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Introduction.

In the year 1916 M. G. Fubini has published a memoir on the
projective deformation and discussed the condition that two surfaces may
be projectively deformable and the relations between such surfaces.!

Afterwards a great advance was made by Cartan in the theory of
the projective deformation.?

He noticed that the surface which admits the projective deforma-
tion is exeptional one® In another words for a surface admits a
projective deformation (which is not a projective transformation) certain
conditions must be satisfied.

Cartan has proved this fact by aid of the theory of the differential
equation, we shall express this condition in terms of the quantities
which define the surface. This can be expressed in a simple form. And
then we will discuss, by means of it, some geometrical characteristic
properties of the surface which admits the projective deformation.

§ I. Cartan’s conditions that two surfaces may be projectively
deformable.

We say two surfaces (S) and (7) are projectively deformable when
they are in the following relations:

1 Rendiconti del circol matematico di Palermo. 41, 1335, (1916).
2 Annales scientifiques de V'école normale supérieure. (3), 37, 259 (1920).
3 TLoc. cil cit.
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1° There is a one to one correspondence between the points of
the surfaces (S) and (7).
2° If M and P be a pair of the corresponding points respectively
on (S) and (7'), we can displace (7) in the projective space
(that is, apply a projective transformation) so as P coincides
with 47, and (7)) has a contact of the second order with (S)
at M.
Let us now confine ourselves to the three dimensions, and start
from Cartan’s conditions for the projective deformability of two surfaces.
Take the following four points :
1° A point 4 on the surface (S)
2° Two points 4, and A, on the tangent plane at A of the
surface
3° A point 4; outside of the tangent plane.
We can regard the above four points as the vertices of the moving
coordinate tetrahedron.
Let (%), (), (2), (#), (#) be homogeneous coordinates of the points
A, A4, A;, A;, and any point P referring to the fixed axes.
Then the coordinates (w) of the point P referring to the moving
axes are given by the equations

Di=wx - wy y Wz, + wel;. i=0,1,2, 3.
Referring to the fixed axes, the coordinates of the points A4, 4,
A,, A; will generally depend, besides the parameters x and ¢ which
define the coordinates of the point on the surface (S), on some other
parameters.
When we give these parameters infinitely small variations, the

coordinates referred the moving axes of the points (2x), (dy), (dz2), (a?)
are given by the equations

Ax; = wok; + W Vs + Wt + Wi,
dy; =%, + Wiy + Wi + Wil (i=0,1, 2, 3)
Az, =Wk, +wa Y, + Waz; + Wik,
At = wa &, + Wa Y + Wes; + wst;,
Wy Wy, Wy, Wy (7=0, 1, 2, 3) being required coordinates.
As the points (dx) is evidently on the tangent plane, we have
7003= o,

Evidently, w's are Pfaff’s expressions.
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For a surface (7) is projectively deformable to (S), it is necessary
and sufficient that corresponding to A, A4,, 4,, A, we can take a point
B (§) on (7)), two points B\(7), By<) on the tangent plane at B of (7)),
and a point By(r) outside the tangent plane so as to satisfy the follow-
ing system of simultaneous total differential equations

Wa=1vq, Wy =4,
W=y, Wy =wy,
Wi =11, Wy=1vy,
Weo—ww= Wy—wn=Wy—wn.

where Wy, W, Wy, Wi (i=o0,1, 2, 3) are coordinates of the points
(d5), (dy), (dk), (dr) respectively referring to the moving coordinate
tetrahedron formed by the points B(S), B(y), By<), By(7).

These are the Cartan’s conditions.!

§ 2. Particularization of the moving coordinate axes.

Let us suppose the surface (7) is projectively deformable to the
surface (S), and the parameters #, v are taken so as the corresponding
points on (S) and (7 correspond to the same values of #, v, and on the
surface (.S) the curves u-const. and v-const. are the asymptotic lines.

Then if the surface (S) is not developpable, as showed by Wil-
zynski, the coordinates of the point on (S) may be regarded as the
fundamental system of the solutlons of the system of the simultaneous
partial differential equations’

02
0*x ox ox
G ——aza +bga + o,

which are transformed by the transformation of the form

F=AZeiiiiiieiie e (D
to the equations
()gx— ai_}_fx
out  ov I
j)ix_ai{_*_ I (I1)
o Cou " E

1 Loc. cit. 272.
2 Traus. Amer. Math. Soc., 8, 244 (1917).
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where b=0b, a=a,.

The functions, a, &, f, ¢ of u, v are restricted by the conditions of

the integrability :

g _ Mad) | 06 Fa ]

ou  Ov dv Ot

df olad) da _ 0%

T WIS i S SV (I1I)
o dg e o da
ot et

As the transformation (1) does not alter the surface, there is no
loss of generality, if we suppose the coordinates (x) of the point on (S)
to satisfy the equations (II).

Let us now take (0 ) for (), ( u) for (¢) and (0 o ) for (2).

Then from the equation (II), we have

0x, Oz 1
ad —0 0o T =
2 0w Ov  Oudv °
x, B Om On
Y ou dv  Owusv
. 0x, Oz O’x
: u dv  owuov
x _0;55 02"3 iixi
5 ou ov  Oudvy
x E O_x __()% =const
0u dv  Oudv )

As we have assumed the surface (S) is not developpable, the value
of the above determinant is not zero.
From equation (II), we have

ox
dx“ d—dﬂ -+ e ({7/’
0x Iz 0x o :L
()u ) 0%2{[’ ()u) d’Z} fj'd” +&01d7l + - dq;

ox o« , o o0x 0*x
=1 —Ldv= Ao+ d
d( 0v ) duov du+ (?v'zdv gxdvta on v+ 01y %
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2 3
dx)__ Or s O 4

T Juov 0000°

020y

— (gt o+ )}
+ {aéa’u +(a,+ g)a’z»}-()f + {(6,, +f)du+ a&dv} 0%,
ou dv
Hence we have
TWoo =Wy = Wy =W =0,
wn=dn, We=dv, - Wu=0,
wyy=fdu, wyy=>0du, wz=duv,
wy=gdv, wy=adv, wy=du,
wy =abdu+(a,+g)dv,
Wy =(8,+ /)t + abdv,
wy=(bg +/,) du + (af + g.,)dv.
The conditions (I) become
Wy= Wy=du,
Wy=Ws=dv,
Wi,=bdu, Wy=adv,
I/Vw: I/Vll= sz-
And for the same reason as wuy==0, we have W=o0.

§ 4. Determination of B, B, B;.

Equation (IV) is a system of simultaneous total differential
equations.

By the theorem of Frobenius' the conditions of integrability of (4)

are that, denoting with / the bilinear covariant of the original expression,
the equations

W's=o0

W y= W y=(du) =o,

W o= W=(dv) =0,

W a={(bdu)’, W'y=(adv),
Wa=Wy=Wy

1 Crel. J., 82, 276, (1877) Crelle journal t. 32 1877 p. 276.
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hold as the consequence of (IV).
Now let us consider two expressions of Pfaff w, 7, such that
wd=aodx0-i- G+ ovnvee T a@ndz,,
Wo=bydx, + b:dx1+...... + b, 4%,

and denote with w; W the following expressions
w6= a03x0 + tlﬁﬂﬁ + ...... + a,ﬁxn,
Wy=002,+ 6:0x+...... + 4,0z,

where 0x; means another variation of ..

Denote with Cartan the expression wyWy—w;I¥V,; with the sym-
bol [wiV].

Then the bilinear covariant of W#}; is given by the following

formulas.!
W= W Wyl + [ Wa W]+ [WalVu]l+ [WalWy]. oo (V)

By the above theorem, from the equations.
WIS’:O;
Wza =0,
we have
[ Wee— W) ] =0,
[ We— Wy)]=o0.
But Wyu=MW,, and du, dv are independent.
Hence we conclude
Wo=Wy=Wap= W

Let us suppose we have taken the coordinates (%), (3), (&), (v ) of
B, B,, B,, B; respectively so as to satisfy

$o %o Co Ty =1,
3 1 1 ¢\ Ty ‘
S 7. L T :
S o7 I T f

this being always possible.

1 Cartan: Bull. math. France, 48, 146 (1920) t. XLVIII 1920 p. 146.
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Then we have

o=d| § 7 { 7 |

=Wyt Wi+ Wat Wy
W= W= Wy=Wy=0.

From W y=o0 follows by the formulas (V)

[dulWy) + [dv Wy ] =o.

Hence by the theorem of Cartan,' 17}, W, must be linear com-
binations of &% and 4z such that

W= hdu+ kdv,
W= kdu+ ldv,

where /%, %, /, are certain functions of the parameters which define the
coordinates of the points B, By, B, D
If #3-0, we consider B;+#£B as new B,
Evidently by this transformation, the expression W;; which appear
in the conditions (I) do not alter, but ¥}, and W, become Wi—~W;;
and Wy—#~W,, respectively.

Hence we can reduce W, Wy to the forms
Wiy=4dn,
W= pdv.

Now we have by differentiation

0%; 0¢;
o du + -070’7/,

dEi =

On the other hand, we have

dzi=ndu+dv.
05
) =(?;)’

©=(3;)

From the relations

1 Loc. cit.
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Wye=1Adu,
W= bdu,
Wis=dw,
W=o,

we have

d(a,:.,;) 0;7,‘{ + ()Cid

Ou 02 0uu
( 3 0 )a’u + 1, dv.
oy
(0)= (()u()v )
0%, _ , 05,
0u' 677/ + 4
From the relations
I/VQO = dvl
VV‘.’I = atl’?/,
VV‘."Z - 0,
I/V23 = d%;

we have

a’/ 0%)_0031 du+ ag’dv

(,u §i+a:t a’l)d +0() 9 dy.

2 = =
0 ";,;_za ()!i-i-[l &-.
0v? v ¢

Hence we know that (§) must be a system of the fundamental
solutions of a partial differential equation

Py _ 9

wE =0 Y (
..................... Vi)

oy __dy

o o T

The conditions of integrability of the system (VI) are given by
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02 __0(ad) _l_é(m 0%

20 = ou Ou  0F .
ceereesaanianes VI
Op _ d(ab) ta _(lb__ 0'a (ViL)
“ou ov ov 0’
P 0B _Pu oA, . oa
dv+b +2 'ud'u T 0u? ta h+220¢'

We can easily prove by preceding method that (VII) are also the
conditions of integrability of the system of simultaneous total differen-
tial equations (IV).

Reciprocally, if (§) be a system of the fundamental solutions of the
system (VI), we can, by taking (§) for B, (—0%) for B, and (g;:)
0%
Oudv
point whose coordinates are (§) is projectively deformable to (.S).

Hence we know that for two nondeveloppable surface ave projectively
deformable to eack other, it is necessary and suficient that Wilcaynski's
invariant a and b have equal values at the corvesponding points of the
two surfaces.

If one of @ and & are equal to zero, the surface is a ruled surface.

Hence we know that the surface which are projectively deform-
able to a curved surface are also curved. We will hereafter consider
only the curved surface, that is, we assume a==0, é3=0.

§ 4. Condition that a curved surface may admit projective de-
formation.

From the first and second equations of (III) and (VII), we have

for B, and for B, easily prove that the surface generated by the

o _ I
dv_ dv’
Ou _ 9
o ou’

A=f+{U@)}*
p=g+ { V(”)} 2

where U(x) is a function of # only and M) is a function of z only.
Substituting these values in the third equations of (III) and (VII),
we have

U(u){U(u) LU (zz)zz} V(v){V( )2+ Ve )5}.
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Now we have various cases.

Case 1. If P
Ku)=Nwv)=o,
we have
A=f,
H=g.

In this case (7)) is a mere projective transform of (.5).
Case II. If only one of the U(x) and M) are equal to zero,
e.g., if {v)=o0, then we have

U(u)%% +U'(w)a=o0,
0
W( Ua)=o.

Hence a takes the form

@) _ U)

aA—="—>—— = —.

Similarly if U(#)=o0, 4 takes the form

_Jn(u) _ Uln)
b= = ey ©

By the transformation of the form
r=0/UVzx di=Un)du,  do=WVv)dv,

the surface and also the parameter curves do not alter and the system
(II) is transformed into another of the same form in which, denoting
with @, & the corresponding quantities, we have!

_ Uw) 7= o)
{V(@)}* {Um)}*

Hence in the former case by the transformations

a=

=V UNVx da=Udn, do=v'Vav

we have
a=1.

In the latter case by the tranformations

1 Wilczynski, loc. cit.
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F=CY UV TV, dz?:l/?jdu, dv=Vdp,

we have
b=1.
Case III. If ()0, Nw)3F0, we have
V)% + Uaa V) 20+ 1 (0)8
@) - U(u) ’
0 ( w)a \_ 0 ( M)
il 7o )= ("ot

Hence we can determine by a quadrature a function p which
satisfies the relation

_Nw) op
U(u) oo’
p U@) 0p
No) ou

By the transformations

=GV OV, dii= Udx, di= Vdv,
we have
- Ulu) = o)
a=——r_a, b= —>7L b,
{N@)}* {U(w)}?
But

o_ﬁzﬁfiyv), %:%Uﬂ).
7

Therefore, we know that for the curved surfaces which admit the
projective deformation, Wilcaynski's invariants, a, 6 wmust be veduced so
as to satisfy one of the velations.

(1) a=1
(2) 6=1
da _ 0b

(3 5=
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Reciprocally we will prove in the next paragraph that if a surface
satisfies one of the above conditions, there are at least oo! surfaces
which are projectively deformable to the surface (.S).

Therefore there are three kinds of surfaces which admit the pro-
jective transformation. But the surface where @=1 and the surface
where =1 are of the same kind, for by the interchange of parameters
#, v, we can reduce one into the other. We shall call the surface of
this kind the surface of the second kind which admits the projective
transformation and the surface where a,=4, the surface of the first
kind which admits the projective transformation.

§ 5. All the surfaces which are projectively deformable to a given
surface.

Let us suppose that we have performed the transformations ex-
plained in the preceding paragraph.

First, we consider the case where

e _ o

ou  ov’
_ _ 9 _92
or =00 o= On’

If the equations of the given surface be

Pz dx

S =0
01’ dv /%
Fxr _  ox
0ot Cou 15

where a, &, f and g are restricted by the conditions of the integrability,
then all the surfaces which are projectively deformable to it, if they
exist, are given by

Fr__,0r
= A

a1 ¢ dv +

*x_  ox

0P G T

where 4, » must satisfy the conditions of integrability

A _ o
ov ov’
op __ dg

0n ou’
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’u 04 da 0% 0o
o +?2;+220u 02-{-&0 +2,u—
If we assume
A=F+ Uw),

u=g+ V(v),

the functions U(x), {v) must satisfy the equation
0+ 200 — 577y 2170
aU(u)+zU()u —&V(v)—i—zV()U ,

or 2(U—-V1)

1(NIP 1 ()00 —
dudu — 7" (v) o+ U'(n) o O e (1)

This equation is satisfied by
U=V=k % const.

Hence the surfaces which are given by

du' lb— +(f+A)z,
P SRSREUITEE (2)
i = +( +£)x

are projectively deformable to the given surface.

By Wilczynski’s theory,' all the surfaces which correspond to the
same value of £ are projective transforms of a particular one, and
moreover we can easily see that two surfaces which correspond to the
different values of £ can not be projective transforms of the same
surface.

Therefore, if we regard the surfaces which may be derived by the
projective transformation from the same surface as all the same, the
equation (1) gives o' surfaces which are projectively deformable to the
given surface.

If there be other pairs of solutions of Uix) and W{v), » must be
a solution of the partial differential equation of the form (1).

If p be a particular solution of

o) ~B0)) 2~ ) L+ (0) L=,

1 Loc, cit.
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Uiut) = kea(u) + £y,
No)=£B8(v) + 41,

are evidently solutions of (1).
If these exist a further pair of solutions of U(x) and V(v), # must

satisfy the two partial differential equations

k, k. const.

(a0~ p@) )2~ 5 @) Lo+ o () L o,
(s 1) 2P0+

where
U(u)=Fka(u)+ %, Nv)F£3(v) + £
By the transformotion
r=a(u), 7=8(),

the above equation is transformed to

_ op , 0p
2 ”7@ oz Yoy =9

Z(X(;r)—— Y'(J/)) d(ijg Y’( ) ()ﬁ 4—X’( )3_—5:0'

where
X(x)= Uw), W)= ),
Xx)Ftr+r,  Ky)Fby+ 4

From the equations (3), we have
___/_‘)P(__/,_‘iﬁ_
(X Y= V(e~3)) L (XY~ (s ,)) L =o...()
Consider the function
g:zfde—zf Ydy ~(X+ YV)(x—yp).

Then the equation (4) is equivalent to

ot @ _
o(x, ¥)

p=Fy).
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Substituting this in the first equation of (3), we have
2P (@ X~ V=X (=)} X - v V(x—w}

+3(Q) =y X — V) =0. werrrrene.. )

As x and y are independent x—y is not always zero. If one of
the functions X— ¥ —-X'(x—y), and X— YV— V(x—y) vanish identically,
by the relation (4) the other must vanish, for

op _ a

Ox ) T
P _

oy P'(W):F

And if both X—V—X'(x—y)=0 and X—¥Y— V' (x—y)=0 vanish
identically, we can easily see that
X=lkx-t+k,
Y=4ky+£.

This contradicts our assumption.
Hence,

X— Y= X(x~y)=o,
X—Y—-Y(x—y)Fo.

Therefore, from (5) we have

2 P (s v v o X =¥
3 F’(){X Y=Y }')} X—Y—X'(i—y)’
2 P (v A X =V
3 Flg) {X Y=Xi q>} X—V—X x—y)’

or
2 0 N\ = — 0 ( V=V (x— )
3 log F(¢)= e logl X— YV —Y"(x—y) ),
0 oo ()= — 9 VYV V(r—
5 log F{g)= 5 log (X V—V(x J/))

Integrating we have

§(x) 2"y)
{F’(q)} . ;;(’(x—y) ¢ yY’(x—y) ......... ©6)
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From the equation

o

0* (E(x))_ ¢ (X—Y~X’(x—y))’

“omy B\ ()T oy B A= Y=Via—y)

we can easily deduce
E(x)= —kX"3,
9 ()= + 2V,

£ : const.

If either X" and YY" be zero, F'(g)=o0, accordingly a=b=o0.
Hence X""=o, Y'==o.
Substituting these in (), we have

X-V_ xviq yxt

x—J’ _X”% + Y//% If(-‘t’, J/)r

X=Y=f(x ») (x—2),
X'=f(z 7)+-L (),
V'=f(5, ) ~L(e—),
%W%-X”ngizo. ................................. &)
Consider the function
= f Xt f vig.

Then (7) is equivalent to

o(f w) _
IR
f=g(w).

X' =¢(w)+ ¢ X”é'(x——y).

Differentiating the above equation by y, we have

- XII%_ YII'}S _ go”(w)

(x—7) Xn’} yr;’-l‘ ¢'(w)

= fnzw).
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From the equation

() w) _
oz, 7) ’
we have

%(x— 2 (X"“% x4y y'") + Xy oo (8)
Differentiate the above equation by # and then by y, then we have

_537 ( yr—% V") — _5;:_ ( x5 X" = o.

¢ : const.
gt gy = g
dx
or .
XX = — 3(cx+ ey,
Y'Y = —3(ey + D),
V"5 =it + 20, v + ¢y
YH—% =Cy2 + 201]’ + Dg.
By the equation (8), we know
‘-1 = -Dl ’
Coy= Dg .
Therefore
s D
A= Vet + 202+ 6
e=-+1 or — I.
VI = J .
Ve 209+ ¢
- O0=+1 or —I.

First, we assume ¢¢ — ¢ =Fo0.
Then we have

€ cx + ¢
O )
ca—ct \Ved+tecxr+e te
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) L'J/'*‘C.;
e (ot )
€Cy—et (1/cy2+ 267+ 6 + i),

) B
X = —*—__'(]/ sz + 251x+£2+ €3x+ 54);

€ €y — C:

V= ;__52(1/5_1/2 + 209 e+ Dy +D4).
2 1

CC

By the equation (6), we know

& = 3,
& =D,
= .D4.

Therefore

X—V—X (v—y)=

cxy +a(x+y)+ cz)
ccr—ef

( '/cy + 2¢,y + ¢y + Y e+ 26 + 6

X— V-V (r—y)= ﬁ(Vm_ cxy+ e+ ) + a,),
2 1

Vieys + 20y + ¢,
(F’ (9))—% =

K
m[chz+ 209+ 6 Ve + 20x + o— {eay + elxr + 9) + &3} ]

A/1/52+a—5—a/1/772+a—7;

p=F(g9)=Klog — (9)
~/1/52+a—5+~/1/72+a—77
where
E=cx 4+ ¢, 77=€J’+€1,
a = cCy — Cl s
K : certain constant.
Similarly when ¢c, — ¢, =0, we have
I
"-7
2‘1/6 cr+ o Tt ST
Ve=—o - .
21/c cy+c,+c’*y+c4 €= -+1, or .
-1
p=Klo 1_/fca:+c1 1/5){:c,_' /
Ver+e+vVier+a K : const. ceeeeenennnn (9"

Therefore we know that when there are the following relations between
a and &,

_ _ o
=% T
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(1°) if  does not satisfy the partial differential equation of the form
2 (a(u) - p@))ﬂ Bt ()L =0, e (10)
Oudv ou Ju

there are only oo! surfaces which are projectively deformable to the
given surface and they are given by the equations

gz _ &_ +(f+ Az,
Out
x r)x
=a-—+(g+ k)=
09° 0 (& )

(2°) if p satisfies the equations (10) and does not satisfy another partial
differential equation of the same form, but not identical with it, there
are oo® surfaces which are projectively deformable to the given surface
and they are given by the equations

2
IE 592 1 £+ holu) + ),
du’ ov
*x

Tr—a % (g RB@) + A),
on

0v

(3°) if p satisfies the following two partial diffential equations
2
2(aw)~ B@) )22 ~ ) L+ ) o,
Judv Ou or

ny — 13} 4 QZ Y 0_p=
2(0() V) V'@ L + UL =o,

we must have

p=Klog A/1/c Yo + 206, + cey— (00 + ¢)— N/l/cﬁ + 2551,3-}- cc,—(ca + Cl),
A/‘l/ﬁa + 2cica+ coc ~ (ca+ cl)+a/1/cﬂ + ”(115,34- cc—(ctt+¢;) ’

U(Z{)= il 2(I/Ca+ 261a+c.2+£3a+64),

ey — ¢y

Vo) = 2L (VBT e+ aB+a),
€Cy — ()

where ¢, — =0
or
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a, =K10g1/ca+cl—1/c,9+cl’
Viea+ e +vVef+ ¢
+1 I
Ulu) = —=— + 60 + ¢4,
®) 2Vc  ca+ e i !
+ .
| V(o) =-Z1 L R

2v'e B+e

and all the surfaces which are projectively deformable to the given
surfaces are given by the equations

i 6-:5 =52’i+(f+é1/ca‘~'+2c,a+£2+/cla+,é3),
ou* o0v

ES. (e+4vaeaafra+thi+ &),
U

\ 0%
or
[ °x ox < £
—=0 +| f+ + Ad + ,é),
0z ov S ca+ ¢ ! ’
a"f =a2‘—+<g+ % +/é1a+,ég), i
0z* Out e+ o respectively
where %, %, 4, are arbitrarly constants.
Next, we consider the case where
a=1I.
In this case the equations of the given surface are
o*x ox
— =5+ fu,
ou’ ov s
Fx _ ox
=4 ox.
0 on  °
Therefore, if we put
A=F+ Uln),
p=g+ V).
U, V must satisfy the equation
U(n) = 6V'(z) + 2 V.gi. ................................. (4)
v

This equation is satisfied by
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Ul) = £,
V\’U) = 0.
If there is another pair of solutions of U and ¥V, & must satisfy the

partial differential equation of the form (4).
If 4 satisfies the equation

o' (u) = 68'(v) + zﬁ—()é, .................................... (5)
du
Then U=rla+ #&,
V==~r3 %, &5 : const.

are solutions of (4).

If (4) has a further pair solutions, & must satisfy the two partial
differential equations

() = 68/(2) + 2628,
v
Vi(w) = 8V'(0) + 2722,
v

from which we can easily deduce

e a’(fj% +c)

2vE
U(u)=ka(u) + £y,
V)= ¢ ¢ W
v)= dv .
(f VE *‘)

Therefore, we know that, when we have

a=1,

(1°) if & does not satisfy the partial differential equation of the form

() = 08'0) + 2(o) o,

there are only oo' surfaces which are projectively deformable to the
given surface, and they are given by the equations

T 9% 4 (f+ B,
Ou, 0v
Ox = —()35 + g,
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(2°) if & satisfies the above partial differential equation, but not equation
of the same form which is not identical with it, there are oc? surfaces
which are projectively deformable to the given surface and they are
given by the equations

T% —p9% \ (F+ ba+ k),
0’ dv

Fr dx
—Z =" 4 (g+ A
= 0w (g + #P)x

(3)° if & satisfies the following two partial differential equations
@) = 88 (0) + 282,
ov
, , - 00
Uu)y=6V"(v) + 21"—,
ov
(%)
R
2/
Uu)= ka(u) + 4,

‘ £8(v)
Viv)= do : + 'élﬂ('”),
(E=
V'3
and all the surfaces which are projectively deformable to the given
surface are given by the equations

we must have

b=

O% 3 9% 4 (f+ b+ ko),

O* oy
34 P

AN (g PR N /glg),
o0° ou

( a’__ 4 c)
VA
which are of the manifoldness oo®
§ 6. Geometrical interpretation.
We will now investigate the geometrical properties which are
peculiar to the surface which admits projective deformation.
Let us begin from the case where
da __ db
ou v
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In this case the conjugate net of the curves
an® — dov* = o,

has very interesting properties.
We shall call with Carton this conjugate net the conjugate net of
the projective deformation.

In the subsequent discussion we suppose the equations of the
surface are

0x ox
=54 + fx,
09 ov %
o*x ox
=a—— + gx.
07° O &

Recently Green has published a Memoire on reciprocal congru-
ence.

Let us denote by C, @ curve v =const., by C, @ curve # = const.,
by R, the ruled surface formed by the tangents to the curve (, at the
points of a fixed curve C, and by K&, the similar parametric ruled sur-
faces formed by tangents to the curve C,.

The congruence formed by the line / which connects two points

O=(Z)-t  @=(2)-aw.

(where a, 3 are functions of u, v)
are called the congruence I

The two tangent planes to &, and R, at (p) and (o) respectively
intersect at the line // which connects (x) and the point (2)

x ox ox
@) = Oudy _a(_(;) _ﬂ( ()7/)'
Reciprocally the plane determined by (2) and the tangent of C, at
(#) touches R, at (p), and the plane determined by (2) and the tangent
of C, at (@) touches R, at (o).
We say one of the lines /, / is the reciprocal line of the other.
The congruence formed by / is called the congruence 17, and we

speak of the congruences I' and 17 as reciprocal congruences.
Green has proved that when and only when

1 Trans. Amer. Math. Soc., 20, 79-153, (1919}
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da _ Op

on oy’

the developpables of the congruence I’ correspond to @ conjugate net
of the surface and the developpables of the congruence I cut the sur-
face in a conjugate net.

For the subsequent use, we shall give a short note on the directrix
congruence, ray congruence, and axis congruence.

(1) Directrix congruence.!

The two linear complexes which osculate at a point () the two
asymptotics passing through (x) have in common a linear congruence
with directrices & and &',

The directrix of the first kind, &, lies in the tangent plane of the
surface, and connects two points

Lx) — (2{) _ by
( Ou 2a @), ov 26 @)

The directrix of the second kind, &, passes through (x) and through

the point
()~ 25(50) 5 (5%)
Ooudy 26 \ ou 22\ dv/
The congruences formed by & and & are called the congruences

of the first and second kind respectively. They are evidently reciprocal
congruences.

(2) Ray congruence.”

Wilczynski has called the line joining the minus first and first
Darboux-Laplace transforms of the point (x) with respect to a conjugate
net the ray of the point (x), and the congruence formed by the ray
the ray congruence of the conjugate net.

(3) Axis congruence.

Wilczynski has called the intersection of the osculating planes of
the two curves of a conjugate net which meet at (x), the axis of the
point (x) with respect to that conjugate net, and the congruence formed
by the axis the axis congruence.

We shall call the reciprocal line of the axis as the reciprocal axis.

1 Wilczynski, projective Trans. Amer. Math. Soc., 9, 79~120, (1908).
2 Trans. Amer. Math. Soc., 16, 311-327, (1915).
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If
paw— dv’= o.

be the differential equation of a conjugate net, the ray of the point
(#) with respect to that conjugate net is the line which joins the two
points

( ()x) + ——( a 1+ )(x\ (_oﬁ) + —I—(zb — ﬂ)(l),
ou 44t ()u v 44t yicd

the axis is the line which passes through (x) and through the point

( i ) _ ;(2,; + ﬂ) (2&) - ;(2[,,; — ﬂ) (ﬂ)
ou ov 4 v /\ ou 44 ou ov />

and the reciprocal axis is the line which connects the points

O I e

For the conjugate net of the projective deformation, we have

‘Il: I

Therefore the ray of (x) with respect to that net is the line
which connects the two points

()x) a ( ()x) b

— )+ =), ——}+ —(x

( Ou 2 =) v 2( )

and the reciprocal axis of (x) with respect to that net is the line which
connects the two points :

wse ()2

The line which is 2 harmonic conjugate of the line which joins
(#) and the intersection of the reciprocal axis and the ray of (¥) with
respect to the ray and the reciprocal axis, passes through the points

(z) (ﬂ)
oul ’ ov/

The developpables of the congruence formed by this line evidently
correspond to @ conjugate net.

Now for the surface of the first kind which admits the projective
deformation, we have
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oa _ 08
on v

Therefore, in this case the intersection of the said line and the
directrix of the first kind is

(5) (%)
af —)—8 = ).
ou dv
The intersection of the ray and the reciprocal axis with respect to
the conjugate net of the projective deformation is

b( ()x) ( ()r)
——)—a .
. ou ov
Therefore, we know that on the surface of the first kind which
admits the projective deformation, there is a conjugate net which has

the following properties.

1° Denote by / and /, the ray and reciprocal axis of (x) with
respect to that conjugate net respectively, by /4 the line which joins
(#) and the intersection of / and 4, and by / the fourth harmonic
line of 4;, 4, 4.

Then the developables of the congruence formed by /, correspond
to a conjugate net.

2° Denote by / and 7, the points where the asymptotic tangents
meet /;, by F; the intersection of /; and /4, by 7, the intersection of
the directrix of the first kind and /,, and by D, and D,, the points
where the tangents at (x) to that conjugate net meet /.

Then 7, £, are separated harmonically by D, and D,.

Or we may express it in the following manner:—

The points A, £ and Z;, P, form two pairs of involution of which
D, and D, are double points.

Reciprocally, if there be a conjugate net which has the said
properties on a surface, that surface admits the projective deformation
and is of the first species, and that conjugate net is that of the projective
deformation.

Let

pd’ — dvt =o.
be the differential equation of that conjugate net.

Then the line /, with respect to that conjugate net connects the

two points '
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ﬂ) Loy (ﬂ) — Loy,
ou ov 4 0v

As the developpables of the congruence of /4 correspond to a conjugate
net, we have

— (L) *0#)

ou \'pr ov v P Ou
or i log p =0,
oudv
(12
p= U@}

(o}

where U(x) is a function of # only, I'(z) is @ function of z only.
Perform the transformation

Z=cy/ UV, s = Udu, dy = Vdv.

which transforms the differential equation of the above conjugate net

into
a&* — dy* =o.
Let
0% 0% , F-
=b—+fx=0
03* o7 s
0*% - 0% _
— + goxr =0
oy’ 08 °

be the transformed equations of the surface.
Then by the second property of the above conjugate net, we have

oa __ 0

-
that is, the surface is that of the first kind which admits the projective
deformation.
Next, we consider the case where a = /.
In this case we consider the canonical (or scroll) congruence which
is due to Sullivan and Green,
The canonical edge of the first kind is the line which connects

the points
ox b, ( Ox) a,
— )+ ’ + —(x ’
(()u) 4b<) ov 4a()
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and that of the second kind is the line which passes through (x) and

through the point
32 .
( e ) + _@(ﬂ) + iv_(gf_),
oudy 4a \ ou 46 \ dv

da oa

_.._=O’

O ov

Now we have

=0.

Therefore the intersection of the tangent at (x) of the curve C, and
the directrix of the first kind is

(5r)
oul’

and the intersection of the tangent at (x) of the curve (, and the
canonical edge of the first kind is

< dx
")

The developpables of the congruence formed by the line which
passes through the above two points correspond to a conjugate net.

Hence, we have the following theorem.

For a surface of the second kind which admits the projective
deformation, the developables of the congruence formed by the lines
which pass through the point where one of the asymptotic tangents at
(#) meets the directrix of the first kind of (#), and through the point
where the other of the asymptotic tangents at (x) meets the canonical
edge of the first kind of (), correspond to a conjugate net.

The inverse of this theorem is also true.

For then, we must have one of the equations

()2 02

loga=0 and log & =o,
dudv

0n1ov

which we can reduce by the transformations of § 4 to
a=1 and b=1 respectively.



