On the Reduction of Ideals.

By

Masazo Sono.

(Received Dec. 18, 1923)

This paper is intended to study the representation of ring-ideals as the cross-cut of others from a view of a chief-composition-series, and the main point is the following:-

When the elements of an ideal \mathfrak{A} all belong to another $\mathfrak{B}, \mathfrak{Z}$ is said to be divisible by \mathfrak{B}.

An ideal \mathfrak{M} of a ring \mathfrak{R} is called maximal, when there is no ideal, distinct from \mathfrak{M} and \mathfrak{R}, which divides \mathfrak{M}.

The ideals of the ring \Re are divided into two kinds: those which divide powers of \Re belong to the second kind, and the others to the first kind. An ideal of the first kind is divisible by a finite number of maximal ideals of the first kind.

An ideal which is divisible by only one maximal ideal \mathfrak{M} of the first kind divides a power of \mathfrak{P}, and this is named a primary ideal belonging to \mathfrak{M}.

An ideal of the first kind which is divisible by ν maximal ideals of the first kind is capable of representation as the cross-cut of ν primary ideals belonging to the respective maximal ideals.

PRELIMINARIES.

§ 1. When the elements of an ideal \mathfrak{A} all belong to another $\mathfrak{B}, \mathfrak{U}$ is said to be divisible by \mathfrak{B}, and this is denoted by $\mathfrak{H} \equiv 0$ (\mathcal{B}).

In this case \mathfrak{F} is called a divisor of \mathfrak{A}, and \mathfrak{A} a multiple of \mathfrak{F}^{1}.
In ideals of an algebraic field (Körper), if $\mathfrak{H} \equiv 0(\mathfrak{B}), \mathfrak{2}$ can be represented as the product of \mathfrak{B} and the third ideal. But for a general ring 2 this is not necessarily possible; in this sespect the definition of divisibility is extended.

The ideal $(\mathfrak{N}, \mathfrak{B})$, derived from two ideals \mathfrak{U} and \mathfrak{F}, is called the greatest common divisor of \mathfrak{A} and \mathfrak{F}, and the cross-cut of \mathfrak{A} and \mathfrak{B}, i.e. the ideal consisting of the elements common to \mathfrak{H} and \mathfrak{F} the loast commom multiple of \mathfrak{U} and \mathfrak{F}. The latter is denoted by $[\mathfrak{U}, \mathfrak{Y}]$.

We divide the ideals of a ring \mathfrak{R} into two kinds: those which divide powers of \mathfrak{R} belong to the second kind, and the others to the first kind.
§ 2. Let \mathfrak{A} be an ideal divible by another, \mathfrak{B}. The ring, to which \mathfrak{B} is reduced when we take the elements of \mathfrak{B} with respect to the modulus \mathfrak{A}, is called the quotient-ring ${ }^{3}$ of \mathfrak{B} by \mathfrak{Y}; and it is represented by the symbol $\mathfrak{B} / \mathfrak{M}$.

Theorem ${ }^{4}$: If \mathfrak{A} and \mathfrak{B} are two ideals of a ring, the quotientrings $(\mathfrak{N}, \mathfrak{B}) / \mathfrak{B}$ and $\mathfrak{U} /[\mathfrak{Y}, \mathfrak{Y}]$ are of the same type.
$\S 3$. An ideal \mathfrak{M} of a ring \mathfrak{M} is called maximal ${ }^{5}$, when there is no divisor of \mathfrak{M}, except \mathfrak{M} and \mathfrak{R}.

When \mathfrak{M} is maximal, the quotient-ring $\mathfrak{R} / \mathfrak{M}$ is a field, unless $\mathfrak{R}^{2} \equiv 0(\mathfrak{M})$; and conversely if $\mathfrak{R} / \mathfrak{M}$ is a field, \mathfrak{M} is maximal ${ }^{6}$. So that we have

Theorem: If \mathfrak{M} is a maximal ideal of the first kind, the quotientring $\mathfrak{M} / \mathfrak{M}$ is a field; and so conversely.
N. B. A ring is difined by nine postulates; when a set Ω of elements satisfies the following two postulates in addition to the nine, it is called a field (Körper): (i) there exists in Ω an element U such

[^0]that $\mathrm{UK}=\mathrm{K}$ for every element K of Ω; (ii) corresponding to every element A such that $C A \neq A$ for at least one element C of Ω, there exists in Ω an element X for which $A X=U$, where U is the said element ${ }^{1}$.
§ 4. Let
$\mathfrak{R}, \mathfrak{X}_{1}, \mathfrak{A}_{2}, \ldots \ldots \ldots$.
be a series of ideals of a ring \mathfrak{P} in which each ideal is divisible by the preceding one, while there is no ideal divisible by \mathfrak{N}_{i} and dividing \mathfrak{U}_{i+1}, except \mathfrak{N}_{i} and \mathfrak{N}_{i+1}. This series is called a chief-composition-series ${ }^{2}$, or simply a chief-series of the ring \mathfrak{R}. And also the series
$$
\mathfrak{R}, \mathfrak{Q}_{1}, \mathfrak{A}_{2}, \ldots \ldots \ldots \mathfrak{U}_{n}
$$
which consists of the first n terms of the above chief-series, is called a chief-series with the last term \mathfrak{A}_{n}.

Theorem ${ }^{4}$: Any two chief-series of a ring

$$
\mathfrak{R}, \mathfrak{A}_{1}, \mathfrak{A}_{2}, \ldots \ldots \ldots \mathfrak{A}_{n}
$$

$$
\mathfrak{R}, \mathfrak{Y}_{1}^{\prime}, \mathfrak{Y}_{2}^{\prime}, \ldots \ldots \ldots \mathfrak{U}_{m}^{\prime}\left(\mathfrak{U}_{n}=\mathfrak{A}_{m}^{\prime}\right)
$$

of which the last terms are the same, consist of the same number of terms, and lead to two sets of quotient-rings

$$
\begin{array}{ll}
\mathfrak{N} / \mathfrak{A}_{1}, & \mathfrak{U}_{1} / \mathfrak{A}_{2}, \ldots \ldots \ldots \ldots \\
\Re / \mathfrak{H}_{1}^{\prime}, & \mathfrak{U}_{1}^{\prime} / \mathfrak{U}_{2}^{\prime}, \ldots \ldots \ldots \ldots
\end{array},
$$

which are identical with each other except as regards the sequence in which they occur.

Theorem ${ }^{4}$: If \mathfrak{N}_{i} and \mathfrak{N}_{i+1} are two consecutive terms of a chief-series, the quotient-ring $\mathfrak{U}_{i} / \mathscr{N}_{i+1}$ is either a field or not. When $\mathfrak{A}_{i} / \mathfrak{H}_{i+1}$ is no field, $\mathfrak{H}_{i}^{2} \equiv 0\left(\mathfrak{A}_{i+1}\right)$.

In the present paper we study the ring-ideals under the condition that corresponding to an ideal there is one or more than one chief-series having it as the last term.

[^1]
REPRESENTATION OF IDEALS AS THE CROSS-CUT OF PRIMARY IDEALS.

§ 5. Theorem ${ }^{1}$: In two ideals $\mathfrak{M}, \mathfrak{B}$ of a ring \mathfrak{R}, if $\mathfrak{B} \equiv 0(\mathfrak{C})$ and the quotient-ring $\mathfrak{A} / \mathfrak{B}$ is a field, the ideal \mathfrak{F} is the cross-cut of \mathfrak{A} and the maximal ideal \mathfrak{M} of the first kind which is uniquely determined by the congruence

$$
\mathfrak{U M} \equiv 0(\mathfrak{B}) .
$$

Herein \mathfrak{Z} is assumed to be distinct from \mathfrak{R}.
Take an element α of \mathfrak{Z} which does not belong to \mathfrak{B}, and consider the ideal \mathfrak{M} consisting of the elements X of the ring, which satisfy the congruence

$$
\alpha \mathrm{X} \equiv 0 \quad(\mathfrak{B}) .
$$

$1^{\circ} \mathfrak{M}$ evidently contains all the elements of \mathfrak{B}, but no element of \mathfrak{A}, which does not belong to \mathfrak{B}; because, since $\mathfrak{U} / \mathfrak{F}$ is a field, the product of two elements of \mathfrak{H} is congruent (mod. \mathfrak{B}) to zero, when and only when at least one of them belongs to \mathfrak{F}. Therefore \mathfrak{B} is the cross-cut of \mathfrak{Y} and \mathfrak{M}, i.e.

$$
\mathfrak{B}=[\mathfrak{X}, \mathfrak{M}] .
$$

$2^{\circ} \mathfrak{M}$ contains elements not belonging to \mathfrak{N}.
For, since $\mathfrak{A} / \mathfrak{B}$ is a field, there exists in \mathfrak{A} such an element U that

$$
\mathrm{A} U \equiv \mathrm{~A}(\mathfrak{B})
$$

for every element A of \mathfrak{A}. And hence we have

$$
\alpha \rho \mathrm{U} \equiv \alpha \rho(\mathfrak{B}),
$$

or

$$
\alpha(\rho \mathrm{U}-\rho) \equiv 0(\mathfrak{F}),
$$

where ρ denotes an element not belonging to \mathfrak{N}.
But $\quad \rho \mathrm{U}-\rho \equiv-\rho \equiv 0(\mathfrak{K}) . \quad[\because \mathrm{U} \equiv 0(\mathfrak{H})]$
Therefore \mathfrak{M} contains the element ($\rho \mathrm{U}-\rho$) not belonging to \mathfrak{N}. $3^{\circ}(\mathfrak{N}, \mathfrak{M})=\mathfrak{R}$.

[^2]For，if the product $\alpha \mathrm{R}, \mathrm{R}$ being an element of \mathfrak{R} ，belongs to \mathfrak{M} ，it must belong to \mathfrak{B} ；indeed $\alpha \equiv 0$（ \mathfrak{H} ），$[\mathfrak{A}, \mathfrak{M}]=\mathfrak{F}$ ．Therefore， the ideal consisting of the elements Y for which $\alpha \mathrm{Y} \equiv 0(\mathfrak{R})$ is coincident with \mathfrak{M} ．But the quotient－rings $(\mathfrak{Y}, \mathfrak{M}) / \mathfrak{M}$ and $\mathfrak{H} /[\mathfrak{N}, \mathfrak{M}]$ are of the same type $[\S 2]$ ，while $\mathfrak{B}=[\mathfrak{U}, \mathfrak{M}]$ and $\mathfrak{U} / \mathfrak{B}$ is a field． Therefore，$(\mathfrak{H}, \mathfrak{M}) / \mathfrak{M}$ is also a field ；hence，if（ $\mathfrak{N}, \mathfrak{M}$ ）were distinct from \Re ，the ideal consisting of the elements Y which satisfy the congruence $\alpha \mathrm{Y} \equiv 0(\mathfrak{M})$ would contain elements not belonging to \mathfrak{M} ， as can be shown similarly in 2° ．This contradicts the fact that it must coincide with \mathfrak{M} ．＇Therefore，$(\mathfrak{N}, \mathfrak{M})=\mathfrak{R}$ ．
$4^{\circ} \mathfrak{M}$ is a maximal ideal of the first kind ；because $(\mathfrak{Y}, \mathfrak{M}) / \mathfrak{M}$ is a field，while $(\mathfrak{U}, \mathfrak{M})=\mathfrak{M}$ ．（by § 3，theorem．）
5° Since \mathfrak{M} consists of the elements X which satisfy the congruence $\alpha \mathrm{X} \equiv 0(\mathfrak{B})$ ，if $\mathfrak{B}=[\mathfrak{C}, \mathfrak{M}], \mathfrak{R} \equiv 0(\mathfrak{M})$ and hence，if \mathfrak{R} is maximal， $\mathfrak{R}=\mathfrak{M}$ ．
6° Take any element A of \mathfrak{A} ．Since $\mathfrak{H} / \mathfrak{B}$ is a field and $a ⿻ 三 丨$ (\mathfrak{B}) ，we can chose an element X so that $\alpha \mathrm{X} \equiv \mathrm{A}(\mathfrak{B})$ ，or $\mathrm{A}=\alpha \mathrm{X}+\mathrm{B}, \mathrm{B}$ being an element of \mathfrak{B} ．Hence，we have

$$
\mathrm{AM}=(\alpha \mathrm{X}+\mathrm{B}) \mathfrak{M} \equiv 0(\mathfrak{B}) . \quad \therefore \quad \mathfrak{A} \mathfrak{M} \equiv 0(\mathfrak{B}) .
$$

And if $\mathfrak{M M} \equiv 0(\mathfrak{B})$ ，evidently $\mathfrak{M}^{\prime} \equiv 0(\mathfrak{P})$ ．Therefore， \mathfrak{M} is a maximal ideal of the first kind uniquely determined by the congruence $\mathfrak{Z M} \equiv 0$（ \mathfrak{B} ）．
§6．Theorem：Let

$$
\mathfrak{N}_{i}, \mathfrak{U}_{i+1}, \ldots \ldots \ldots \mathfrak{N}_{i+n}
$$

be（ $n+1$ ）consecutive terms of a chief－series of a ring \Re ，and let none of quotient－rings

$$
\frac{\mathfrak{H}_{i}}{\mathfrak{H}_{i+1}}, \frac{\mathfrak{H}_{i+1}}{\mathfrak{H}_{i+2}}, \ldots \ldots, \frac{\mathfrak{A}_{i+n-1}}{\mathfrak{H}_{i+n}}
$$

be a field，i．e．

$$
\mathfrak{U}_{i+j}^{2} \equiv 0\left(\mathfrak{A}_{i+j+1}\right), j=0,1,2, \ldots \ldots \ldots n-1 .
$$

Then，we have

$$
\mathfrak{Y}_{i} \mathfrak{U}_{i+n-1} \equiv 0 \quad\left(\mathfrak{H}_{i+n}\right),
$$

and consequently， $\mathfrak{U}_{i}^{n+1} \equiv 0\left(\mathfrak{U}_{i+n}\right)$ ．

Herein \mathfrak{A}_{i} may be \mathfrak{R}. We prove this by induction.
1° The case $\mathrm{n}=2$.
Take the ideal $\left(\mathfrak{A}_{i} \mathfrak{A}_{t+1}, \mathfrak{A}_{i+2}\right)$, then we have immediately

$$
\mathfrak{A}_{i+2} \equiv 0\left(\bmod .\left(\mathfrak{T}_{i} \mathfrak{N}_{i+1}, \mathfrak{N}_{i+2}\right)\right),\left(\mathfrak{N}_{i} \mathfrak{N}_{i+1}, \mathfrak{H}_{i+2}\right) \equiv 0\left(\mathfrak{N}_{i+1}\right),
$$

while $\mathfrak{A}_{i}, \mathscr{N}_{i+1}$ are consecutive terms of the chief-series. Therefore,

$$
\left(\mathfrak{A}_{i} \mathfrak{A}_{i+1}, \mathfrak{A}_{i+2}\right)=\text { either } \mathscr{A}_{i+1} \text { or } \mathfrak{N}_{i+2} \text {. }
$$

If $\left(\mathfrak{A}_{i} \mathfrak{A}_{i+1}, \mathfrak{N}_{i_{+2}}\right)$ were $=\mathfrak{A}_{i_{+1}}$,
we should have

$$
\left(\mathfrak{H}_{2}^{2} \mathfrak{I}_{i+1}, \mathfrak{T i}_{i} \mathfrak{A}_{i+2}, \mathfrak{A}_{i+2}\right)=\left(\mathfrak{A}_{i} \mathfrak{A}_{i+1}, \mathfrak{A}_{i+2}\right)=\mathfrak{A}_{i+1},
$$

which contradicts the consequence

$$
\left(\mathfrak{H}_{i}^{2} \mathfrak{U}_{i+1}, \mathfrak{A}_{i} \mathscr{N}_{i+2}, \mathfrak{A}_{i+2}\right) \equiv 0\left(\mathfrak{A}_{i+2}\right)
$$

from the hypothesis. Therefore, we have

$$
\begin{aligned}
& \left(\mathfrak{N}_{i} \mathfrak{A}_{i+1}, \mathfrak{A}_{i_{i+2}}\right)=\mathfrak{A}_{i+2} . \\
& \therefore \mathfrak{A}_{i} \mathfrak{A}_{i+1} \equiv 0\left(\mathfrak{H}_{i+2}\right) .
\end{aligned}
$$

2° From the assumption $\mathfrak{N}_{i+1} \mathfrak{X}_{i+n-1} \equiv 0\left(\mathfrak{X}_{i+n}\right)$ it follows that $\mathfrak{A}_{i} \mathfrak{A}_{i+n-1} \equiv 0\left(\mathfrak{A}_{i+n}\right)$, if $\mathfrak{A}_{i}^{2} \equiv 0\left(\mathfrak{A}_{i+1}\right)$. For

$$
\left(\mathfrak{N}_{i} \mathscr{A}_{i+n-1}, \mathscr{A}_{i+n}\right)=\mathscr{A}_{i+n},
$$

as can similarly be shown as before, and hence, $\mathscr{A}_{i} \mathscr{I}_{i+n-1} \equiv 0\left(\mathfrak{N}_{i+n}\right)$.
§ 7. Let
(1) $\mathfrak{R}, \mathfrak{H}_{1}, \mathfrak{H}_{2}, \ldots \ldots \ldots, \mathfrak{Y}_{n}$
be a chief-series of a ring \mathfrak{R}, and
(2) $\frac{\mathfrak{R}}{\mathfrak{K}_{1}}, \frac{\mathfrak{Y}_{1}}{\mathfrak{U}_{2}}, \ldots \ldots, \frac{\mathfrak{H}_{n-1}}{\mathfrak{A}_{n}}$
the set of quotient-rings derived from (1).
Theorem: If \mathfrak{N}_{n} is an ideal of the second kind, i.e., if \mathfrak{N}_{n} divides a power of \mathfrak{R}, none of the quotient-rings is a field; and so conversely.

In other words: whether a given ideal \mathfrak{A} belongs to the first kind or to the second kind, is determined by the existence or nonexistence of the field in the set of quotient-rings derived from a chief-series with \mathfrak{A} as the last term.

Proof. If $\mathfrak{R}^{e} \equiv 0\left(\mathfrak{N}_{n}\right)$ for a certain index e, the quotient-ring $\mathfrak{U}_{i} / \mathscr{A}_{i+1}$ can not be a field; because otherwise we should have, for an element α_{i} of \mathscr{U}_{i} which does not belong to \mathfrak{X}_{i+1},

$$
a_{i}^{e} \neq 0\left(\mathfrak{N}_{i+1}\right),
$$

and consequently $\mathfrak{R}^{e} \neq 0\left(\mathfrak{N}_{n}\right)$.
If, conversely, none of the quotient-rings is a field, we have, by the last theorem, $\mathfrak{R}^{n+1} \equiv 0\left(\mathfrak{U}_{n}\right)$.
§ 8. Theorem : If in set (2) of quotient-rings there are ν fields, the distinct maximal ideals of the first kind which are divisors of \mathfrak{A}_{n} are ν in number.

Let \mathfrak{M} be a maximal ideal of the first kind which is a divisor of \mathfrak{A}_{n}. Beginning with \mathfrak{U}_{n}, examine the ideals $\mathfrak{A}_{n}, \mathfrak{A}_{n-1}, \ldots \ldots$. in series (1), whether they are divisible by \mathfrak{M}, then we shall have the ideal \mathfrak{A}_{i} such that
$\mathfrak{A}_{i} \equiv 0(\mathfrak{M})$, while $\mathfrak{N}_{i+1} \equiv 0(\mathfrak{P})$.
And, since $\mathfrak{A}_{i}, \mathfrak{H}_{i+1}$ are consecutive terms of the chief-series, we have

$$
\left[\mathfrak{U}_{i}, \mathfrak{M}\right]=\mathfrak{A}_{i+1} .
$$

If $\mathfrak{H}_{i}=\mathfrak{R}$, evidently $\mathfrak{A}_{i+1}=\mathfrak{M}$ and $\mathfrak{N}_{i} / \mathscr{H}_{i+1}$ is a field ($\S 3$, theorem). If on the contrary $\mathscr{H}_{i} \neq \mathfrak{R}$, the quotient $\mathscr{A}_{i} / \mathscr{U}_{i+1}$ is of the same type as $\left(\mathfrak{U}_{i}, \mathfrak{M}\right) / \mathfrak{M}$; and moreover $\left(\mathfrak{N}_{i}, \mathfrak{M}\right)=\mathfrak{R}$. Therefore $\mathfrak{H}_{i} / \mathscr{A}_{i+1}$ is also a field. Thus to a maximal ideal of the first kind which divides $\mathfrak{A l}_{n}$ there corresponds one field in set (2).

If \mathfrak{n} be another maximal ideal of the first kind which divides \mathfrak{A}_{n}, there corresponds to \mathfrak{N} a field distinct from $\mathfrak{N}_{i} / \mathfrak{A}_{i+1}$. Indeed, if we had

$$
\mathfrak{A}_{i} \equiv 0(\mathfrak{N}), \quad \mathfrak{A}_{i+1} \equiv 0(\mathfrak{R}),
$$

it would be

$$
\left[\mathfrak{N}_{i}, \mathfrak{N}\right]=\mathfrak{A}_{i+1}
$$

and consequently $\mathfrak{R}=\mathfrak{M}$. [§5, $\left.5^{\circ}\right]$.
Therefore the number of maximal ideals of the first kind which divide \mathscr{N}_{n} is either equal or less than that of the fields in set (2).

If, conversely, $\mathfrak{Y}_{i} / \mathfrak{I}_{i+1}$ is a field, we have

$$
\mathfrak{N}_{i+1}=\left[\mathfrak{N}_{i}, \mathfrak{M}\right]
$$

\mathfrak{M} being a maximal ideal of the first kind [§5], and evidently
$\mathfrak{N}_{n} \equiv 0(\mathfrak{M})$. Let $\mathfrak{A}_{i+j} / \mathscr{N}_{i+j+1}$ be another field in set (2), and

$$
\mathfrak{N}_{i+j+1}=\left[\mathfrak{N}_{i+j}, \mathfrak{N}\right] \quad(1 \leqq j>n-i-1) .
$$

Then we have
and hence

$$
\mathfrak{N}_{i+j} \neq 0(\mathfrak{M}) \text {, while } \Re_{i+j} \equiv 0\left(\mathscr{H}_{i+1}\right) \text {, }
$$

$$
\mathfrak{R \neq} \mathfrak{M} .
$$

Therefore if in set (2) of quotient-rings there are ν fields, the maximal ideals of the first kind which divide \mathscr{H}_{n} are at least ν in number.

The two results above obtained give the theorem.
The theorem may also be stated as follows:
An ideal of the first kind is divisible by a finite number of maximal ideals of the firsi kind; this number is equal to that of the fields in the quotient-rings derived from a chief-series having that ideal as the last term.
§ 9. Theorem: If in set (2) of quotient-rings there is only one field, \mathfrak{Y}_{n} is of the first kind and divides a power of a maximal ideal of the first kind; this maximal ideal is a divisor of \mathfrak{N}_{n}. Conversely, if \mathfrak{A}_{n} is of the first kind and a divisor of a power of a maximal ideal of the first kind, there is one and only one field in set (2).

Let $\mathscr{A}_{i} \mathscr{N}_{i+1}$ be a field and the others no field. Then

$$
\mathfrak{A}_{i+1}=\left[\mathfrak{N}_{i}, \mathfrak{M}\right],
$$

where \mathfrak{M} is a maximal ideal of first kind. Since $\mathfrak{N} / \mathfrak{A}_{1}, \mathscr{N}_{1} / \mathscr{A}_{2}, \ldots \ldots$ $\mathscr{N}_{i-1} / \mathscr{U}_{i}$ are no fields by assumption, we have

$$
\Re^{i+1} \equiv 0\left(\Re_{i}\right) \quad[\text { by } \S 6, \text { theorem }],
$$

and consequently

$$
\mathfrak{M}^{i+1}=0\left(\mathfrak{U}_{i}\right),
$$

while

$$
\left[\mathfrak{N}_{i}, \mathfrak{M}\right]=\mathfrak{N}_{i+1} .
$$

$$
\therefore \quad \mathfrak{M}^{i+1}=0\left(\mathfrak{N}_{i+1}\right) .
$$

And, moreover, $\mathfrak{A}_{i+1} / \mathfrak{N}_{i+2}, \ldots \ldots \ldots \mathfrak{A}_{n-1} / \mathfrak{A}_{n}$ are no fields by supposition.

$$
\therefore \quad \Re_{i+1}^{n-i} \equiv 0 \quad\left(\mathfrak{N}_{n}\right) \text {. }
$$

Therefore, we have

$$
\mathfrak{M}^{\left.(i+1) X_{n-i}\right)} \equiv 0\left(\mathfrak{I}_{n}\right) .
$$

Next, to prove the converse, let \mathfrak{M} be a maximal ideal of first
kind and $\mathfrak{M e}^{e} \equiv 0\left(\mathfrak{V}_{n}\right)$. Since \mathfrak{A}_{n} is assumed to be of the first kind, there must exist a field in set (2) $\left[\S 7\right.$, theorem] ; hence, \mathscr{H}_{n} is divisible by a maximal ideal of the first kind [by the last theorem], and let it be \mathfrak{R}. If $\mathfrak{R \neq M}$, we should have

$$
(\mathfrak{R}, \mathfrak{M})=\mathfrak{R}
$$

whence follows

$$
\left(\mathfrak{M}, \mathfrak{M}^{e}\right)=\mathfrak{R}
$$

from the theorem which will be given in § 11.

$$
\therefore \quad\left(\mathfrak{M}, \mathfrak{N}_{n}\right)=\mathfrak{\Re} \quad\left[\because \mathfrak{M}^{e} \equiv 0\left(\mathfrak{N}_{n}\right)\right],
$$

contradictory to the assumption that $\mathfrak{N}_{n} \equiv 0(\mathfrak{R})$. Therefore, $\mathfrak{R}=\mathfrak{M}$, i.e. \mathfrak{M} is the only maximal ideal of the first kind which divides \mathfrak{U}_{n}; so that set (1) contains only one field.
N. B. Throughout this paper we denote by \Re the ring in which ideals are treated.
§ 10. Definition. An ideal which is divisible by only one maximal ideal \mathfrak{M} of the first kind is called a primary ideal belonging to \mathfrak{M}.

A primary ideal belonging to \mathfrak{M} is of the first kind and divides a power of \mathfrak{M}, as immediately follows from the last two theorems, and conversely an ideal of the first kind which divides a power of a maximal ideal of the first kind is primary.

Theorem: Let \mathfrak{P} be a primary ideal belonging to the maximal ideal \mathfrak{M}. If the product of two ideals $\mathfrak{N}, \mathfrak{B}$

$$
\mathfrak{A} \mathfrak{Y} \equiv 0(\mathfrak{P}),
$$

a power of \mathfrak{N} or \mathfrak{F} (or both) is divisible by \mathfrak{P}.
Let $\mathfrak{M}^{e} \equiv 0(\mathfrak{P})$. If $\mathfrak{Z} \equiv 0(\mathfrak{M}), \mathfrak{U H}^{e} \equiv 0\left(\mathfrak{M}^{e}\right)$ and consequently $\mathfrak{A}{ }^{e} \equiv 0$ (\mathfrak{P}^{2}).

If, on the contrary, $\mathfrak{A} \neq 0(\mathfrak{M})$, we have $(\mathfrak{N}, \mathfrak{M})=\mathfrak{R}$, whence it follows that

$$
\text { For, } \begin{gathered}
\left(\mathfrak{H} \mathfrak{R}^{e-1}, \mathfrak{M}^{e}\right)=\mathfrak{R}^{e} . \\
\mathfrak{R}^{2}=(\mathfrak{A}, \mathfrak{M}) \mathfrak{R}=(\mathfrak{N} \mathfrak{M}, \mathfrak{M}(\mathfrak{N}, \mathfrak{M})) \\
=\left(\mathfrak{H} \mathfrak{R}, \mathfrak{H} \mathfrak{M}, \mathfrak{M}^{2}\right)=\left(\mathfrak{H}, \mathfrak{M}^{2}\right) \\
\mathfrak{R}^{3}=\left(\mathfrak{H}, \mathfrak{M}^{2}\right) \mathfrak{R}=\left(\mathfrak{A}^{2}, \mathfrak{M}^{2}(\mathfrak{M}, \mathfrak{M})\right)
\end{gathered}
$$

$$
=\left(\mathfrak{N}^{2}, \mathfrak{A M}^{2}, \mathfrak{M}^{3}\right)=\left(\mathfrak{N}^{2} \mathfrak{R}^{2}, \mathfrak{M}^{3}\right) .
$$

$$
\Re^{e}=\left(\mathfrak{A}_{2} \mathfrak{n}^{e-1}, \mathfrak{M}^{\ell}\right) .
$$

It follows from $\mathfrak{A} \mathfrak{F} \equiv 0(\mathfrak{F})$ that $\mathfrak{N} \mathfrak{B} \mathfrak{R}^{e-1} \equiv 0(\mathfrak{F})$, while $\mathfrak{B} \mathfrak{M} \equiv 0$

$\left(\mathfrak{N}^{e-1}, \mathfrak{M}^{e}\right) \mathfrak{B} \equiv 0(\mathfrak{F})$, or $\mathfrak{R}^{e} \mathfrak{O}=0(\mathfrak{M})$, and consequently $\mathfrak{B}^{e+1} \equiv 0$ (伊).

It may happen in the case where $\mathfrak{A l} \equiv 0(\mathfrak{M})$ that $\mathfrak{B} \boldsymbol{Z} \equiv 0$ (\mathfrak{F}) for every index λ even if $\mathfrak{Z} \neq 0(\mathfrak{F})$. In this respect the primary ideal above defined is different from what has been defined by Noether ${ }^{1}$.
§ 11. Theorem: Let \mathfrak{M} be a maximal ideal of the first kind. Then from $(\mathfrak{N}, \mathfrak{M})=\mathfrak{M}$ and $(\mathfrak{B}, \mathfrak{M})=\mathfrak{R}$, it follows that $(\mathfrak{H} \mathfrak{B}, \mathfrak{M})=\mathfrak{M}$.
(As already stated, \mathfrak{R} always denotes the ring in which ideals are treated.)

$$
\mathfrak{R}^{2}=(\mathfrak{A}, \mathfrak{M})(\mathfrak{B}, \mathfrak{M})=\left(\mathfrak{Y} \mathfrak{F}, \mathfrak{A} \mathfrak{M}, \mathfrak{B} \mathfrak{M}, \mathfrak{M}^{2}\right) .
$$

But $\quad \mathfrak{R}^{2} \neq 0(\mathfrak{M})$,
since \mathfrak{M} is of the first kind.

$$
\therefore \quad \mathfrak{R}=\left(\mathfrak{M}^{2}, \mathfrak{M}\right)=\left(\mathfrak{A} \mathfrak{M}, \mathfrak{M} \mathfrak{M}, \mathfrak{B} \mathfrak{M}, \mathfrak{M}^{2}, \mathfrak{M}\right)=(\mathfrak{A} \mathfrak{F}, \mathfrak{M}) .
$$

§ 12. Theorem: If an ideal $\mathfrak{A t}$ of the first kind is not primary, it is capable of representation as the cross-cut of two ideals $\mathfrak{\&}$ and \mathfrak{F} subject to the following conditions:
(i) $\mathfrak{R}^{2} \neq 0$ (\mathfrak{Z}).
(ii) \mathfrak{F} consists of the elements P of the ring \Re, which satisfy the congruence

$$
\mathfrak{Q P \equiv 0 (\mathfrak { \Re }) .}
$$

(iii) \mathfrak{F} is primary.

Proof. 1° Let $\mathfrak{N}_{i}, \mathfrak{N}_{i+1}$ be two consecutive terms of a chiefseries, of which $\mathscr{U}_{i} / \mathscr{X}_{i+1}$ is no field, i.e. $\mathfrak{H}_{i}^{2} \equiv 0 \quad\left(\mathfrak{N}_{i+1}\right)$. And suppose that \mathfrak{U}_{i} may be represented as the cross-cut of two ideals \mathfrak{R} and \mathfrak{F} subject to the following conditions:
(i) There exists an element λ in \mathfrak{Z} such that $\lambda^{2} \equiv 0\left(\mathfrak{N}_{i}\right)$.
(ii) \mathfrak{F} is the ideal which consists of the elements P for which

[^3]$\lambda \mathrm{P} \equiv 0\left(\mathfrak{U}_{i}\right)$.
(iii) \mathfrak{F} is primary and belongs to a maximal ideal \mathfrak{M}, i.e. $\mathfrak{M}^{e} \equiv 0$ (\mathfrak{P}) .

Consider the ideal Ω consisting of the elemnts Q for which $\lambda \mathrm{Q} \equiv 0\left(\mathfrak{A}_{i+1}\right), \lambda$ being the element taken above. Then evidently

$$
\mathfrak{N}_{i+1} \equiv 0(\mathfrak{Q}), \Omega \equiv 0(\mathfrak{F}),
$$

and, by o:ar assumption, \mathfrak{U}_{i} and \mathfrak{U}_{i+1} are consecutive terms of a chief-series. Therefore we have the following three cases :
(a) The case where $\Omega=\mathfrak{A N}_{i+1}^{-}$, i.e. $\lambda \mathrm{R} \equiv 0\left(\mathfrak{H}_{i+1}\right)$ when and only when $\mathrm{R} \equiv 0\left(\right.$ 2l $\left._{i+1}\right)$.

$$
\begin{array}{ll}
& \lambda \mathfrak{P} \equiv 0\left(\mathfrak{N}_{i}\right), \text { while } \mathfrak{M}_{i}^{2} \equiv 0\left(\mathfrak{H}_{i+1}\right) . \\
\therefore & \lambda^{2} P^{2} \equiv 0\left(\mathfrak{U}_{i+1}\right) . \\
\therefore & \lambda \mathfrak{P}^{2} \equiv 0\left(\mathfrak{H}_{i+1}\right) .\left[\because \mathfrak{Q}=\mathfrak{H}_{i+1}\right] \\
\therefore & \mathfrak{P}^{2} \equiv 0\left(\mathfrak{U}_{i+1}\right), \text { while } \mathfrak{M}^{e} \equiv 0(\mathfrak{P}) . \\
\therefore & \mathfrak{M}^{2 e} \equiv 0\left(\mathfrak{A}_{i+1}\right),
\end{array}
$$

that is, \mathfrak{N}_{i+1} must be a primary ideal belonging to \mathfrak{M}.
(b) The case where $\Omega \neq \mathfrak{N}_{i+1},\left[\mathfrak{U}_{i}, \mathfrak{\Omega}\right]=\mathfrak{N}_{i+1}$.

Since $\Omega \equiv 0$ (\mathfrak{F}) and $[\Omega, \mathfrak{F}]=\mathfrak{H}_{i}$, we have

$$
\begin{aligned}
& {[\Omega, \mathfrak{D}] \equiv 0\left(\mathfrak{N}_{i}\right) .} \\
& \therefore \quad[\Omega, \mathfrak{D}] \equiv 0\left(\left[\mathfrak{U}_{i}, \mathfrak{D}\right]\right) . \\
& \therefore \quad[\Omega, \mathfrak{Q}]=\left[\mathfrak{Z}_{i}, \mathfrak{Q}\right]=\mathfrak{A}_{i+1} \text {. }
\end{aligned}
$$

And Ω is a primary ideal belonging to \mathfrak{M}. Recause $\lambda^{2} P^{2} \equiv 0$ $\left(\mathfrak{I V}_{i+1}\right)$ and hence, $\lambda \mathfrak{P}^{2} \equiv 0(\mathfrak{Q})$, while $\lambda \equiv 0(\mathfrak{Z})$.

$$
\therefore \quad \lambda P^{2} \equiv 0([\Omega, \Omega]), \text { or } \lambda \Re_{\Re^{2}}^{2} \equiv 0\left(\Re_{i+1}\right) .
$$

$\therefore \quad \mathfrak{F}^{2} \equiv 0(\Omega)$, while $\mathfrak{M}^{e} \equiv 0(\mathfrak{F})$.
$\therefore \mathfrak{M}^{2 s} \equiv 0$ (\mathfrak{Q}).
Thue \mathfrak{M}_{i+1} can be reduced into the cross-cut of \mathfrak{Z} and Ω which satisfy the same conditions as assumed for $\mathfrak{\Omega}$ and \mathfrak{P}.
(c) The case where $\left[\mathfrak{N}_{i}, \mathfrak{N}\right]=\mathfrak{N}_{i}$.

If $\lambda L \equiv 0\left(\mathfrak{N r}_{i}\right)$ for an element L of \mathfrak{B}, we have $L \equiv 0(\mathfrak{F})$, and consequently $\mathrm{L} \equiv 0\left(\mathfrak{V}_{i}\right)$; hence $\lambda \mathrm{L} \equiv 0\left(\mathfrak{U}_{i+1}\right)$, because $\mathfrak{N}_{i} \equiv 0(\mathfrak{Q})$ and $\lambda \mathbb{D} \equiv 0\left(\mathfrak{H}_{i+1}\right)$. Therefore the elements of $\lambda \mathbb{R}$, which belong to \mathfrak{H}_{i}, must belong to $\mathfrak{M}_{i \div 1}$. So that

$$
\left[\left(\lambda \&, \mathfrak{N}_{i+1}\right), \mathfrak{F}\right]=\mathfrak{N}_{i+1} .
$$

For, take the element λ^{2} of $\left(\mathcal{R}, \mathfrak{N r}_{i+1}\right)$, then $\lambda^{4} \neq 0\left(\mathscr{N}_{i+1}\right)$. Indeed, if $\lambda^{4} \equiv 0\left(\mathscr{N}_{i+1}\right), \lambda^{3}$ would $\equiv 0\left(\mathscr{N}_{i}\right)$ and consequently, λ^{2} would $\equiv 0(\mathfrak{P})$, while $\lambda \equiv 0(\mathfrak{Z})$ and $[\mathcal{Q}, \mathfrak{F}] \equiv \mathfrak{Y}_{i}$. Hence, λ^{2} would $\equiv 0\left(\mathscr{N}_{i}\right)$, contradictory to assumption (i).

Next, if $\lambda^{2} R \equiv 0\left(\mathscr{M}_{i+1}\right)$, we have $\lambda R \equiv 0(\Omega)$, and hence, $\lambda R \equiv 0$ $([\mathfrak{Q}, \mathfrak{\unrhd}])$, while $[\mathfrak{Q}, \mathfrak{Q}] \equiv 0\left(\mathfrak{H}_{i}\right)$. Therefore, $\mathrm{R} \equiv 0(\mathfrak{P})$.

Moreover $\lambda^{2} \mathcal{W}=\lambda \mathcal{A} \equiv 0\left(\operatorname{Mr}_{i}\right)$ and $\lambda \mathbb{N}_{i} \equiv 0\left(\mathfrak{N}_{i+1}\right)$, as already shown above. Therefore, $\lambda^{2} \mathfrak{H} \equiv 0\left(\mathscr{N}_{i+1}\right)$. Thus the elements X for which $\left.\lambda \mathrm{X} \equiv \mathrm{Xl}_{i+1}\right)$ form the ideal \mathfrak{F}.

Lastly \mathbb{F}^{β} is primary as has been assumed.
We can conclude from (a), (b) and (c) that if \mathscr{N}_{i} may be represented as the cross-cut of two ideals subject to the conditions (i), (ii), (iii), it is also for \mathfrak{M}_{i+1}, unless \mathfrak{M}_{i+1} is primary.
2° Let

$$
\mathfrak{H}_{i-1}, \mathfrak{A}_{i}, \mathfrak{H}_{i+1}, \ldots \ldots \ldots \mathfrak{A}_{n}
$$

- be consecutive terms of a chief-series, and suppose that the quotientring $\mathfrak{Y}_{i-1} / \mathscr{A}_{i}$ is a field, but not the others $\mathfrak{H}_{i} / \mathscr{H}_{i+1}, \ldots \ldots \ldots \mathfrak{H}_{n-1} / \mathscr{H}_{n}$. Then

$$
\mathfrak{A}_{i}=\left[\mathfrak{N}_{i-1}, \mathfrak{M}\right]
$$

where \mathfrak{M} is a maximal ideal of the first kind, so that the three conditions in 1° are satisfied in this representation.

If \mathfrak{N}_{n} is not primary, it is also for $\mathfrak{H}_{i+1}, \mathfrak{H}_{i+2}, \ldots \ldots \mathfrak{N}_{n-1}$ [by $\S 7$, theorem]. Therefore, by the repeated use of the result obtained in $1^{\circ}, \mathfrak{Y}_{n}$ must be reduced into the cross-cut of two ideals satisfying the same conditions as assumed for \mathbb{Z} and \mathfrak{X} in 1°.
3° Again, returning to the reduction of \mathfrak{N}_{i} in 1°, we have $\mathcal{Q}\left\{\equiv 0\left(\mathscr{Y}_{i}\right)\right.$. But if $\Omega \mathrm{X} \equiv 0\left(\mathfrak{Y}_{i}\right)$, evidently $\lambda \mathrm{X} \equiv 0\left(\mathfrak{Y}_{i}\right)$ and consequently, $\mathrm{X} \equiv 0$ (\neq). Therefore, \mathfrak{B} consists of the elements X for which $\Omega \mathrm{X} \equiv 0$ $\left(M_{i}\right)$. And the three conditions given in the theorem are satisfied.

The results in $1^{\circ}, 2^{\circ}, 3^{\circ}$ furnish a proof of the theorem.
$\S 13$. In the representation of an ideal: $\mathfrak{H}=[\mathfrak{N}$, 将 $]$ given in
the last section, \mathfrak{E} is prime to \mathfrak{F} according to Noether's definition ${ }^{1}$;
 $\mathfrak{R \equiv 0}(\mathfrak{P})$. But \mathfrak{F} is not necessarily prime to \mathbb{R}.

Let 3 be the aggregate of such elements Z that $Z R=0$ for every element R of the ring. Then it follows from the definition by Noether that, if an ideal \mathfrak{F} is prime to another $\mathfrak{K}, \mathfrak{R}$ must be a divisor of 3 , and that if $\left\{5\right.$ and \mathbb{X} are mutually prime ${ }^{2}$, both divide 3 . In other words, the ideals which do not divide 3 are relatively-primeirreducible ${ }^{3}$.
§ 14. Theorem : If an ideal of the first kind is divisible by ν maximal ideals of the first kind, it is representable as the cross-cut of ν primary ideals belonging to the respective maximal ideals.

Let \mathfrak{Z} be an ideal of the first kind and not primary. Then \mathfrak{A} can be so reduced that $\mathfrak{U}=[\mathfrak{Q}, \mathfrak{P}]$, where \mathfrak{P} is primary.

And \mathfrak{Z} is also of the first kind. For otherwise, \mathfrak{F}^{d} would $\equiv 0$ (\mathfrak{Z}) for a certain exponent d, and consequently \mathfrak{P}^{d} would $\equiv 0(\mathfrak{H})$. But $\mathfrak{M} \equiv 0(\mathfrak{B}), \mathfrak{M}$ being the maximal ideal to which \mathfrak{F} belongs. Therefore, $\mathfrak{M}^{2 e}$ would $\equiv 0(\mathfrak{O})$, contrary to our assumption that \mathfrak{H} is of the first kind and not primary.

If \mathbb{Z} is not primary, reduce \mathbb{Z} so that one of the components is primary. But the number of maximal ideals of the first kind which divide \mathscr{T} is finite. Therefore, after a finite number of reductions, \mathfrak{V} can be represented as the cross-cut of the primary ideals :

$$
\mathfrak{A}=\left[\mathfrak{F}_{\left.\mathcal{F}, \mathfrak{F}_{1}, \ldots \ldots \ldots \mathfrak{F}_{r}\right], ~}^{\text {. }}\right.
$$

where $\mathfrak{F}_{3}, \mathfrak{F}_{1}, \ldots \ldots \ldots \mathfrak{P}_{r}$ are primary ideals respectively belonging to the maximal ideals $\mathfrak{M}, \mathfrak{M}_{1}, \ldots \ldots \ldots \mathfrak{M}_{r}$.

If \mathfrak{M} is a maximal ideal, distinct from $\mathfrak{M}, \mathfrak{M}_{1}, \ldots \ldots \ldots \mathfrak{M}_{r}$, of the first kind, we have

$$
(\mathfrak{P}, \mathfrak{M})=\left(\mathfrak{F}_{1}, \mathfrak{R}\right)=\ldots \ldots \ldots=\left(\mathfrak{F}_{r}, \mathfrak{M}\right)=\mathfrak{M}
$$

[^4]and consequently
$\left(\mathfrak{P} \mathfrak{P}_{1} \ldots \ldots \ldots \mathfrak{F}_{r}, \mathfrak{M}\right)=\mathfrak{M}[$ by § 11 , theorem $]$.
$\therefore \quad\left(\left[\mathfrak{F}, \mathfrak{F}_{1}, \ldots \ldots \ldots \mathfrak{F}_{r}\right], \mathfrak{M}\right)=\mathfrak{R}$, or $(\mathfrak{N}, \mathfrak{N})=\mathfrak{R}$.
Therefore, the maximal ideals which divide \mathfrak{Z} are $\mathfrak{M}, \mathfrak{M}_{1}, \ldots \mathfrak{M}_{r}$; so that $\mathrm{r}+1=\nu$.

By the above theorem the study of the representation of ideals as the cross-cut of their divisors is reduced to that of primary ideals and of ideals of the secend kind.

December, 9, 1923.

[^0]: 1 E. Noether, Math. Ann., 83, 26 (1921).
 2 These Memoirs 2, 204 (1917).
 3 These Memoirs, 2, 213 (1917).
 4 Loc. cit. p. 215.
 5 Loc. cit. p. 214.
 6 Loc. cit. p. 222.

[^1]: 1 Loc. cit. p. 205.
 2, 3 Loc. cit. p. 220.
 4 Loc. cit. p. 224.

[^2]: 1 This is an extension of the theorem which has been given in the previous paper. These Memoirs, 3189 (1918).

[^3]: 1 Math. Ann., 83, 37 (1921).

[^4]: 1 Math. Ann., 83, 45 (1921).
 2, 3 For these nomenclatures, see Loc. cit. p. 51.

