partial v}+d \theta
$$

that is, $\theta$ must be a solution of the system of simultaneous partial differential equations (I).

The condition is sufficient
For $\theta$ being a solution of (I), is of the form

$$
\theta=C_{1} x_{1}+C_{2} x_{2}+C_{3} x_{3}+C_{4} x_{4} .
$$

Substituting this value of $\theta$ in (I) we know that both ( $\rho$ ) and ( $\sigma$ ) satisfy the equation

$$
C_{1} z_{1}+C_{2} z_{2}+C_{3} z_{3}+C_{4} z_{4}=0
$$

that is, the line $(\rho)(\sigma)$ describes a plane
§ 2. Congruences conjugate to the surface.
As the point $\left(\frac{\partial^{2} x}{\partial v^{2}}\right)$ is out of the tangent plane at $(x)$, any point can be expressen in the form

$$
\omega_{1}\left(\frac{\partial^{2} x}{\partial v^{2}}\right)+\omega_{2}\left(\frac{\partial x}{\partial u}\right)+\omega_{3}\left(\frac{\partial x}{\partial v}\right)+\omega_{*}(x) .
$$

Therefore any line passing through the point $(x)$ and is not on the tangent plane may be regarded as the line which passes through the point $(x)$ and through the point $(z)$ which is of the form

$$
(z)=\left(\frac{\partial^{2} x}{\partial v^{2}}\right)+\lambda\left(\frac{\partial \lambda}{\partial u}\right)+\mu\left(\frac{\partial x}{\partial v}\right) .
$$

If $\lambda$ and $\mu$ are given as the functions of $u, v$ the lines $(x)(z)$ form a congruence when the point $(x)$ moves on the surface $(S)$.

Now we shall determine $\lambda$ and $\mu$ so that the developable of the congruence cut the surface in the curves $C_{u}$ and $C_{v}$.

If the lines $(x)(z)$ form a develpable when $(x)$ moves along the curves $C_{u}$ four points $(x),(z),\left(\frac{\partial x}{\partial u}\right),\left(\frac{\partial z}{\partial u}\right)$ must lie in a plane, that is, $\left(\frac{\partial z}{\partial u}\right)$ must be of the form

$$
a(z)+\beta\left(\frac{\partial x}{\partial u}\right)+\gamma(x),
$$

or of the form

$$
\alpha\left(\frac{\partial^{2} x}{\partial v^{2}}\right)+\beta^{\prime}\left(\frac{\partial x}{\partial u}\right)+\alpha \mu\left(\frac{\partial x}{\partial v}\right)+\gamma(x) .
$$

But we have by differentiation

$$
\begin{aligned}
\left(\frac{\partial z}{\partial u}\right)=\left(a \lambda+a_{2}\right) \frac{\partial^{2} x}{\partial v^{2}} & +\left(b \lambda+b_{1} \mu+b_{2}+\frac{\partial \lambda}{\partial u}\right)\left(\frac{\partial x}{\partial u}\right) \\
& +\left(c \lambda+c_{1} \mu+c_{2}+\frac{\partial \mu}{\partial u}\right)\left(\frac{\partial x}{\partial v}\right) \\
& +\left(d \lambda+d_{1} \mu+d_{2}\right)(x) .
\end{aligned}
$$

Therefore we must have

$$
\left(a \lambda+a_{2}\right) \mu=c \lambda+c_{1} \mu+c_{2}+\frac{\partial \mu}{\partial u}
$$

or

$$
\frac{\partial \mu}{\partial u}-a \lambda u-\lambda c+c_{2}=0
$$

Similarly, if the lines $(x)(z)$ form a developable surface when $(x)$ moves along a curve $C_{v}$, we must have

$$
\frac{\partial \lambda}{\partial v}-\lambda u+\lambda\left(b_{1}-a_{3}\right)+b_{3}=0 .
$$

Therefore, if the developables of the congruence formed by the lines $(x)(z)$ cut the surface $(S)$ in curves $C_{u}$ and $C_{v}$, we must have

$$
\begin{aligned}
& \frac{\partial \mu}{\partial u}-a \lambda u+\lambda c+c_{2}=0 \\
& \frac{\partial \lambda}{\partial v}-\lambda u+\lambda\left(b_{1}-a_{3}\right)+b_{3}=0 .
\end{aligned}
$$

Multiplying the second by-a and adding, we have

$$
\frac{\partial}{\partial u}\left(u-b_{1}\right)=\frac{\partial}{\partial v}\left(a \lambda-b-c_{1}\right) .
$$

But there is the relation

$$
-\frac{\partial}{\partial v}\left(b+2 c_{1}\right)=\frac{\partial}{\partial u}\left(a_{3}+b_{1}\right)
$$

Hence we have

$$
\frac{\partial}{\partial u}\left(u+a_{3}\right)=\frac{\partial}{\partial v}\left(a \lambda+c_{1}\right) .
$$

This shows that there exists a function $\theta$ of $u, v$ such that

$$
\begin{aligned}
& a \lambda+c_{1}=-\frac{\mathrm{I}}{\theta} \frac{\partial \theta}{\partial u} \\
& u+a_{3}=-\frac{\mathrm{I}}{\theta} \frac{\partial \theta}{\partial v} .
\end{aligned}
$$

Substituting these values of $\lambda, u$ in any one of (2), we have

$$
\begin{align*}
\frac{\dot{\partial}^{2} \theta}{\partial u \partial v}= & -\left(b_{1}-\frac{\mathrm{I}}{a} \frac{\partial a}{\partial v}\right) \frac{\partial \theta}{\partial u}-c_{1} \frac{\partial \theta}{\partial v} \\
& +\left(d_{1}+\frac{\partial b_{1}}{\partial u}+\frac{\partial c_{1}}{\partial v}-\frac{\partial^{2} p}{\partial u \partial v}+\frac{c_{1}}{a} \frac{\partial a}{\partial v}\right) \theta \tag{III}
\end{align*}
$$

Hence we know that any congruence whose developables cut the surfaces $(S)$ in the system of the curves $C_{u}$ and $C_{v}$ is that which is formed by the lines which pass through the point $(x)$ and through the point (z) such that

$$
\begin{equation*}
(z)=\theta\left(\frac{\partial^{2} x}{\partial v^{2}}\right)-\frac{1}{a}\left(\frac{\partial \theta}{\partial u}+c_{1} \theta\right)\left(\frac{\partial x}{\partial u}\right)-\left(\frac{\partial \theta}{\partial v}+a_{3} \theta\right)\left(\frac{\partial x}{\partial v}\right) \cdots \tag{3}
\end{equation*}
$$

where $\theta$ is a solution of the partial differential equation of the second order (III).
§ 3. Focal surfaces of the congruences conjugate to the given surface.

By differentiation of ( $z$ ) given by (3), we know in virtue of (III)

$$
\left.\begin{array}{l}
\left(\frac{\partial z}{\partial u}\right)=\xi\left(\frac{\partial x}{\partial u}\right)+\eta(x)  \tag{4}\\
\left(\frac{\partial z}{\partial v}\right)=\xi^{\prime}\left(\frac{\partial x}{\partial v}\right)+\eta^{\prime}(x) .
\end{array}\right\}
$$

where

$$
\begin{aligned}
\xi=-\frac{\mathrm{I}}{a} \frac{\partial^{2} \theta}{\partial u^{2}}-\frac{\mathrm{I}}{a}\left(b+c_{1}\right. & \left.-\frac{\mathrm{I}}{a} \frac{\partial a}{\partial u}\right) \frac{\partial \theta}{\partial u}-b_{1} \frac{\partial \theta}{\partial v} \\
& +\left(b_{2}-\frac{b c_{1}}{a}-\frac{\partial}{\partial u}\left(\frac{c_{1}}{a}\right)-b_{1} a_{3}\right) \theta
\end{aligned}
$$

$$
\begin{aligned}
\xi^{\prime} & =-\frac{\partial^{2} \theta}{\partial v^{2}}-\frac{c_{1}}{a} \frac{\partial \theta}{\partial u}-a_{3} \frac{\partial \theta}{\partial v}+\left(c_{3}-\frac{c_{1}^{2}}{a}-\frac{\partial a_{3}}{\partial v}\right) \theta \\
\eta & =-\frac{d}{a} \frac{\partial \theta}{\partial u}-d_{1}+\frac{\partial \theta}{\partial v}+\left(d_{2}-\frac{c_{1} d}{a}-d_{1} a_{3}\right) \theta \\
\eta^{\prime} & =-\frac{d_{1}}{a} \frac{\partial \theta}{\partial u}+\left(d_{3}-\frac{d_{1} c_{1}}{a}\right) \theta
\end{aligned}
$$

Eliminating (z) from (4), we have

$$
\left.\begin{array}{l}
-\frac{\partial \xi}{\partial v}+\eta^{\prime}=b_{1}\left(\xi-\xi^{\prime}\right) \\
+\frac{\partial \xi}{\partial u}-\eta=c_{1}\left(\xi-\xi^{\prime}\right)  \tag{5}\\
\frac{\partial \eta}{\partial v}-\frac{\partial \eta^{\prime}}{\partial u}=d_{1}\left(\xi-\xi^{\prime}\right)
\end{array}\right\} .
$$

If we put

$$
\zeta=\xi-\xi \prime
$$

We know from (5)

$$
\begin{equation*}
\frac{\partial^{2} \zeta}{\partial u \partial v}=-b_{1} \frac{\partial \zeta}{\partial u}-c_{1} \frac{\partial \zeta}{\partial v}+\left(d_{1}-\frac{\partial b_{1}}{\partial u}-\frac{\partial c_{1}}{\partial v}\right) \zeta . \tag{6}
\end{equation*}
$$

that is, $\zeta$ is a solution of the partial differential equation adjointed to (II).

Any point $(\rho)$ on the line $(x)(z)$ is given by the equation

$$
(\rho)=(z)+\lambda(x) .
$$

From (4) we have

$$
\begin{aligned}
& \left(\frac{\partial \rho}{\partial u}\right)=(\xi+\lambda)\left(\frac{\partial x}{\partial u}\right)+\left(\frac{\partial \lambda}{\partial u}+\eta\right)(x) \\
& \left(\frac{\partial \rho}{\partial v}\right)=\left(\xi^{\prime}+\lambda\right)\left(\frac{\partial x}{\partial v}\right)+\left(\frac{\partial \lambda}{\partial v}+\gamma^{\prime}\right)(x)
\end{aligned}
$$

If the point $(\rho)$ is a focal point on the line $(x)(z)$, one of the $\left(\frac{\partial \rho}{\partial u}\right)$ and $\left(\frac{\partial \rho}{\partial v}\right)$ must be of the form

$$
\alpha(x)+\beta(z)
$$

or

$$
\lambda=\xi \quad \text { or } \lambda=\xi^{\prime}
$$

Hence two focal points on the line $(x)(z)$ are given by

$$
\begin{aligned}
(\omega) & =(z)-\xi(x) \\
(\nu) & =(z)-\xi^{\prime}(x) .
\end{aligned}
$$

From (4) and (5) we have

$$
\begin{align*}
& \left(\frac{\partial \omega}{\partial u}\right)=-\left(\frac{\partial \zeta}{\partial u}+c_{1} \zeta\right)(x) \\
& \left(\frac{\partial \omega}{\partial v}\right)=-\zeta\left(\frac{\partial x}{\partial v}\right)+b_{1} \zeta(x)  \tag{7}\\
& \left(\frac{\partial \nu}{\partial \omega}\right)=\zeta \frac{\partial x}{\partial \omega}-c_{1} \zeta(x) \\
& \left(\frac{\partial \nu}{\partial v}\right)=\left(\frac{\partial \zeta}{\partial v}+b_{1} \zeta\right)(x)
\end{align*}
$$

The function $\zeta$ is a function of $\theta$ and its derivation to the second order with respect to $u$ and also to $v$ and satisfies a partial differential equation of the second order (6). Therefore we know that the equation $\zeta=0$ is satisfied by four particular solutions of (II). ${ }^{1}$

If we take one of those solitions, we have

$$
\zeta=0 ; \quad \xi=\xi^{\prime},
$$

that is,

$$
\begin{gathered}
\omega=\nu \\
\frac{\partial \omega}{\partial u}=\frac{\partial \omega}{\partial v}=\frac{\partial \nu}{\partial u}=\frac{\partial \nu}{\partial v}=0 .
\end{gathered}
$$

Hence $\omega$ is independent of $u$ and $v$, that is; the lines of the congruences corresponding to these solutions pass through a fixed point.

Returning to the general case eliminate ( $x$ ) from the last two equations of ( 7 ) then we know $\nu$ is a solution of the partial differential equation of the second order

[^2]\[

$$
\begin{aligned}
\frac{\partial^{2} \theta}{\partial u \partial v}= & \left(b_{1}+\frac{1}{\zeta} \frac{\partial \zeta}{\partial v}\right) \frac{\partial \theta}{\partial u} \\
& +\left\{c_{1}+\frac{\mathrm{I}}{b_{1} \zeta+\frac{\partial \zeta}{\partial v}} \frac{\partial}{\partial u}\left(b_{1} \zeta+\frac{\partial \zeta}{\partial v}\right)\right\} \frac{\partial \theta}{\partial v} \ldots \ldots \ldots \text { (IV) }
\end{aligned}
$$
\]

Reciprocally, if we take any solution $\theta$ of (IV), the function $\theta$ given by

$$
\begin{equation*}
\theta=\frac{\mathrm{I}}{b_{1} \zeta+\frac{\partial \zeta}{\partial v}} \frac{\partial \theta}{\partial v} \tag{V}
\end{equation*}
$$

is a solution of (II).
For differentiating the equation

$$
\frac{\partial \theta}{\partial v}=\theta\left(\dot{b}_{1} \zeta+\frac{\partial \zeta}{\partial v}\right)
$$

by $u$, we have by (IV).

$$
\begin{equation*}
\frac{\partial \theta}{\partial u}=\frac{1}{\zeta} \frac{\partial \theta}{\partial u}+c_{1} \theta \tag{8}
\end{equation*}
$$

Nextly differntiating this equation by $v$, we have by (V), (6) and (8)

$$
\frac{\partial^{2} \theta}{\partial u v v}=b_{1} \frac{\partial \theta}{\partial u}+c_{1} \frac{\partial \theta}{\partial v}+d_{1} \theta .
$$

From (V) and (9) we know that there are between $\theta$ and $\theta$ the relation

$$
\left.\begin{array}{l}
\frac{\partial \theta}{\partial u}=\zeta\left(\frac{\partial \theta}{\partial u}-c_{1} \theta\right)  \tag{VI}\\
\frac{\partial \theta}{\partial v}=\theta\left(\frac{\partial \zeta}{\partial v}+b_{1} \zeta\right)
\end{array}\right\}
$$



In the above discussion we have assumed

$$
\frac{\partial \zeta}{\partial v}+b_{1} \zeta \neq 0
$$

But, if

$$
\frac{\partial \zeta}{\partial v}+b \zeta=o
$$

combining this with

$$
o=\frac{\partial}{\partial u}\left(\frac{\partial \zeta}{\partial v}+b_{1} \zeta\right)=-c_{1} \frac{\partial \zeta}{\partial v}+\left(d_{1}-\frac{\partial c_{1}}{\partial v}\right) \zeta .
$$

we have

$$
d_{1}+b_{1} c_{1}-\frac{\partial c_{1}}{\partial v}=o
$$

In this case Darboux-Laplace transform of ( $S$ ) must be reduced to a curve or a developable.
§ 4. Surfaces which are in the relation ( $D$ ) to the given surface.
Any point ( $\rho$ ) on the line $(x)(z)$, being also a point on the line $(x)(\nu)$, can be expressed in the form

$$
(\rho)=(\nu)+\lambda(x)=(\nu)+\frac{\lambda}{b_{1} \zeta+\frac{\partial \zeta}{\partial v}}\left(\frac{\partial \nu}{\partial \zeta}\right)
$$

But the surface described by ( $\nu$ ) is one of the focal surfaces of the congruence. When the developables of this congruence cut the surface which is described by ( $\rho$ ) in a conjugate net, ( $\rho$ ) must satisfy the partial differential equation of the second order of the form.

$$
\frac{\partial^{2} \rho}{\partial u \partial v}=p \frac{\partial \rho}{\partial u}+q \frac{\partial \rho}{\partial v}+r \rho
$$

From this follows that $\lambda$ must satisfy the equation

$$
\frac{\lambda}{l_{1} \zeta+\frac{\partial \zeta}{\partial v}}=-\frac{\theta}{\frac{\partial \theta}{\partial v}} \quad \text { or } \quad \lambda=-\theta \frac{b_{1} \zeta+\frac{\partial \zeta}{\partial v}}{\frac{\partial \theta}{\partial v}}
$$

where $\theta$ is a solution of (IV). ${ }^{\text {. }}$
But we have proved that $\frac{\frac{\partial \theta}{\partial v}}{b_{1} \xi+\frac{\partial \zeta}{\partial v}}$ is a solution of (II).
Hence we know that all the surfaces such that developables of the same congruence cut them in a conjugate net and the given surface in the given conjugate net are given by

$$
(\rho)=(\nu)-\frac{\theta}{\theta}(x)
$$

[^3]where $\theta$ is a solution of (IV) and $\theta$ is a solution of (II) and $\theta$ and $\theta$ are connected by (V).

But when $\zeta=0$, as noticed in $\S 3 \nu=$ const., that is, the surface described by ( $\rho$ ) is reduced to a point.

In this case we take as the form of ( $\rho$ )

$$
\begin{equation*}
(o)=\lambda(\nu)+(x) \tag{io}
\end{equation*}
$$

from which we have

$$
\frac{\partial^{2} \phi}{\partial u \partial v}=b_{1} \frac{\partial \varphi}{\partial u}+c_{1} \frac{\partial \rho}{\partial v}+d_{1} \rho+\left(\frac{\partial^{2} \lambda}{\partial u \partial v}-b_{1} \frac{\partial \lambda}{\partial u}-c_{1} \frac{\partial \lambda}{\partial v}-d_{1} \lambda\right) \nu
$$

When the surface described by ( $\rho$ ) satisfies our condition, we must have

$$
\frac{\partial^{2} \lambda}{\partial u \partial v}=b_{1} \frac{\partial \lambda}{\partial u}+c_{1} \frac{\partial \lambda}{\partial v}+d_{1} \lambda .
$$

Therefore also in this case, dividing ( I ) by $\lambda,(\rho)$ can be expressed in the form

$$
(\rho)=(\nu)+\begin{gathered}
(x) \\
\theta
\end{gathered}
$$

where $\theta$ is a solution of (II).
By differentiation from (9), we have

$$
\left.\begin{array}{l}
\left(\frac{\partial \rho}{\partial u}\right)=(\varphi \theta-\theta) \frac{\partial}{\partial u}\left\{\frac{(x)}{\theta}\right\} \\
\left(\frac{\partial \rho}{\partial v}\right)=-\theta \frac{\partial}{\partial v}\left\{\frac{(y)}{\theta}\right\} . \tag{II}
\end{array}\right\} .
$$

Those formulas are given by Darboux by another method.
The points $\left(\frac{\partial \rho}{\partial u}\right),\left(\frac{\partial \rho}{\partial v}\right)$ are on the tangent plane at $(\rho)$ to its surface.

The points $\frac{\partial}{\partial u}\left\{\frac{(x)}{\theta}\right\}, \frac{\partial}{\partial v}\left\{\frac{(x)}{\theta}\right\}$ are on the tangent plane at $(x)$ to the given surface.

But the equation (II) shows that the points $\left(\frac{\partial \rho}{\partial u}\right),\left(\frac{\partial \rho}{\partial \eta}\right)$ coincide respectively with the points $\frac{\partial}{\partial u}\left\{\begin{array}{c}(x) \\ \theta\end{array}\right\}, \frac{\partial}{\partial v}\left\{\frac{(x)}{\theta}\right\}$.

Hence the line joining the points $\frac{\partial}{\partial u}\left\{\frac{(x)}{\theta}\right\}, \frac{\partial}{\partial v}\left\{\frac{(x)}{\theta}\right\}$ is the intersection of the corresponding tangent planes to the given surface and to a surface given by (9).

But we have shown in § I that when the line joining the points $\frac{\partial}{\partial u}\left\{\frac{(x)}{\theta}\right\}, \frac{\partial}{\partial v}\left\{\frac{(x)}{\theta}\right\}$ describes a plane as the point $(x)$ moves on the given surfaces $(S), \theta$ must be a solution of the simultaneous partial differential equations (I).

Hence we know that surfaces which are in the relation $(D)$ to the given surface are given by

$$
(\rho)=\nu-\frac{\theta}{\theta^{-}}(x) .
$$

where $\theta$ is a solution of the simultaneous partial differential equation (I).
Put

$$
\begin{equation*}
x=\theta y . \tag{I2}
\end{equation*}
$$

$\qquad$
Then $y$ satisfies also a system of the simultaneous partial differential equations of the form (I). These equations, being satisfied by $y=\mathrm{I}$ (which corresponds to the solution $x=\theta$ of the original equations), must be of the form

$$
\begin{aligned}
\frac{\partial^{2} y}{\partial u^{2}} & =a \frac{\partial^{2} y}{\partial v^{2}}+\beta \frac{\partial y}{\partial u}+\gamma \frac{\partial y}{\partial v} \\
\frac{\partial^{2} y}{\partial u \partial v} & =\beta_{1} \frac{\partial y}{\partial u}+c_{1} \frac{\partial y}{\partial v} .
\end{aligned}
$$

As we have noticed in the introduction, the surface and also the parameter-curves are not altered by this transformation ( I 2 ) and also the functions $a, B$, and $C$.

From (I2) and (II) we have

$$
\begin{aligned}
& \left(\frac{\partial \rho}{\partial u}\right)=(\zeta \theta-\theta)\left(\frac{\partial y}{\partial u}\right) \\
& \left(\frac{\partial \rho}{\partial v}\right)=-\theta\left(\frac{\partial y}{\partial v}\right) .
\end{aligned}
$$

By differentiation of the above equation, we know that ( $\rho$ ) satisfies the following system of the simultaneous partial differential equations of the second order which are completely integrable.

$$
\begin{align*}
& \begin{array}{l}
\frac{\partial^{2},}{\partial u^{2}}=a\left(\frac{\theta-\varepsilon \theta}{\theta}-\frac{\partial^{2} \theta}{\partial v^{2}}+\left(\beta+\frac{\frac{\partial}{\partial u}(\theta-\zeta \theta)}{\theta-\zeta \theta}\right) \frac{\partial \mu}{\partial u}\right. \\
\\
\left.+\frac{\theta-\zeta \theta}{\theta}\left(\gamma-\frac{\alpha}{\theta} \frac{\partial \theta}{\partial v}\right) \frac{\partial \rho}{\partial v}\right\} \ldots \ldots \ldots
\end{array} \\
& \frac{\partial^{2} \theta}{\partial u \partial \tau}=\left\{\beta_{1}+\frac{\frac{\partial}{\partial v}(\theta-\zeta \theta)}{\theta-\zeta \theta}\right\} \frac{\partial \rho}{\partial u}+\left(\gamma_{1}+\frac{1}{\theta} \frac{\partial \theta}{\partial u}\right) \frac{\partial \rho}{\partial \tau} \tag{VII}
\end{align*}
$$

If the asymptotic lines of the surface described by ( $\rho$ ) to those of the given surface ( $\zeta$ ), we must have

$$
a \frac{\theta-\xi \theta}{\theta}=a
$$

or

$$
\xi \theta=0
$$

In this case the equations (VII) coincide with (I). This shows that the surface described by $(\rho)$ is a projective transform of the given surface.

In fact, $\zeta=0$ is the case we have noticed in $\S 3$. When $\theta=0$, the point ( $\rho$ ) coincides with ( $x$ ).

Hence we have the following theorem.
The asymptotic lines of a surface correspond to those of the surface which is in the relation ( $D$ ) to it when and only when the latter is a projective transform of the former.

Let $\bar{a}, \bar{B}$ and $\bar{C}$ be the same functions as $a, B$ and $C$ respectively but formed with the coefficient of (VII).

Then we know that

$$
\begin{aligned}
\bar{a} & =a-\frac{\theta-\zeta \theta}{\theta} \\
\bar{B} & =B+\frac{3}{8} \frac{\partial}{\partial v} \log (\theta-\zeta \theta)-\frac{1}{8} \frac{\partial}{\partial v} \log \theta \\
\bar{c} & =c-\frac{1}{8} \frac{\partial}{\partial u} \log (\theta-\zeta \theta)+\frac{3}{8} \frac{\partial}{\partial u} \log \theta
\end{aligned}
$$

from which follows

$$
2 \frac{\partial \bar{B}}{\partial u}-2 \frac{\partial \bar{C}}{\partial v}-\frac{\partial^{2}}{\partial u \partial v} \log \bar{a}=2 \frac{\partial B}{\partial u}-2 \frac{\partial C}{\partial v}-\frac{\partial^{2}}{\partial u \partial v} \log \alpha
$$

We know easily

$$
2 \frac{\partial B}{\partial u}-2 \frac{\partial c}{\partial v}-\frac{\partial^{2}}{\partial u \partial v} \log a=-2\left(H-K+\frac{\partial^{2}}{\partial u \partial v} \log \cdot a\right) .
$$

where $H$ and $K$ are Laplace-Darboux invariants, that is,

$$
\begin{aligned}
& H=d_{1}+b_{1} c_{1}-\frac{\partial b_{1}}{\partial u} \\
& K=d_{1}+b_{1} c_{1}-\frac{\partial c_{1}}{\partial v}
\end{aligned}
$$

Wilczynski has called the line of the intersection of the osculating planes at (x) of the curves of the conjugate net on a surface ( $\Sigma$ ) which meet at $(x)$ the axis of the point $(x)$ with respect to this conjugate net.

When the point $(x)$ moves on the surface ( $(\Sigma)$, the axes form a congruence which is called by him the axis congruence. The curves in which the developables of the axis congruence cut the surface ( $\Sigma$ ) are called the axis curve.

Green ${ }^{1}$ has proved that the condition that the axis curve with respect to the given conjugate net may also form a conjugate net is ${ }^{1}$

$$
H-K+\frac{\partial^{2}}{\partial u \partial v} \log a=o
$$

Hence we have the following theorem.
If the axis curves with respect to the given conjugate net form a conjugate net, the same is the case for all the snrfaces which are in the relation (D) to it.

[^4]
[^0]:    1 Darboux, "Theorie générale des surfaces" II. Chap: X.

[^1]:    1 Amer. J. Math., 37, 215-246 (1915).

[^2]:    ${ }^{1}$ Darboux, loc cit. II, p. 174.

[^3]:    1 Darboux, loc. cit. Vol. II. p. 222.

[^4]:    1 Amer. J. Math., 38, (1916).

