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Introduction. 

In the year 1916 M. G. Fubini has published a memoir on the 
projective deformation and discussed the condition that two surfaces may 
be projectively deformable and the relations between such surfaces.1 

Afterwards a great advance was made by Cartan in the theory of 
the projective deformation.2 

He noticed that the surface which admits the projective deforma
tion is exeptional one.3 In another words for a surface admits a 
projective deformation (which is not a projective transformation) certain 
conditions must be satisfied. 

Cartan has proved this fact by aid of the theory of the differential 
equation, we shall express this condition in terms of the quantities 
which define the surface. This can be expressed in a simple form. And 
then we will discuss, by means· of it, some geometrical characteristic 
properties of the surface which admits the projective deformation. 

§ I. Cartan's conditions that two surfaces may be projectively 
deformable. 

We say two surfaces (S) and (T) are projectively deformable when 
they are in the following relations : 

1 Rendiconti del circol matematico di Palermo. 41, 135 1 (1916). 

2 Annales scientifique, de l'ecole normale superieure. (3), 37, 259 (1920). 
s Loe. cil cit. 
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I O There is a one to one correspondence between the points of 
the surfaces ( S) and ( T). 

2° If M and P be a pair of the corresponding points respectively 
on (S) and (T), we can displace (T) in the projective space 
(that is, apply a projective transformation) so as P coincides 
with M, and (T) has a contact of the second order with (SJ 
at M 

Let us now confine ourselves to the three dimensions, and start 

from Cartan's conditions for the projective deformability of two surfaces. 
Take the following four points : 
1 ° A point A on the surface ( S) 
2° Two points A1 and A 2 on the tangent plane at A of the 

surface 

3 ° A point A3 outside of the tangent plane. 
We can regard the above four points as the vertices of the moving 

coordinate tetrahedron. 
Let (x), (y), (z), (t), (p) be homogeneous coordinates of the points 

A, Ai, A 2, A 3, and any point P referring to the fixed axes. 
Then the coordinates (w) of the point P referring to the moving 

axes are given by the equations 

i=o, r, 2, 3. 

Referring to the fixed axes, the coordinates of the points A, A1, 

A2, A3 will generally depend, besides the parameters u and v which 
define the coordinates of the point on the surface (S), on some other 
parameters. 

When we give these parameters infinitely small variations, the 
coordinates referred the moving axes of the points (dx), (dy), (dz), (dt) 
are given by the equations 

dxi = WooXi + Wo1Yi + W 02Z i + W 03ti, 

dyi = W10Zi + W11Y i + W12Zi + W1sli, 

dzi = W2oX; + W21Yi + W22Zi + Wz,ti, 

dt; = W30Xi + W31)'; + W32Zi + W33t;, 

(i=O, I, 2, 3) 

Woi, wli, w2i, w3i (£=a, r, 2, 3) being required coordinates. 
As the points (dx) is evidently on the tangent plane, we have 

Evidently, w's are Pfaffs expressions. 
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For a surface (T) is projectively deformable to (S), it is necessary 

and sufficient that corresponding to A, Ai, A 2, A 3, we can take a point 

B (f) on (T), two points Bi(-1), Bi,:;:) on the tangent plane at B of (T), 
and a point Ba('r) outside the tangent plane so as to satisfy the follow

ing system of simultaneous total differential equations 

1 
............... ( I) 

U7;3=W13, Wzs=U'21, 

Woo-Woo= W11-W11= Wz2-W22• 

where Wei,, W1i, Wz;, T¥3i (£ = o, I, 2, 3) are coordinates of the points 
(df), (dTJ), (de;), (d,) respectively referring to the moving coordinate 

tetrahedron formed by the points B(f), B(TJ), Blc;), Bs(,). 
These are the Cartan's conditions.1 

, 
§ 2. Particularization of the moving coordinate axes. 

Let us suppose the surface ( T) is projectively deformable to the 

surface (S), and the parameters u, v are taken so as the corresponding 

points on (S) and (TJ correspond to the same values of u, v, and on the 

surface (S) the curves u-const. and v-const. are the asymptotic lines. 

Then if the surface (S) is not developpable, as showed by Wil

zynski, the coordinates of the point on (S) may be regarded as the 

fundamental system of the solutions of the system of the simultaneous 

partial differential equations2 

which are transformed by the transformation of the form 

%=AZ ............................................. (I) 

to the equations 

iYz oz ~- =a--+gz 
iJv2 du 

}············ .... (II) 

1 Loe. cit. 272. 

2 Traus. Amer. Math. Soc., 8, 244 (1917). 
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where 

The functions, a, b, f, g of u, v are restricted by the conditions of 
the integrability : 

og il(ab) ob o2a 
2 ou = ~ + aTv- ?ii./ 

2 of= o(ab) + b~ _ <12b 
av OU OU ov2 ............... (III) 

i)2_/ ag - og . df oa ;,;., + b~a + 2g - ~ ,,. t a~
0 

+ 2/-
0 uv· v uu· u u 

As the transformation (I) does not alter the surface, there is no 
loss of generality, if we suppose the coordinates (x) of the point on (S) 
to satisfy the equations (II). 

Let us now take ( ~=) for (y), ( :: ) for (z) and ( :~:v) for (t). 

Then from the equation (II), we have 

d .zO 
ox0 0%0 02

Xo =O, 7iu av ouov 

X1 
riXt OX1 i)2 Xt 

au Tv our,v-

X2 
ax2 OX2 a2x2 

dzt dv iJuiJv 

%3 
0%3 OX3 iJ2%3 

7iu r)v ouov 

iJx ax il2x 
ou Tv iJuiJv 

l=const. 

As we have assumed the surface (S) is not developpable, the value 
of the above determinant is not zero. 

From equation (II), we have 

ax ox 
dx=~du+75vdv, 

ct( ax) o2x o2x 0.t: a2x --- =~du+~~dv=fxdu +b-du+~-dv, 
du au2 ourJv ov ourJv 

--- =--du+-.,dv=o-xdv+a-dv+~--du, ct( ox) iJ2.x iJ2x ox a2x 
d,, i)uiJv av· b OU i)lt()v 
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-- =--du+--dv ct( iJ2.% ) iJ3.:i: ih: 
iJuiJv iJuiJv iJuiJv2 

Hence we have 

Wo1=du, W 02 =dv, Wo3=0, 

W1o=fdu, W1 2=bdu, W 13=dv, 

W 20 =gdv, W 21=adv, w 23 =du, 

W 31 =abdu+ (a" +g)dv, 

W32=(bv+f)du +abdv, 

W 80=(bg+.f.) du+ (af + g,,,)dv. 

The conditions (I) become 

Mi';,1= W23 =du, 

vVo2 = Ul;3 = dv, 

]½1=adv, 
} ............... (IV) 

And for the same reason as w03 =o, we have W08 =0. 

§ 4. Determination of Bi, B 2, B3• 

Equation (IV) is a system of simultaneous total differential 
equations. 

By the theorem of Frobenius1 the conditions of integrability of (4) 
are that, denoting with ' the bilinear covariant of the original expression, 
the equations 

W'o1= W23=(du)' =O, 

Wo2= W1s=(dv)'=o, 

H11
12=(bdu)', W 21 =(adv)', 

vV1oo= Wu= W'22 

1 Crel. J., 82, 276, (1877) Crelle journal t. 82 1877 p. 276. 
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hold as the consequence of (IV). 

Now let us consider two expressions of Pfaff Wa, UT,, such that 

Wa= aodx0 + a1dX1 + .... , . + andx,., 

wd = bodXo + b1dX1 + • • • • • • + bndx,., 

and denote with w0, iv0 the following expressions 

W 0= aoJzo+ a18X1 + ...... +anJXn, 

UT;;= boJXo + b/tr1 + • • • •,, + bn axn, 

where ax. means another variation of z 1. 

Denote with Cartan the expression waW0-w0 TVd with the sym

bol [wW]. 
Then the bilinear covariant of T¾.i is given by the following 

formulas.1 

By the above theorem, from the equations. 

we have 

[du(W33-W22)] =o, 

[dv(W33 -Wu)]=o. 

But 1½2 = ]½1 and du, dv are independent. 

Hence we conclude 

Let us suppose we have taken the coordinates (q), (1), ((), (r) of 
B, B1, B 2, B3 respectively so as to satisfy 

,. 
(o ;"o 1o !"o =I, 

,. 
(t <; 1 11 r1 

q2 1i (2 't2 

q3 13 
,, 

7"3 ..,s 

this being always possible. 

1 Cartan: Bull. math. France, 48, 146 (1920) t. XLVIII 1920 p. 146. 
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Then we have 

O=d\ ~ 7l ( T I 
= Woo+ Wu + H1',i2 + liV'sa 

Woo= Wi1= Wz2= Waa=O. 

From W 00 =0 follows by the formulas (V) 

[ du T-½0] + [ dv Wzo] =o. 

Hence by the theorem of Cartan,1 Wio, T,½0 must be linear com
binations of du and dv such that 

Wio = hdu + kdv, 

liT-';0= kdu + ldv, 

where h, k, l, are certain functions of the parameters which define the 
coordinates of the points B, Bi, B 2 , B 3• 

If k=f=o, we consider B3 +kB as new B3• 

Evidently by this transformation, the expression W:.i which appear 
in the conditions (I) do not alter, but Wio and Wzo become H7i0-kH7i3 

and liv;0-kW23 respectively. 
Hence we can reduce Wio, Wzo to the forms 

Wio = i.du, 

Wzo = p.dv. 

Now we have by differentiation 

On the other hand, we have 

( iJ;) (7J) = 7fu ' 

From the relations 

1 Loe. cit. 
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Wio=Adu, 

Wi2=bdu, 

7'V13 =dv, 

Wi1=0, 

( 
i)2~ ) 

(,)= iJuiJv ' 

From the relations 

we have 

7'V'.i0=dv, 

T½1=adv, 

d( iJ~i)= iJ2~i du+ iJ2~. dv 
\ dv duiJv iJv2 

( il~) iJ'~ = 11. ~1 + a~ dv + ~-•-i du. 
du dudv 

Hence we know that (~) must be a system of the fundamental 

solutions of a partial differential equation 

}············ ....... (VI) 

The conditions of integrability of the system (VI) are given by 
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2 iJµ = a(ab) +a~- iJ2a 
au av av iJu2 1 1-·•············ (VII) 

!f i. + b!.f!-_ + 211~ = __!_p._• + a..!!__3_ + 2 l iJa . 
iJv· av av iJu· au au 

We can easily prove by preceding method that (VII) are also the 
conditions of integrability of the system of simultaneous total differen
tial equations (IV). 

Reciprocally, if (;) be a system of the fundamental solutions of the 

system (VI), we can, by taking (f) for B, ( :! ) for B1 and ( :! ) 
for B 2 and 

0
°2

~ for B 3, easily prove that the surface generated by the 
UuV 

point whose coordinates are (~) is projectively deformable to (S). 
Hence we know that for two nonde'veloppable suiface are prqfectively 

deformable to each other, it is necessary and sufficient that Wilczynski's 
invariant a and b have equal values at the corresponding points if the 
two suif aces. 

If one of a and b are equal to zero, the surface is a ruled surface. 
Hence we know that the surface which are projectively deform

able to a curved surface are also curved. \Ve will hereafter consider 
only the curved surface, that is, we assume a=Fo, b=Fo. 

§ 4. Condition that a curved surface may admit projecthce de
formation. 

From the first and second equations of (III) and (VII), we have 

al_ iJf 
dv-Tv' 

au - iJg 
au -au' 

A=f + { U(u)}2, 

11=g+ { V(v)}2, 

where U(u) is a function of u only and V(v) is a function of v only. 
Substituting these values in the third equations of (III) and (VII), 

we have 
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Now we have vanous cases. 
Case I. If I 

U(u)= V(v)=o, 
we have 

A=f, 

/.t=g. 

In this case (T) is a mere projective transform of (S). 
Case II. If only one of the U(u) and V(v) are equal to zero, 

e.g., if V(v) =O, then we have 

U(u) :: + U'(u)a=o, 

i) 
aii(Ua)=o. 

Hence a takes the form 

a= fn(ij)_ =-U(v) (say). 
U(u) U(u) 

Similarly if U(u)=o, b takes the form 

b_fn(u) _ U(u) ( ) 
- Vi.v) - V(vf say· 

By the transformation of the form 

dv= V(v)dv, 

the surface and also the parameter curves do not alter and the system 
(II) is transformed into another of the same form in which, denoting 
with a, b the corresponding quantities, we have1 

-- U(u) 
a- { V(v)}2, 

1,- V(v) 
[/- { U(u)} 2 • 

Hence in the former case by the transformations 

.i=C✓ tlVVx du=Udu, dv=✓ Vdv 
we have 

a= r. 
In the latter case by the tranformations 

l Wilczynski, Joe. cit. 
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x=CVUi/Vx, du=i/Udu, dv=Vdv, 

we have 

b= r. 

Case III.. If U(u)=f=o, lltv)=f=o, we have 

U(u)~+ U'(u)a V(v)*+ V'(v)b 

V(v) U(u) 

_j_( U(u)a )=_!!_( V(v)b ) 
du V(v) dv U(u) · 

Hence we can determine by a quadrature a function p which 

satisfies the relation 

_ V(.v) dp a-- -- ~ 
U(u) dv' 

b= U(u) iJp. 
V(.v) du 

By the transformations 

du=Udu, dv= Vdv, 

we have 

-a= 
U(u) 

{ V(v)}2 a, 

But 

op =ji'__U(u). 
<Ju du 

Hence, we have 

- iJp 
a= iJv, 

Therefore, we know that for the curved suifaces which admit the 
projective deformation, Wilczynski's invariants, a, b must be reduced so 
as to satisfy one o/ the relations. 

(1) a=l. 

(2) b=I. 

(3) 
da iJb 
c)u -av· 
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Reciprocally we will prove in the next paragraph that if a surface 
satisfies one of the above conditions, there are at least 001 surfaces 
which are projectively deformable to the surface (S). 

Therefore there are three kinds of surfaces which admit the pro
jective transformation. But the surface where a= I and the surface 
where b= I are of the same kind, for by the interchange of parameters 
u, v, we can reduce one into the other. We shall call the surface of 
this kind the surface of the second kind which admits the projective 
transformation and the surface where a,.=bv the surface of the first 
kind which admits the projective transformation. 

§ 5. All the surfaces which are projectively deformable to a given 
surface. 

Let us suppose that we have performed the transformations ex
plained in the preceding paragraph. 

or 

First, we consider the case where 

iJa ab 
du - dv' 

a= op 
rJv' 

If the equations of the given surface be 

a2.x ox -~.,= b-,- + fr, 
dw dv 

()2.X ox 
dv2=a ou + gx, 

where a, b, f and g are restricted by the conditions of the integrability, 
then all the surfaces which are projectively deformable to it, if they 
exist, are given by 

where A, u must satisfy the conditions of integrability 

<iA - of 
-iJv -75v, 

dµ _ ag 
75u- du' 
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If we assume 

A=/+ U(u), 

u=g+ V(v), 

the functions U(u), ~11) must satisfy the equation 

aa ab aU'(u)+ zU-_,-=bV'(v)+ 2 V-_-, 
c,u dv 

or 
iJ2 a r) 

z(U-V)~f~-V'(v)-'L+ U'(u)L=o . ............ (1) 
iJudv du iJv 

This equation is satisfied by 

k: const. 

Hence the surfaces which are given by 

l···· .. ············ (2) 

are projectively deformable to the given surface. 
By Wilczynski's theory,1 all the surfaces which correspond to the 

same value of k are projective transforms of a particular one, and 
moreover we can easily see that two surfaces which correspond to the 
different values of k can not be projective transforms of the same 
surface. 

Therefore, if we regard the surfaces which may be derived by the 
projective transformation from the same surface as all the same, the 
equation (1) gives 00

1 surfaces which are projectively deformable to the 
given surface. 

If there be other pairs of solutions of U(u) and V(v), p must be 
a solution of the partial differential equation of the form (I). 

If p be a particular solution of 

z(a(u)-{3(v))____i)__2p __ (3 1(v) c)p + a1 (v) i)jJ =O, 
iJui)v du 6v 

1 Loe. cit. 
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U(u)=ko.(u) +k1, 

V(v)=kfd(v) +k1, 
k, k1 : const. 

are evidently solutions of (I). 
If these exist a further pair of solutions of U(u) and V(v), p must 

satisfy the two partial differential equations 

2 a(u)-(3(v) ~{- -{,'(v) -.1/J + o.1 (11)+=0, ( )
iF a a 

(JUuV Ult r,71 

2(u(u)-V(v) __!)_2.t_____ _ V'(v) ap + U'(u)_i}p =o, 
dudv du dv 

where 
U(u)=j=ka(u)+ ki, 

By the transformotion 

x=a(u), r;=f3(v), 

the above equation is transformed to 

2(x-y) d:t_ _ _i}P + op =O } 
axc)y dx oy ' 

2(X(x)- Y(y)) a2p - Y'(x) Dp --1-X'(x) ap =O, ............ (
3
) 

dxdy ax dy 

where 

X(x)= V(u), Y(y)== V(_v), 

X(x)=t=kx+ki, Y(y)=pky+ k1• 

From the equations (3), we have 

-(x-Y-Y'(x-y)) !! +(x-Y-X'(x-r;)) t =O .... (4) 

Consider the function 

q=2 f Xdx-2 f Ydy-(X+ Y)(x-y). 

Then the equation (4) is equivalent to 

d(p, q) =O 
d(x, y) . 

P=F(q). 
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Substituting this in the first equation of (3), we have 

2(x-y)F"(q){X-Y-X'(x-1)}{X-Y- ¥(x-1)} 

+3F'(q)(x-y)(X'-Y')=o . ............ (5) 

As x and y are independent x-y is not always zero. If one of 
the functions X- Y-X'(x-y), and X- Y-Y'(x-y) vanish identically, 
by the relation (4) the other must vanish, for 

ap a 
ax= a1(u) =4=o, 

iJp b ---1---
iJy = fl(v) ,o. 

And if both X-Y-X'(x-y)=o and X-Y-Y'(x-y)=o vanish 
identically, we can easily see that 

or 

X=kx+k, 

Y=ky+k. 

This contradicts our assumption. 
Hence, 

X-Y~X'(x--y)=4=0, 

X-Y- Y'(x-y)=4=0. 

Therefore, from (5) we have 

2 F"(q) { . }- X'- }" 3 F'(q) X-Y-Y'(x--y) -- X-Y-X'(x-y)' 

2 F''(q) { , }- .X' - Y' 3 F'(q) X--Y-X(x-q) -- X-Y-X',x-y)' 

~~log F'(q)=-~~log(X-Y-Y'(x-y)), 
3 iJy dy 

2 iJ d ( )) 
3 <1%IogF'(q)=-~log X-Y-Y'(x-y . 

Integrating we have 

{F'(q)}% = f(x) 
X-Y-X'(x-y) 

X /(y~ ......... (6) 
- - (x-y) 
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From the equation 

we can easily deduce 

c;"(z)= -kX11¼, 

71(y)= +kY''¼. 
I,: : const. 

If either X" and Y" be zero, F'(q)=o, accordingly a=b=o. 
Hence X"=t=o, Y7'=f=O. 
Substituting these in (6), we have 

X-Y 
Z-JI 

X' y,,½ + Y' X"¼ 
¼ l =f(z, y), 

X" + Y110 

X - Y=f(z, y) (z-y), 

X'=f(z, y)+ t<x-y), 

Y' =f(z, y)-_!_)if (z-y), 
<ry 

¾pi½ -X11¼ % =O ...................... ...••••••••• (7) 

Consider the function 

w= f x 11¼dz+ f ykdy. 

Then (7) is equivalent to 

a(f, w) -
a(z, y) -O. 

f= <p(w). 

X'=<p(w)+<p' x 11l(z-y). 

Differentiating the above equation by y, we have 

l 1 

X"" ~]''~" _ <p"(w) 
(z-y) X''½ y,,½ - <p'(w) 

fn(w). 
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From the equation 

iJ(fn(w) w) 
iJ(x,y) 

=O, 

we have 

or 

1--(x-y) ( X"-½ X'" + p,-½ Y"') + X"-% - Y"-% = o ....... (8) 

Differentiate the above equation by x and then by y, then we have 

_!_ ( pi-½ Y"') -.,. ..!!_ ( X"-½ X'") = o. 
dy dx 

__!!_( pi--~ Y"') = - 3c, 
dy 

c const. 

! (X"-J X'") = - 3c. 

By the equation (8), we know 

Therefore 

First, we assume 
Then we have 

O= + I 

X' = e ( ex + c1 + c3) 

cc2-c/ i/cx2+2cx+c2 

or - I. 

or- 1. 
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By the equation ( 6), we know 

e:= a, 
C3 =D3, 
C4 = D4. 

where 

a=cc2 - cl, 
K : certain constant. 

Similarly when cc~ - c/ = o, we have 

e: 
Y= _/ 

2y C 

···············<9) 

e: = + r, or - I. 

K : const ............. (9') 

Therefore we know that when there are the following relations between 

a and b, 
a= op 

av 
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( r 0 ) if p does not satisfy the partial differential equation of the form 

2(fl(u)- /3(v)) 
02

P - /3'(v)~- + a'(u)_!)_f?_ = o, .................. (ro) 
ouiJv iJu iJu 

there are only 001 surfaces which are projectively deformable to the 
given surface and they are given by the equations 

(2°) if p satisfies the equations (rn) and does not satisfy another partial 
differential equation of the same form, but not identical with it, there 
are 002 surfaces which are projectively deformable to the given surface 
and they are given by the equations 

i)
2
z ox ( ( ) ~-=b-+ f + ka. u) +k1 , 

iJu2 iJv 

(3°) if p satisfies the following two partial diffential equations 

2(a(u)-/3(v))_!JJ_ - f3'(v) op + a'(u)-~L = o, ouov au or 

2 U(u) - V('v) V'(v)1 + U'(u)1 = o, ( ) 
a· a 
au iJv 

we must have 

where cc2 - c1
2 =j=o 

or 
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p = Klog ,I ca+ c1 -,lc/3 + Ci 

,lca+ci +,lcf3+ci' 

U(u) = ± :__ --- + c3a + c4 , 

2-.,I c ca+ Ci 

V(v) = ~:___ 1 
· + c3/3 + c4, 

211 C cp + C1 

and all the surfaces which are projectively deformable to the given 
surfaces are given by the equations 

{ 

:; = b :: + (r + k ,/ ca2 + 2c1a + c2 + k 1a + k3), 

~
2

~ =a-dx_- + (g + k ,I c/32+ 2c1f3 + C2 + ki/3 + k")' 
uv du 

or 

where k, k1 , k2 are arbitrarly constants. 

Next, we consider the case where 

a=I. 

In this case the equations of the given surface are 

Therefore, if we put 

J. =f + U(u), 
µ=g+ V(v). 

U, V must satisfy the equation 

respectively 

U'(n) = b V'(v) + 2 V ~. . ................................ (4) 
dv 

This equation is satisfied by 
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U(u) =k, 
Vi_v)=o. 

If there is another pair of solutions of U and V, b must satisfy the 
partial differential equation of the form (4). 
If b satisfies the equation 

ri.'(zt) = b{3'(v) + 2(3J!!_, .......•..•.•................• ...... (5) 
,Jv 

Then 
k, k1 const. 

are solutions of (4). 
If (4) has a further pair solutions, b must satisfy the two partial 

differential equations 

ri.'(u) = b{11(v) + 2{3j!_, 
iJv 

V'(u) = b V'(v) + z Vvb, 
iJv 

from which we can easily deduce 

b= a'(f :l + c) 
2-i/p 

U(u)=k,a(u) + k2 , 

kf3(v) 

V(v) = (f J1 +cy· 
Therefore, we know that, when we have 

a= I, 

( I 
0

) if b does not satisfy the partial differential equation of the form 

a'(u) = b{1'(v) + 2(1(v)~, av 
there are only 001 surfaces which are projectively deformable to the 
given surface, and they are given by the equations 
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(2°) if b satisfies the above partial differential equation, but not equation 
of the same form which is not identical with it, there are 002 surfaces 
which are projectively deformable to the given surface and they are 

given by the equations 

ih: ax -., = b- + (f + ka + k1)x, au- av 

iPx dx ( --=-+ g+k(3)x, av2 au 
(3) 0 if b satisfies the following two partial differential equations 

we must have 

a'(u) = b(3'(v) + 2(3!!!!__, av 

U'(u) =bV'(v) + 2v;:, 

b= 

U(u) = 

V(v)= 

a'(f ¾+c) 
z✓/3 

k 1a(u) + k2, 

k(3(v) 

and all the surfaces which are projectively deformable to the given 
surface are given by the equations 

a2x ax 
-, -., =b-- + (/+ k{J. + k2)X, 

ou- av 
r)

2x ().r ( kp ) ~)~" = -:---- + g + -(f J. )2 + k1/1 , ( ,r du ;; + c 

which are of the manifoldness 003
• 

§ 6. Geometrical interpretation. 
We will now investigate the geometrical properties which are 

peculiar to the surface which admits projective deformation. 
Let us begin from the case where 

<Ja i!b 
au --;;;· 
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In this case the conjugate net of the curves 

du2 -dv2 = o, 

has very interesting properties. 
We shall call with Carton this conjugate net the conjugate net of 

the projective deformation. 
In the subsequent discussion we suppose the equations of the 

surface are 

i'h: =b ax + fz, 
Ozt2 av 

Recently Green has published a Memoire on reciprocal congru

ence. 

Let us denote by Cu a curve v = const., by C. a curve u = const., 
by Ru the ruled surface formed by the tangents to the curve Cu at the 
points of a fixed curve Cv and by Rv the similar parametric ruled sur

faces formed by tangents to the curve Cv. 
The congruence formed by the line l which connects two points 

(p) = ( :: )- /3(:c), 

(where a, p are functions of u, v) 

are called the congruence F'. 

(n) = ( !: )- a(x), 

The two tangent planes to Ru and Rv at (p) and (n) respectively 
intersect at the line l' which connects (.x-) and the point (z) 

(z) =~=a( iJx)-13( ax). 
iJuiJv au dv 

Reciprocally the plane determined by (z) and the tangent of Cu at 
(z) touches R" at (p), and the plane determined by (z) and the tangent 
of Cv at (a) touches Rv at (n). 

We say one of the lines l, l' is the reciprocal line of the other. 
The congruence formed by l' is called the congruence T'', and we 

speak of the congruences I' and T' as reciprocal congruences. 
Green has proved that when and only when 

t Trans. Amer. Math. Soc., ZO, 79-153, (1919). 
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iJa - iJfi 
-;;;;- iJv' 

the developpables of the congruence T correspond to a conjugate net 
of the surface and the developpables of the congruence I'' cut the sur
face in a conjugate net. 

For the subsequent use, we shall give a short note on the directrix 
congruence, ray congruence, and axis congruence. 

(I) Directrix congruence.1 

The two linear complexes which osculate at a point (x) the two 
asymptotics passing through (x) have in common a linear congruence 
with directrices d and d'. 

The directrix of the first kind, d, lies in the tangent plane of the 
surface, and connects two points 

( <h: )- ~(x), 
<Ju 2a (~)- ~Cx). 

iJv zb 

The directrix of the second kind, d', passes through (x) and through 
the point 

The congruences formed by d and d' are called the congruences 
of the first and second kind respectively. They are evidently reciprocal 

congruences. 

(2) Ray congruence.2 

Wilczynski has called the line joining the minus first and first 

Darboux-Laplace transforms of the point (x) with respect to a conjugate 
net the ray of the point (x), and the congruence formed by the ray 
the ray congruence of the conjugate net. 

(3) Axis congruence. 

Wilczynski has called the intersection of the osculating planes of 
the two curves of a conjugate net which meet at (x), the axis of the 
point (x) with respect to that conjugate net, and the congruence formed 
by the axis the axis congruence. 

We shall call the reciprocal line of the axis as the reciprocal axis. 

1 ,vilczynski, projective Trans. Amer. Math. Soc., 9, 79-120, (19o8). 

2 Trans. Amer. Math. Soc., 16, 3u-327, (1915). 
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If 
µ du2 

- dv2 = o. 

be the differential equation of a conjugate net, the ray of the point 
(x) with respect to that conjugate net is the line which joins the two 
points 

( ax) + 1 ( 2 + a,11. ) ( ) - - 2aµ - x, 
()u 411 i'Ju (~) + - 1 (2b _ !!.E_)(x), 

dv 4/'- µv 

the axis is the line which passes through (x) and through the point 

(a:2:v)- 4~1 (2b+ ~:)( ::) - 4~ (2a,11~- :::)( ~:), 

and the reciprocal axis is the line which connects the points 

- -- 2a11.2-- (x), (r)x) I ( iJµ) 
au 4µ iJu ( dx)- _r ( 2b+ iJ11 )(x). 

dv 4/1 dv 

For the conjugate net of the projective deformation, we have 

/1 = I 

Therefore the ray of (x) with respect to that net is the line 
which connects the two points 

( iJx) + ~(x) ' au 2 

and the reciprocal axis of (x) with respect to that net is the line which 

connects the two points 

(~)-~(x)' 
du 2 

( dx)- i_(x). 
iJv 2 

The line which is a harmonic conjugate of the line which joins 
(x) and the intersection of the reciprocal axis and the ray of (x) with 

respect to the ray and the reciprocal axis, passes through the points 

( ::) 
The developpables of the congruence formed by this line evidently 

correspond to a conjugate net. 

Now for the surface of the first kind which admits the projective 
deformation, we have 
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iJa ob 
au iJv 

Therefore, in this case the intersection of the said line and the 

directrix of the first kind is 

a( iJx)-b( ax). 
r)u av 

The intersection of the ray and the reciprocal axis with respect to 

the conjugate net of the projective deformation is 

b(~)-a( ax). 
OU av 

Therefore, we know that on the surface of the first kind which 

admits the projecth·e deformation, there is a conjugate net which has 

the following properties. 
I O Denote by 11 and 12 the ray and reciprocal axis of (..r) with 

respect to that conjugate net respectively, by ls the line which joins 
(..r) and the intersection of 11 and l2, and by 14 the fourth harmonic 

line of l1, l2, ls. 

Then the developables of the congruence formed by 14 correspond 
to a conjugate net. 

2° Denote by Pi and P2 the points where the asymptotic tangents 
meet l4 , by P,1 the intersection of l1 and 12 , by P 4 the intersection of 
the directrix of the first kind and 14 , and by D1 and D 2 , the points 
where the tangents at (..r) to that conjugate net meet 14 • 

Then ~, P4 are separated harmonically by D 1 and D 2 • 

Or we may express it in the following manner:-
The points Pi_, P2 and Pa, P.i form two pairs of involution of which 

D2 and D1 are double points. 
Reciprocally, if there be a conjugate net which has the said 

properties on a surface, that surface admits the projective deformation 
and is of the first species, and that conjugate net is that of the projective 
deformation. 

Let 
f1 du2 

- dv2 = o. 

be the differential equation of that conjugate net. 

Then the line 14 with respect to that conjugate net connects the 

two points 
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(, ux) 1 iJµ ( -) - +--x, 
iJu 411 iJu ( iJx) __ I_ jp._ (x). 

iJv 4/'- iJv 

As the developpables of the congruence of /3 correspond to a conjugate 
net, we have 

_ <) ( I iJµ )- iJ ( I iJµ) 
<Ju µ iJv - --;i,; µ "a;; ' 

i)2 
or --logp=o, 

iJudv 

where U(u) is a function of u only, V('ll) is a function of v only. 

Perform the transformation 

d;= Udu, d7J = Vdv. 

which transforms the differential equation of the above conjugate net 

into 
dfl-dr/ =O. 

Let 

be the transformed equations of the surface. 

Then by the second property of the above conjugate net, we have 

iJa iJb 
i); -a;;· 

that is, the surface is that of the first kind which admits the projective 
deformation. 

Next, we consider the case where a= I. 
In this case we consider the canonical ( or scroll) congruence which 

is due to Sullivan and Green. 

The canonical edge of the first kind is the line which connects 
the points 

( <Jx) + ~(x), 
iJu 4b 
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and that of the second kind is the line which passes through (x) and 
through the point 

Now we have 

iJa 
-=O, 
iJu 

iJa 
-=O. 
iJv 

Therefore the intersection of the tangent at (x) of the curve C,, and 

the directrix of the first kind is 

(~). 
rJu 

and the intersection of the tangent at (x) of the curve C,, and the 

canonical edge of the first kind is 

c::} 
The developpables of the congruence formed by the line which 

passes through the above two points correspond to a conjugate net. 

Hence, we have the following theorem. 
For a surface of the second kind which admits the projective 

deformation, the developables of the congruence formed by the lines 

which pass through the point where one of the asymptotic tangents at 

(x) meets the directrix of the first kind of (x), and through the point 

where the other of the asymptotic tangents at (x) meets the canonical 

edge of the first kind of (x), correspond to a conjugate net. 

The inverse of this theorem is also true. 

For then, we must have one of the equations 

rJ2 
--loga=o 
iJuiJv 

and 
i)2 

--logb=o, 
dudv 

which we can reduce by the transformations of § 4 to 

a = I and b = I respectively. 


