On the Reduction of Ideals.

By

Masazo Sono.

(Received Dec. 18, 1923)

This paper is intended to study the representation of ring-ideals as the cross-cut of others from a view of a chief-composition-series, and the main point is the following :----

When the elements of an ideal \mathfrak{A} all belong to another \mathfrak{B} , \mathfrak{A} is said to be *divisible* by \mathfrak{B} .

An ideal \mathfrak{M} of a ring \mathfrak{R} is called *maximal*, when there is no ideal, distinct from \mathfrak{M} and \mathfrak{R} , which divides \mathfrak{M} .

The ideals of the ring \Re are divided into two kinds: those which divide powers of \Re belong to the second kind, and the others to the first kind. An ideal of the first kind is divisible by a finite number of maximal ideals of the first kind.

An ideal which is divisible by only one maximal ideal \mathfrak{M} of the first kind divides a power of \mathfrak{M} , and this is named a *primary ideal* belonging to \mathfrak{M} .

An ideal of the first kind which is divisible by ν maximal ideals of the first kind is capable of representation as the cross-cut of ν primary ideals belonging to the respective maximal ideals.

PRELIMINARIES.

§ 1. When the elements of an ideal \mathfrak{A} all belong to another $\mathfrak{B}, \mathfrak{A}$ is said to be divisible by \mathfrak{B} , and this is denoted by $\mathfrak{A}=0$ (\mathfrak{B}).

In this case \mathfrak{B} is called a *divisor* of \mathfrak{A} , and \mathfrak{A} a *multiple* of \mathfrak{B}^1 .

In ideals of an algebraic field (*Körper*), if $\mathfrak{A}\equiv 0$ (\mathfrak{B}), \mathfrak{A} can be represented as the product of \mathfrak{B} and the third ideal. But for a general ring² this is not necessarily possible; in this sespect the definition of divisibility is extended.

The ideal $(\mathfrak{A}, \mathfrak{B})$, derived from two ideals \mathfrak{A} and \mathfrak{B} , is called the greatest common divisor of \mathfrak{A} and \mathfrak{B} , and the cross-cut of \mathfrak{A} and \mathfrak{B} , i.e. the ideal consisting of the elements common to \mathfrak{A} and \mathfrak{B} the *least commom multiple* of \mathfrak{A} and \mathfrak{B} . The latter is denoted by $[\mathfrak{A}, \mathfrak{B}]$.

We divide the ideals of a ring \Re into two kinds: those which divide powers of \Re belong to the *second kind*, and the others to the *first kind*.

§ 2. Let \mathfrak{A} be an ideal divible by another, \mathfrak{B} . The ring, to which \mathfrak{B} is reduced when we take the elements of \mathfrak{B} with respect to the modulus \mathfrak{A} , is called the *quotient-ring*³ of \mathfrak{B} by \mathfrak{A} ; and it is represented by the symbol $\mathfrak{B}/\mathfrak{A}$.

THEOREM⁴: If \mathfrak{A} and \mathfrak{B} are two ideals of a ring, the quotientrings $(\mathfrak{A}, \mathfrak{B})/\mathfrak{B}$ and $\mathfrak{A}/[\mathfrak{A}, \mathfrak{B}]$ are of the same type.

§ 3. An ideal \mathfrak{M} of a ring \mathfrak{R} is called *maximal*⁵, when there is no divisor of \mathfrak{M} , except \mathfrak{M} and \mathfrak{R} .

When \mathfrak{M} is maximal, the quotient-ring $\mathfrak{N}/\mathfrak{M}$ is a field, unless $\mathfrak{N}^{2}=0$ (\mathfrak{M}); and conversely if $\mathfrak{N}/\mathfrak{M}$ is a field, \mathfrak{M} is maximal⁶. So that we have

THEOREM: If \mathfrak{M} is a maximal ideal of the first kind, the quotientring $\mathfrak{N}/\mathfrak{M}$ is a field; and so conversely.

N. B. A ring is difined by nine postulates; when a set \Re of elements satisfies the following two postulates in addition to the nine, it is called a *field* (Körper): (i) there exists in \Re an element U such

¹ E. Noether, Math. Ann., 83, 26 (1921).

² These Memoirs 2, 204 (1917).

⁸ These Memoirs, 2, 213 (1917).

⁴ Loc. cit. p. 215.

⁵ Loc. cit. p. 214.

⁶ Loc. cit. p. 222.

that UK=K for every element K of \Re ; (ii) corresponding to every element A such that $CA \neq A$ for at least one element C of \Re , there exists in \Re an element X for which AX=U, where U is the said element¹.

§ 4. Let

 $\mathfrak{R}, \mathfrak{A}_1, \mathfrak{A}_2, \ldots$

be a series of ideals of a ring \Re in which each ideal is divisible by the preceding one, while there is no ideal divisible by \mathfrak{A}_i and dividing \mathfrak{A}_{i+1} , except \mathfrak{A}_i and \mathfrak{A}_{i+1} . This series is called a *chief-composition-series*², or simply a *chief-series* of the ring \Re . And also the series

 $\mathfrak{R}, \mathfrak{A}_1, \mathfrak{A}_2, \ldots \mathfrak{A}_n$

which consists of the first *n* terms of the above chief-series, is called a chief-series with the last term \mathfrak{A}_n .

THEOREM⁴: Any two chief-series of a ring

 $\mathfrak{R}, \mathfrak{A}_1, \mathfrak{A}_2, \ldots, \mathfrak{A}_n,$ $\mathfrak{R}, \mathfrak{A}'_1, \mathfrak{A}'_2, \ldots, \mathfrak{A}'_m (\mathfrak{A}_n = \mathfrak{A}'_m),$

of which the last terms are the same, consist of the same number of terms, and lead to two sets of quotient-rings

> $\Re/\mathfrak{A}_1, \quad \mathfrak{A}_1/\mathfrak{A}_2, \ldots,$ $\Re/\mathfrak{A}_1', \quad \mathfrak{A}_1'/\mathfrak{A}_2', \ldots,$

which are identical with each other except as regards the sequence in which they occur.

THEOREM⁴: If \mathfrak{A}_i and \mathfrak{A}_{i+1} are two consecutive terms of a chief-series, the quotient-ring $\mathfrak{A}_i/\mathfrak{A}_{i+1}$ is either a field or not. When $\mathfrak{A}_i/\mathfrak{A}_{i+1}$ is no field, $\mathfrak{A}_i^2 \equiv 0$ (\mathfrak{A}_{i+1}) .

In the present paper we study the ring-ideals under the condition that corresponding to an ideal there is one or more than one chief-series having it as the last term.

¹ Loc. cit. p. 205.

^{2, 8} Loc. cit. p. 220.

⁴ Loc. cit. p. 224.

REPRESENTATION OF IDEALS AS THE CROSS-CUT OF PRIMARY IDEALS.

§ 5. THEOREM¹: In two ideals \mathfrak{A} , \mathfrak{B} of a ring \mathfrak{R} , if $\mathfrak{B} \equiv 0$ (\mathfrak{A}) and the quotient-ring $\mathfrak{A}/\mathfrak{B}$ is a field, the ideal \mathfrak{B} is the cross-cut of \mathfrak{A} and the maximal ideal \mathfrak{M} of the first kind which is uniquely determined by the congruence

Herein \mathfrak{A} is assumed to be distinct from \mathfrak{R} .

Take an element α of \mathfrak{A} which does not belong to \mathfrak{B} , and consider the ideal \mathfrak{M} consisting of the elements X of the ring, which satisfy the congruence

1° \mathfrak{M} evidently contains all the elements of \mathfrak{B} , but no element of \mathfrak{A} , which does not belong to \mathfrak{B} ; because, since $\mathfrak{A}/\mathfrak{B}$ is a field, the product of two elements of \mathfrak{A} is congruent (mod. \mathfrak{B}) to zero, when and only when at least one of them belongs to \mathfrak{B} . Therefore \mathfrak{B} is the cross-cut of \mathfrak{A} and \mathfrak{M} , i.e.

$$\mathfrak{B} = [\mathfrak{A}, \mathfrak{M}].$$

 2° \mathfrak{M} contains elements not belonging to \mathfrak{A} .

For, since $\mathfrak{A}/\mathfrak{B}$ is a field, there exists in \mathfrak{A} such an element U that

for every element A of A. And hence we have

$$a\rho U \equiv a\rho (\mathfrak{B}),$$

or

$$\alpha(\rho U - \rho) \equiv 0 (\mathfrak{B}),$$

where ρ denotes an element not belonging to \mathfrak{A} .

But $\rho U - \rho \equiv -\rho \equiv 0$ (A). [$\because U \equiv 0$ (A)] Therefore \mathfrak{M} contains the element $(\rho U - \rho)$ not belonging to \mathfrak{A} . 3° ($\mathfrak{A}, \mathfrak{M}$)= \mathfrak{R} .

¹ This is an extension of the theorem which has been given in the previous paper. These Memoirs, **3** 189 (1918).

For, if the product αR , R being an element of \Re , belongs to \mathfrak{M} , it must belong to \mathfrak{B} ; indeed $\alpha \equiv 0$ (\mathfrak{A}), $[\mathfrak{A}, \mathfrak{M}] = \mathfrak{B}$. Therefore, the ideal consisting of the elements Y for which $\alpha Y \equiv 0$ (\mathfrak{M}) is coincident with \mathfrak{M} . But the quotient-rings ($\mathfrak{A}, \mathfrak{M}$)/ \mathfrak{M} and $\mathfrak{A}/[\mathfrak{A}, \mathfrak{M}]$ are of the same type [§ 2], while $\mathfrak{B} = [\mathfrak{A}, \mathfrak{M}]$ and $\mathfrak{A}/\mathfrak{B}$ is a field. Therefore, ($\mathfrak{A}, \mathfrak{M}$)/ \mathfrak{M} is also a field; hence, if ($\mathfrak{A}, \mathfrak{M}$) were distinct from \mathfrak{R} , the ideal consisting of the elements Y which satisfy the congruence $\alpha Y \equiv 0$ (\mathfrak{M}) would contain elements not belonging to \mathfrak{M} , as can be shown similarly in 2°. This contradicts the fact that it must coincide with \mathfrak{M} . Therefore, ($\mathfrak{A}, \mathfrak{M}$)= \mathfrak{R} .

4° \mathfrak{M} is a maximal ideal of the first kind; because $(\mathfrak{A}, \mathfrak{M})/\mathfrak{M}$ is a field, while $(\mathfrak{A}, \mathfrak{M})=\mathfrak{R}$. (by § 3, theorem.)

5° Since \mathfrak{M} consists of the elements X which satisfy the congruence $\alpha X \equiv 0$ (\mathfrak{B}), if $\mathfrak{B} = [\mathfrak{A}, \mathfrak{N}]$, $\mathfrak{N} \equiv 0$ (\mathfrak{M}) and hence, if \mathfrak{N} is maximal, $\mathfrak{N} = \mathfrak{M}$.

6° Take any element A of \mathfrak{A} . Since $\mathfrak{A}/\mathfrak{B}$ is a field and $a \neq 0$ (\mathfrak{B}), we can chose an element X so that $aX \equiv A$ (\mathfrak{B}), or A = aX + B, B being an element of \mathfrak{B} . Hence, we have

 $A\mathfrak{M} = (aX + B)\mathfrak{M} \equiv 0 (\mathfrak{B}). \quad \therefore \quad \mathfrak{A}\mathfrak{M} \equiv 0(\mathfrak{B}).$

And if $\mathfrak{AM}' \equiv 0$ (\mathfrak{B}), evidently $\mathfrak{M}' \equiv 0$ (\mathfrak{M}). Therefore, \mathfrak{M} is a maximal ideal of the first kind uniquely determined by the congruence $\mathfrak{AM} \equiv 0$ (\mathfrak{B}).

§ 6. THEOREM: Let

 $\mathfrak{A}_i, \mathfrak{A}_{i+1}, \ldots, \mathfrak{A}_{i+n}$

be (n+1) consecutive terms of a chief-series of a ring \Re , and let none of quotient-rings

$$\frac{\mathfrak{A}_i}{\mathfrak{A}_{i+1}}, \quad \frac{\mathfrak{A}_{i+1}}{\mathfrak{A}_{i+2}}, \dots, \quad \frac{\mathfrak{A}_{i+n-1}}{\mathfrak{A}_{i+n}}$$

be a field, i.e.

$$\mathfrak{A}^{2}_{i+j} \equiv 0 \ (\mathfrak{A}_{i+j+1}), \ j=0,1,2,\ldots,n-1.$$

Then, we have

$$\mathfrak{A}_{i}\mathfrak{A}_{i+n-1}\equiv 0 \ (\mathfrak{A}_{i+n}),$$

and consequently, $\mathfrak{A}_{i}^{n+1} \equiv 0 \ (\mathfrak{A}_{i+n})$.

Masazo Sono.

Herein \mathfrak{A}_i may be \mathfrak{R} . We prove this by induction.

1° The case n=2,

Take the ideal $(\mathfrak{A}_{i}\mathfrak{A}_{i+1}, \mathfrak{A}_{i+2})$, then we have immediately

 $\mathfrak{A}_{i+2} \equiv 0 \pmod{(\mathfrak{A}_{i}\mathfrak{A}_{i+1}, \mathfrak{A}_{i+2})}, \ (\mathfrak{A}_{i}\mathfrak{A}_{i+1}, \mathfrak{A}_{i+2}) \equiv 0 \ (\mathfrak{A}_{i+1}),$

while $\mathfrak{A}_i, \mathfrak{A}_{i+1}$ are consecutive terms of the chief-series. Therefore,

 $(\mathfrak{A}_{i}\mathfrak{A}_{i+1},\mathfrak{A}_{i+2}) =$ either \mathfrak{A}_{i+1} or \mathfrak{A}_{i+2} .

If $(\mathfrak{A}_{i}\mathfrak{A}_{i+1}, \mathfrak{A}_{i+2})$ were $= \mathfrak{A}_{i+1}$,

we should have

$$(\mathfrak{A}_{i}^{2}\mathfrak{A}_{i+1}, \mathfrak{A}_{i}\mathfrak{A}_{i+2}, \mathfrak{A}_{i+2}) = (\mathfrak{A}_{i}\mathfrak{A}_{i+1}, \mathfrak{A}_{i+2}) = \mathfrak{A}_{i+1},$$

which contradicts the consequence

 $(\mathfrak{A}_{i}^{2}\mathfrak{A}_{i+1}, \mathfrak{A}_{i}\mathfrak{A}_{i+2}, \mathfrak{A}_{i+2}) \equiv 0 \ (\mathfrak{A}_{i+2})$

from the hypothesis. Therefore, we have

 $(\mathfrak{A}_{i}\mathfrak{A}_{i+1}, \ \mathfrak{A}_{i+2}) = \mathfrak{A}_{i+2}.$ $\therefore \ \mathfrak{A}_{i}\mathfrak{A}_{i+1} \equiv 0 \ (\mathfrak{A}_{i+2}).$

2° From the assumption $\mathfrak{A}_{i+1} \mathfrak{A}_{i+n-1} \equiv 0$ (\mathfrak{A}_{i+n}) it follows that $\mathfrak{A}_{i}\mathfrak{A}_{i+n-1} \equiv 0$ (\mathfrak{A}_{i+n}), if $\mathfrak{A}_{i}^{2} \equiv 0$ (\mathfrak{A}_{i+1}). For

$$(\mathfrak{A}_{i}\mathfrak{A}_{i+n-1}, \mathfrak{A}_{i+n}) = \mathfrak{A}_{i+n},$$

as can similarly be shown as before, and hence, $\mathfrak{A}_{i}\mathfrak{A}_{i+n-1}\equiv 0$ (\mathfrak{A}_{i+n}).

§ 7. Let

(1) \Re , \mathfrak{A}_1 , \mathfrak{A}_2 ,..., \mathfrak{A}_n be a chief-series of a ring \Re , and

(2)
$$\frac{\Re}{\Re_1}$$
, $\frac{\Re_1}{\Re_2}$, \ldots , $\frac{\Re_{n-1}}{\Re_n}$

the set of quotient-rings derived from (1).

THEOREM: If \mathfrak{A}_n is an ideal of the second kind, i.e., if \mathfrak{A}_n divides a power of \mathfrak{R} , none of the quotient-rings is a field; and so conversely.

In other words: whether a given ideal \mathfrak{A} belongs to the first kind or to the second kind, is determined by the existence or nonexistence of the field in the set of quotient-rings derived from a chief-series with \mathfrak{A} as the last term.

Proof. If $\Re^{e} \equiv 0$ (\mathfrak{A}_{n}) for a certain index e, the quotient-ring $\mathfrak{A}_{i}/\mathfrak{A}_{i+1}$ can not be a field; because otherwise we should have, for an element a_{i} of \mathfrak{A}_{i} which does not belong to \mathfrak{A}_{i+1} ,

196

 $\alpha_i^e \neq 0 \quad (\mathfrak{A}_{i+1}),$

and consequently $\mathfrak{R}^e \neq 0$ (\mathfrak{A}_n).

If, conversely, none of the quotient-rings is a field, we have, by the last theorem, $\mathfrak{R}^{n+1} \equiv 0$ (\mathfrak{A}_n) .

§ 8. THEOREM : If in set (2) of quotient-rings there are ν fields, the distinct maximal ideals of the first kind which are divisors of \mathfrak{A}_n are ν in number.

Let \mathfrak{M} be a maximal ideal of the first kind which is a divisor of \mathfrak{A}_n . Beginning with \mathfrak{A}_n , examine the ideals \mathfrak{A}_n , \mathfrak{A}_{n-1} ,....in series (1), whether they are divisible by \mathfrak{M} , then we shall have the ideal \mathfrak{A}_i such that

 $\mathfrak{A}_i \neq 0$ (\mathfrak{M}), while $\mathfrak{A}_{i+1} \equiv 0$ (\mathfrak{M}).

And, since \mathfrak{A}_i , \mathfrak{A}_{i+1} are consecutive terms of the chief-series, we have

$$[\mathfrak{A}_i, \mathfrak{M}] = \mathfrak{A}_{i+1}.$$

If $\mathfrak{A}_i = \mathfrak{R}$, evidently $\mathfrak{A}_{i+1} = \mathfrak{M}$ and $\mathfrak{A}_i/\mathfrak{A}_{i+1}$ is a field (§ 3, theorem). If on the contrary $\mathfrak{A}_i \neq \mathfrak{R}$, the quotient $\mathfrak{A}_i/\mathfrak{A}_{i+1}$ is of the same type as $(\mathfrak{A}_i, \mathfrak{M})/\mathfrak{M}$; and moreover $(\mathfrak{A}_i, \mathfrak{M}) = \mathfrak{R}$. Therefore $\mathfrak{A}_i/\mathfrak{A}_{i+1}$ is also a field. Thus to a maximal ideal of the first kind which divides \mathfrak{A}_n there corresponds one field in set (2).

If \mathfrak{N} be another maximal ideal of the first kind which divides \mathfrak{A}_n , there corresponds to \mathfrak{N} a field distinct from $\mathfrak{A}_i/\mathfrak{A}_{i+1}$. Indeed, if we had

 $\mathfrak{A}_{i} \neq 0$ (\mathfrak{N}), $\mathfrak{A}_{i+1} \equiv 0$ (\mathfrak{N}),

it would be

 $[\mathfrak{A}_i, \mathfrak{N}] = \mathfrak{A}_{i+1}$

and consequently $\mathfrak{N}=\mathfrak{M}$. [§ 5, 5°].

Therefore the number of maximal ideals of the first kind which divide \mathfrak{A}_n is either equal or less than that of the fields in set (2).

If, conversely, $\mathfrak{A}_i/\mathfrak{A}_{i+1}$ is a field, we have

$$\mathfrak{A}_{i+1} = [\mathfrak{A}_i, \mathfrak{M}],$$

M being a maximal ideal of the first kind [§ 5], and evidently

```
Masazo Sono.
```

 $\mathfrak{A}_{n} \equiv 0$ (\mathfrak{M}). Let $\mathfrak{A}_{i+j}/\mathfrak{A}_{i+j+1}$ be another field in set (2), and $\mathfrak{A}_{i+j+1} = [\mathfrak{A}_{i+j}, \mathfrak{N}]$ $(1 \leq j > n-i-1).$

Then we have

 $\mathfrak{A}_{i+j} \neq 0(\mathfrak{N}), \text{ while } \mathfrak{A}_{i+j} \equiv 0 \ (\mathfrak{A}_{i+1}),$

and hence

 $\mathfrak{N} \neq \mathfrak{M}.$

Therefore if in set (2) of quotient-rings there are ν fields, the maximal ideals of the first kind which divide \mathfrak{A}_n are at least ν in number.

The two results above obtained give the theorem.

The theorem may also be stated as follows:

An ideal of the first kind is divisible by a finite number of maximal ideals of the first kind; this number is equal to that of the fields in the quotient-rings derived from a chief-series having that ideal as the last term.

§ 9. THEOREM: If in set (2) of quotient-rings there is only one field, \mathfrak{A}_n is of the first kind and divides a power of a maximal ideal of the first kind; this maximal ideal is a divisor of \mathfrak{A}_n . Conversely, if \mathfrak{A}_n is of the first kind and a divisor of a power of a maximal ideal of the first kind, there is one and only one field in set (2).

Let $\mathfrak{A}_i/\mathfrak{A}_{i+1}$ be a field and the others no field. Then

 $\mathfrak{A}_{i+1} = [\mathfrak{A}_i, \mathfrak{M}],$

where \mathfrak{M} is a maximal ideal of first kind. Since $\mathfrak{N}/\mathfrak{A}_1, \mathfrak{A}_1/\mathfrak{A}_2, \ldots, \mathfrak{A}_{i-1}/\mathfrak{A}_i$ are no fields by assumption, we have

And, moreover, $\mathfrak{A}_{i+1}/\mathfrak{A}_{i+2},\ldots,\mathfrak{A}_{n-1}/\mathfrak{A}_n$ are no fields by supposition.

 $\therefore \quad \mathfrak{A}_{i+1}^{n-i} \equiv 0 \quad (\mathfrak{A}_n).$

Therefore, we have

$$\mathfrak{M}^{(i+1)(n-i)} \equiv 0 \ (\mathfrak{A}_n).$$

Next, to prove the converse, let M be a maximal ideal of first

198

kind and $\mathfrak{M}^{e} \equiv 0$ (\mathfrak{A}_{n}). Since \mathfrak{A}_{n} is assumed to be of the first kind, there must exist a field in set (2) [§ 7, theorem]; hence, \mathfrak{A}_{n} is divisible by a maximal ideal of the first kind [by the last theorem], and let it be \mathfrak{N} . If $\mathfrak{N} \neq \mathfrak{M}$, we should have

$$(\mathfrak{N}, \mathfrak{M}) = \mathfrak{R},$$

whence follows

 $(\mathfrak{N}, \mathfrak{M}^e) = \mathfrak{R}$

from the theorem which will be given in § 11.

 $\therefore \quad (\mathfrak{N}, \,\mathfrak{A}_n) = \mathfrak{N} \quad [:: \,\mathfrak{M}^e \equiv 0 \, (\mathfrak{A}_n)],$

contradictory to the assumption that $\mathfrak{A}_n \equiv 0$ (\mathfrak{N}). Therefore, $\mathfrak{N} = \mathfrak{M}$, i.e. \mathfrak{M} is the only maximal ideal of the first kind which divides \mathfrak{A}_n ; so that set (1) contains only one field.

N. B. Throughout this paper we denote by \Re the ring in which ideals are treated.

§ 10. Definition. An ideal which is divisible by only one maximal ideal \mathfrak{M} of the first kind is called a *primary ideal* belonging to \mathfrak{M} .

A primary ideal belonging to \mathfrak{M} is of the first kind and divides a power of \mathfrak{M} , as immediately follows from the last two theorems, and conversely an ideal of the first kind which divides a power of a maximal ideal of the first kind is primary.

THEOREM: Let \mathfrak{P} be a primary ideal belonging to the maximal ideal \mathfrak{M} . If the product of two ideals \mathfrak{A} , \mathfrak{B}

a power of \mathfrak{A} or \mathfrak{B} (or both) is divisible by \mathfrak{P} .

Let $\mathfrak{M}^{e} \equiv 0$ (\mathfrak{P}). If $\mathfrak{A} \equiv 0$ (\mathfrak{M}), $\mathfrak{A}^{e} \equiv 0$ (\mathfrak{M}^{e}) and consequently $\mathfrak{A}^{e} \equiv 0$ (\mathfrak{P}).

If, on the contrary, $\mathfrak{A} \neq 0$ (\mathfrak{M}), we have ($\mathfrak{A}, \mathfrak{M}$)= \mathfrak{R} , whence it follows that

$$(\mathfrak{A}\mathfrak{R}^{e-1}, \mathfrak{M}^e) = \mathfrak{R}^e.$$

For, $\mathfrak{R}^2 = (\mathfrak{A}, \mathfrak{M})\mathfrak{R} = (\mathfrak{A}\mathfrak{R}, \mathfrak{M}(\mathfrak{A}, \mathfrak{M}))$
$$= (\mathfrak{A}\mathfrak{R}, \mathfrak{A}\mathfrak{M}, \mathfrak{M}^2) = (\mathfrak{A}\mathfrak{R}, \mathfrak{M}^2).$$
$$\mathfrak{R}^3 = (\mathfrak{A}\mathfrak{R}, \mathfrak{M}^2)\mathfrak{R} = (\mathfrak{A}\mathfrak{R}^2, \mathfrak{M}^2(\mathfrak{A}, \mathfrak{M}))$$

Masazo Sono.

 $=(\mathfrak{AR}^2, \mathfrak{AM}^2, \mathfrak{M}^3)=(\mathfrak{AR}^2, \mathfrak{M}^3).$

•••••

 $\mathfrak{R}^{e}=(\mathfrak{A}\mathfrak{R}^{e-1},\ \mathfrak{M}^{e}).$

It follows from $\mathfrak{AB} \equiv 0$ (P) that $\mathfrak{ABR}^{e-1} \equiv 0$ (P), while $\mathfrak{BM}^e \equiv 0$ (P). Hence, we have

 $(\mathfrak{AR}^{e-1}, \mathfrak{M}^e)\mathfrak{B} \equiv 0 \ (\mathfrak{P}), \text{ or } \mathfrak{R}^e\mathfrak{B} = 0 \ (\mathfrak{M}), \text{ and consequently } \mathfrak{B}^{e+1} \equiv 0$ (\mathfrak{P}).

It may happen in the case where $\mathfrak{A} \equiv 0$ (\mathfrak{M}) that $\mathfrak{B}^{\lambda} \neq 0$ (\mathfrak{P}) for every index λ even if $\mathfrak{A} \neq 0$ (\mathfrak{P}). In this respect the primary ideal above defined is different from what has been defined by Noether¹.

§ 11. THEOREM: Let \mathfrak{M} be a maximal ideal of the first kind. Then from $(\mathfrak{A}, \mathfrak{M}) = \mathfrak{R}$ and $(\mathfrak{B}, \mathfrak{M}) = \mathfrak{R}$, it follows that $(\mathfrak{AB}, \mathfrak{M}) = \mathfrak{R}$.

(As already stated, \Re always denotes the ring in which ideals are treated.)

$$\mathfrak{M}^{2}=(\mathfrak{A}, \mathfrak{M})(\mathfrak{B}, \mathfrak{M})=(\mathfrak{AB}, \mathfrak{AM}, \mathfrak{BM}, \mathfrak{M}^{2}).$$

But $\mathfrak{R}^{2} \neq 0 (\mathfrak{M}),$

since M is of the first kind.

 $\therefore \quad \Re = (\Re^2, \ \mathfrak{M}) = (\mathfrak{AB}, \ \mathfrak{AM}, \ \mathfrak{BM}, \ \mathfrak{M}^2, \ \mathfrak{M}) = (\mathfrak{AB}, \ \mathfrak{M}).$

§ 12. THEOREM : If an ideal \mathfrak{A} of the first kind is not primary, it is capable of representation as the cross-cut of two ideals \mathfrak{L} and \mathfrak{P} subject to the following conditions:

(i) 𝔅²≢0 (𝔅).

(ii) \mathfrak{P} consists of the elements P of the ring \mathfrak{R} , which satisfy the congruence

 $\Omega P \equiv 0$ (A).

(iii) \$\$ is primary.

Proof. 1° Let \mathfrak{A}_i , \mathfrak{A}_{i+1} be two consecutive terms of a chiefseries, of which $\mathfrak{A}_i/\mathfrak{A}_{i+1}$ is no field, i.e. $\mathfrak{A}_i^2 \equiv 0$ (\mathfrak{A}_{i+1}). And suppose that \mathfrak{A}_i may be represented as the cross-cut of two ideals \mathfrak{L} and \mathfrak{P} subject to the following conditions:

(i) There exists an element λ in \mathfrak{L} such that $\lambda^2 \neq 0$ (\mathfrak{A}_i) .

(ii) \mathfrak{P} is the ideal which consists of the elements P for which

¹ Math. Ann., 83, 37 (1921).

201

 $\lambda \mathbf{P} \equiv 0 \ (\mathfrak{A}_i).$

(iii) \mathfrak{P} is primary and belongs to a maximal ideal \mathfrak{M} , i.e. $\mathfrak{M}^{e} \equiv 0$ (\mathfrak{P}).

Consider the ideal \mathfrak{Q} consisting of the elements Q for which $\lambda \mathbb{Q} \equiv 0$ (\mathfrak{N}_{i+1}), λ being the element taken above. Then evidently

$$\mathfrak{A}_{i+1} \equiv 0$$
 (Q), Q=0(P),

and, by our assumption, \mathfrak{A}_i and \mathfrak{A}_{i+1} are consecutive terms of a chief-series. Therefore we have the following three cases :

(*a*) The case where $\mathfrak{D} = \mathfrak{A}_{i+1}$, i.e. $\lambda R \equiv 0$ (\mathfrak{A}_{i+1}) when and only when $R \equiv 0$ (\mathfrak{A}_{i+1}).

 $\lambda \mathfrak{P} \equiv 0 \ (\mathfrak{A}_i), \text{ while } \mathfrak{A}_i^2 \equiv 0 \ (\mathfrak{A}_{i+1}).$

 $\therefore \quad \lambda^2 \mathfrak{P}^2 = 0 \quad (\mathfrak{A}_{i+1}).$

 $\therefore \quad \lambda \mathfrak{P}^{2} \equiv 0 \quad (\mathfrak{A}_{i+1}). \quad [:: \mathfrak{Q} = \mathfrak{A}_{i+1}]$

 $\therefore \quad \mathfrak{P}^{2} \equiv 0 \ (\mathfrak{A}_{i+1}), \text{ while } \mathfrak{M}^{e} \equiv 0 \ (\mathfrak{P}).$

 $\therefore \quad \mathfrak{M}^{2e} \equiv 0 \ (\mathfrak{A}_{i+1}),$

that is, \mathfrak{A}_{i+1} must be a primary ideal belonging to \mathfrak{M} .

(b) The case where $\mathfrak{Q} \neq \mathfrak{A}_{i+1}$, $[\mathfrak{A}_i, \mathfrak{Q}] = \mathfrak{A}_{i+1}$.

Since $\Omega = 0$ (\$) and [2, \$]= \mathfrak{A}_i , we have

 $[\mathfrak{L}, \mathfrak{Q}] = 0 \ (\mathfrak{A}_i).$

$$\therefore \quad [\mathfrak{L}, \, \mathfrak{Q}] \equiv 0 \ ([\mathfrak{A}_i, \, \mathfrak{Q}]).$$

 $\therefore \quad [\mathfrak{L}, \ \mathfrak{Q}] = [\mathfrak{A}_i, \ \mathfrak{Q}] = \mathfrak{A}_{i+1}.$

And \mathfrak{Q} is a primary ideal belonging to \mathfrak{M} . Because $\lambda^2 \mathfrak{P}^2 \equiv 0$ (\mathfrak{N}_{i+1}) and hence, $\lambda \mathfrak{P}^2 \equiv 0$ (\mathfrak{Q}), while $\lambda \equiv 0$ (\mathfrak{Q}).

 $\therefore \lambda \mathfrak{P}^2 \equiv 0$ ([$\mathfrak{L}, \mathfrak{Q}$]), or $\lambda \mathfrak{P}^2 \equiv 0$ (\mathfrak{A}_{i+1}).

- \therefore $\mathfrak{P}^2 \equiv 0$ (Q), while $\mathfrak{M}^e \equiv 0$ (P).
- $\therefore \mathfrak{M}^{2e} \equiv 0$ (Q).

Thue \mathfrak{A}_{i+1} can be reduced into the cross-cut of \mathfrak{L} and \mathfrak{D} which satisfy the same conditions as assumed for \mathfrak{L} and \mathfrak{P} .

(c) The case where $[\mathfrak{A}_i, \mathfrak{Q}] = \mathfrak{A}_i$.

If $\lambda L \equiv 0$ (\mathfrak{A}_i) for an element L of \mathfrak{A} , we have $L \equiv 0$ (\mathfrak{P}) , and consequently $L \equiv 0$ (\mathfrak{A}_i) ; hence $\lambda L \equiv 0$ (\mathfrak{A}_{i+1}) , because $\mathfrak{A}_i \equiv 0$ (\mathfrak{Q}) and $\lambda \mathfrak{Q} \equiv 0$ (\mathfrak{A}_{i+1}) . Therefore the elements of $\lambda \mathfrak{A}$, which belong to \mathfrak{A}_i , must belong to \mathfrak{A}_{i+1} . So that

$$[(\lambda \mathfrak{L}, \mathfrak{A}_{i+1}), \mathfrak{P}] = \mathfrak{A}_{i+1}.$$

Masazo Sono.

The ideals (λ , \mathfrak{N}_{i+1}) and \mathfrak{P} also satisfy the three conditions.

For, take the element λ^2 of $(\lambda \mathfrak{Q}, \mathfrak{N}_{i+1})$, then $\lambda^4 \neq 0$ (\mathfrak{N}_{i+1}) . Indeed, if $\lambda^4 \equiv 0$ (\mathfrak{N}_{i+1}) , λ^3 would $\equiv 0$ (\mathfrak{N}_i) and consequently, λ^2 would $\equiv 0$ (\mathfrak{P}) , while $\lambda \equiv 0$ (\mathfrak{Q}) and $[\mathfrak{Q}, \mathfrak{P}] \equiv \mathfrak{N}_i$. Hence, λ^2 would $\equiv 0$ (\mathfrak{N}_i) , contradictory to assumption (i).

Next, if $\lambda^2 \mathbb{R} \equiv 0$ (\mathfrak{A}_{i+1}) , we have $\lambda \mathbb{R} \equiv 0$ (\mathfrak{Q}) , and hence, $\lambda \mathbb{R} \equiv 0$ $(\{\mathfrak{Q}, \mathfrak{Q}\})$, while $[\mathfrak{Q}, \mathfrak{Q}] \equiv 0$ (\mathfrak{A}_i) . Therefore, $\mathbb{R} \equiv 0$ (\mathfrak{P}) .

Moreover $\lambda^2 \mathfrak{P} = \lambda \lambda \mathfrak{P} \equiv 0$ (\mathfrak{M}_i) and $\mathfrak{M}_i \equiv 0$ (\mathfrak{M}_{i+1}), as already shown above. Therefore, $\lambda^2 \mathfrak{P} \equiv 0$ (\mathfrak{M}_{i+1}). Thus the elements X for which $\lambda^2 X \equiv \mathfrak{N}(\mathfrak{M}_{i+1})$ form the ideal \mathfrak{P} .

Lastly \mathfrak{P} is primary as has been assumed.

We can conclude from (a), (b) and (c) that if \mathfrak{N}_i may be represented as the cross-cut of two ideals subject to the conditions (i), (ii), (iii), it is also for \mathfrak{N}_{i+1} , unless \mathfrak{N}_{i+1} is primary.

2° Let

$$\mathfrak{A}_{i-1}, \mathfrak{A}_i, \mathfrak{A}_{i+1}, \ldots, \mathfrak{A}_n$$

be consecutive terms of a chief-series, and suppose that the quotientring $\mathfrak{A}_{i-1}/\mathfrak{A}_i$ is a field, but not the others $\mathfrak{A}_i/\mathfrak{A}_{i+1},\ldots,\mathfrak{A}_{n-1}/\mathfrak{A}_n$. Then

$$\mathfrak{A}_i = [\mathfrak{A}_{i-1}, \mathfrak{M}],$$

where \mathfrak{M} is a maximal ideal of the first kind, so that the three conditions in 1° are satisfied in this representation.

If \mathfrak{A}_n is not primary, it is also for $\mathfrak{A}_{i+1}, \mathfrak{A}_{i+2}, \ldots, \mathfrak{A}_{n-1}$ [by § 7, theorem]. Therefore, by the repeated use of the result obtained in 1°, \mathfrak{A}_n must be reduced into the cross-cut of two ideals satisfying the same conditions as assumed for \mathfrak{A} and \mathfrak{P} in 1°.

3° Again, returning to the reduction of \mathfrak{A}_i in 1°, we have $\mathfrak{D} \cong \mathfrak{O}(\mathfrak{A}_i)$. But if $\mathfrak{D} X \equiv \mathfrak{O}(\mathfrak{A}_i)$, evidently $\lambda X \equiv \mathfrak{O}(\mathfrak{A}_i)$ and consequently, $X \equiv \mathfrak{O}(\mathfrak{P})$. Therefore, \mathfrak{P} consists of the elements X for which $\mathfrak{D} X \equiv \mathfrak{O}(\mathfrak{A}_i)$. And the three conditions given in the theorem are satisfied.

The results in 1°, 2°, 3° furnish a proof of the theorem.

§ 13. In the representation of an ideal : $\mathfrak{A}=[\mathfrak{A}, \mathfrak{P}]$ given in

202

the last section, \mathfrak{L} is prime to \mathfrak{P} according to Noether's definition'; because if $\mathfrak{LN} \equiv 0$ (\mathfrak{P}), we have immediately $\mathfrak{LN} \equiv 0$ (\mathfrak{A}) and consequently $\mathfrak{N} \equiv 0$ (\mathfrak{P}). But \mathfrak{P} is not necessarily prime to \mathfrak{L} .

Let 3 be the aggregate of such elements Z that ZR=0 for every element R of the ring. Then it follows from the definition by Noether that, if an ideal \mathfrak{H} is prime to another \mathfrak{R} , \mathfrak{K} must be a divisor of 3, and that if \mathfrak{H} and \mathfrak{K} are mutually prime², both divide 3. In other words, the ideals which do not divide 3 are relatively-primeirreducible³.

§ 14. THEOREM : If an ideal of the first kind is divisible by ν maximal ideals of the first kind, it is representable as the cross-cut of ν primary ideals belonging to the respective maximal ideals.

Let \mathfrak{A} be an ideal of the first kind and not primary. Then \mathfrak{A} can be so reduced that $\mathfrak{A}=[\mathfrak{A}, \mathfrak{P}]$, where \mathfrak{P} is primary.

And \mathfrak{L} is also of the first kind. For otherwise, \mathfrak{P}^d would $\equiv 0$ (\mathfrak{Q}) for a certain exponent d, and consequently \mathfrak{P}^d would $\equiv 0$ (\mathfrak{A}). But $\mathfrak{M}^e \equiv 0$ (\mathfrak{P}), \mathfrak{M} being the maximal ideal to which \mathfrak{P} belongs. Therefore, \mathfrak{M}^{de} would $\equiv 0$ (\mathfrak{A}), contrary to our assumption that \mathfrak{A} is of the first kind and not primary.

If \mathfrak{L} is not primary, reduce \mathfrak{L} so that one of the components is primary. But the number of maximal ideals of the first kind which divide \mathfrak{A} is finite. Therefore, after a finite number of reductions, \mathfrak{A} can be represented as the cross-cut of the primary ideals :

$$\mathfrak{A}=[\mathfrak{P},\mathfrak{P}_1,\ldots,\mathfrak{P}_r],$$

where \mathfrak{P} , $\mathfrak{P}_1, \ldots, \mathfrak{P}_r$ are primary ideals respectively belonging to the maximal ideals \mathfrak{M} , $\mathfrak{M}_1, \ldots, \mathfrak{M}_r$.

If \mathfrak{N} is a maximal ideal, distinct from $\mathfrak{M}, \mathfrak{M}_1, \ldots, \mathfrak{M}_r$, of the first kind, we have

 $(\mathfrak{P}, \mathfrak{N}) = (\mathfrak{P}_1, \mathfrak{N}) = \dots = (\mathfrak{P}_r, \mathfrak{N}) = \mathfrak{N}$

¹ Math. Ann., 83, 45 (1921).

^{2, 8} For these nomenclatures, see Loc. cit. p. 51.

and consequently

 $(\mathfrak{PP}_1,\ldots,\mathfrak{P}_r,\mathfrak{N})=\mathfrak{R}$ [by § 11, theorem].

 $\therefore \quad ([\mathfrak{P},\mathfrak{P}_1,\ldots,\mathfrak{P}_r],\mathfrak{N})=\mathfrak{R}, \text{ or } (\mathfrak{A},\mathfrak{N})=\mathfrak{R}.$

Therefore, the maximal ideals which divide \mathfrak{A} are $\mathfrak{M}, \mathfrak{M}_1, \ldots, \mathfrak{M}_r$; so that $r+1=\nu$.

By the above theorem the study of the representation of ideals as the cross-cut of their divisors is reduced to that of primary ideals and of ideals of the secend kind.

December, 9, 1923.

2∩4