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This paper is intended to study the representation of ring-ideals
as the cross-cut of others from a view of a chief-composition-series,
and the main point is the following :—

When the elements of an ideal 9 all belong to another B, A
is said to be divisible by B.

An ideal M of a ring R is called maximal, when there is no
ideal, distinct from I and N, which divides M.

The ideals of the ring R are divided into two kinds: those
which divide powers of R belong to the second kind, and the others to
the first kind. An ideal of the first kind is divisible by a finite number
of maximal ideals of the first kind.

An ideal which is divisible by only one maximal ideal 9% of
the first kind divides a power of M, and this is named a primary ideal
belonging to M.

An ideal of the first kind which is divisible by v maximal ideals
of the first kind is capable of representation as the cross-cut of v

primary ideals belonging to the respective maximal ideals.

PRELIMINARIES.

§ 1. When the elements of an ideal % all belong to another
B, A is said to be divisible by B, and this is denoted by A=0 (B).
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In this case B is called a divisor of A, and A a multiple of B.

In ideals of an algebraic field (Kérper), if A=0 (B), A can be
represented as the product of 8 and the third ideal. But for a general
ring? this is not necessarily possible; in this sespect the definition of
divisibility is extended.

The ideal (A, B), derived from two ideals % and B, is called
the greatest common divisor of % and B, and the cross-cut of I and
B, i.e. the ideal consisting of the elements common to % and B the
least commom multiple of A and B. The latter is denoted by [, B).

We divide the ideals of a ring R into two kinds : those which
divide powers of i belong to the second kind, and the others to the
Sfirst kind. v

§ 2. Let ¥ be an ideal divible by another, 8. 'The ring, to
which B is reduced when we take the elements of B with respect to
the modulus %, is called the quotient-ring® of B by A; and it is
represented by the symbol B/9.

TrarorEM*: If A and B are two ideals of a ring, the quotient-
rings (N, B)/B and N[N, B] are of the same type.

§ 3. An ideal M of a ring N is called maximal®, when there
is no divisor of M, except M and N.

When 9 is maximal, the quotient-ring R/M is a field, unless
Ni=0 (M); and conversely if R/M is a field, M is maximals, So that
we have

THeOREM :  If M is a maximal ideal of the first kind, the quotient-
ring RIM is a field; and so conversely.

N. B. A ring is difined by nine postulates ; when a set & of
elements satisfies the following two postulates in addition to the nine,
it is called a field (Korper): (i) there exists in & an element U such

1 E. Noether, Math. Ann., 83, 26 (1921).
2 These Memoirs 2, 204 (1917).

8 These Memoirs, 2, 213 (191%).

4 Loc. cit. p. 215.

5 Loc. cit. p. 214,

¢ Loc. cit. p. 222,
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that UK=K for every element K of &; (ii) corresponding to every
element A such that CAs=A for at least one element C of &, there

exists in & an element X for which AX=U, where U is the said
element’.
§ 4. Let

be a series of ideals of a ring 9 in which each ideal is divisible by
the preceding one, while there is no ideal divisible by %, and dividing
W;,1, except A, and A,,,. This series is called a chief-composition-series?,

or simply a chief-series of the ring . And also the series

which consists of the first » terms of the above chief-series, is called
a chief-series with the last term 9,.

THeOREM!: Any two chief-series of a ring

%’ mi’ m;’ """" m,m (mn:m;n))
of which the last terms are the same, consist of the same number of terms,

and lead to two sets of quotient-rings
R, W Wgyeeoeeeennn ,
R, WAoo eeeiinnnn ,

which are identical with each other except as regards the sequence in
which they occur. ’

TreEOREM!: If A, and N, are two consecutive terms of a
chief-series, the quotient-ring NN, is either a field or not. When
W,/ N4y s no field, We=0 (A,,,).

In the present paper we study the ring-ideals under the con-
dition that corresponding to an ideal there is one or more than one

chief-series having it as the last term.

1 Loc. cit. p. 205.
2 8 Loc. cit. p. 220,
4+ Loc. cit. p. 224.
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REPRESENTATION OF IDEALS AS THE
CROSS-CUT OF PRIMARY IDEALS.

§ 5. THEOREM!': In two ideals A, B of a ring R, if B=0 (A)
and the quotient-ring A|B is a field, the ideal B is the cross-cut of A
and the maximal ideal M of the first kind which is uniquely determined
by the congruence

AM=0 (B).

Herein ¥ is assumed to be distinct from H.

Take an element a of A which does not belong to B, and
consider the ideal 9 consisting of the elements X of the ring,
which satisfy the congruence

oX=0 (B).

1° M evidently contains all the elements of B, but no element
of 9, which does not belong to B; because, since /B is a field, the
product of two elements of 9 is congruent (mod. B) to zero, when
and only when at least one of them belongs to 8. Therefore 8 is
the cross-cut of I and M, i.e. _

B=[A, M].

2° I contains elements not belonging to 9.

For, since /B is a field, there exists in I such an element
U that

AU=A (3B)
for every element A of . And hence we have
apU=ap (B),
or
a(pU—p)=0 (3),

where p denotes an element not belonging to .

But pU—p=—p==0 (). [+ U=0 (A)]
Therefore M contains the element (pU—p) not belonging to A.
3 &, =N

1 This is an extension of the theorem which has been given in the previous
paper. These Memoirs, 3 189 (1918).
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For, if the product aR, R being an element of R, belongs to
M, it must belong to B; indeed a=0 A), [A, M]=B. Therefore,
the ideal consisting of the elements Y for which aY=0 (M) is
coincident with 9. But the quotient-rings (A, M)/M and A/[A, M]
are of the same type [§ 2], while B=[%, M] and A/B is a field.
Therefore, (3, M)/M is also a field; hence, if (A, M) were distinct
from R, the ideal consisting of the elements Y which satisfy the
congruence ¢Y=0 (M) would contain elements not belonging to M,
as can be shown similarly in 2°. This contradicts thc fact that it
must coincide with 9. 'Therefore, (X, M)="R.

4° I is a maximal ideal of the first kind ; because (3, M)/M
is a field, while (A, M)=R. (by § 3, theorem.)

5° Since M consists of the elements X which satisfy the
congruence aX=0 (B), if B=[A, N], R=0 (M) and hence, if RN is
maximal, R=M\. '

6° 'Take any element A of 9. Since A/B is a field and a=:0
(B). we can chose an element X so that aX=A (B), or A=0X+B, B
being an element of B. Hence, we have

AM=(aX+B)M=0 (B). .. AM=0(B).

And if AM'=0 (B), evidently M'=0 (M). Therefore, M is a
maximal ideal of the first kind uniquely determined by the congruence
AM=0 (V).

§ 6. THEOREM: Let

be (n+-1) consecutive terms of a chief-series of a ring R, and let none
of quotient-rings

g[i ——%i-'-l ...... = %[i-"n_l
Sl['HI’ QIHz’ ’ Wisn
be a field, i.e.
Wm0 Winsan)y 1=0,1,2,.«« v .- .. n—1.

Then, we have
Ay n =0 (SlIi+n)‘
and consequently, Wit'=0 (N;,.).
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Herein A; may be . We prove this by induction.
1° The case n=2,
Take the ideal (%241, i), then we have immediately
W;e=0 (mod. U W;s1s Assz) )y (s Wpsrs Wiao)=0 Uisr)s
while 9, ,,,, are consecutive terms of the chief-series. Therefore,
(2,;,,, A, pp)=either A,,; or A .,.
If (ANisrs Asyn) were = Ay,
we should have
(glg’)lin’ DI PP g[i+2):(ﬂ[i9[i+u 31i+2)=9Ii+1,
which contradicts the consequence
(91?’2[141) ANpz Wige)=0 Ay
from the hypothesis. Therefore, we have
(mi%b}»l: mﬂz):%in-
s AN =0 @IHZ)-
2° From the assumption %;,; %;,,y=0 (U;,,) it follows that
AN ian1==0 1), if =0 (A;y,). For
(mi%ﬂ—n—la %i+n)=9’[i+m

as can similarly be shown as before, and hence, AN, ,,_,=0 N;.,)-

§ 7. Let
(1) m) 3[1) 2[2, ........ , E)In
be a chief-series of a ring R, and
R % Ay
(2) T AR y

the set of quotient-rings derived from (1).

THeoREM : If N, is an ideal of the second kind, i.e., if N, divides
a power of R, none of the quotient-rings is a field ; and so conversely.

In other words: whether a given ideal % belongs to the first
kind or to the second kind, is determined by the existence or non-
existence of the field in the set of quotient-rings derived from a
chief-series with % as the last term.

Proof. If R=0 (A,) for a certain index e, the quotient-ring
€,/A;,, can not be a field ; because otherwise we should have, for an

element ¢, of A; which does not belong to Us,,,



On the Reduction of Ideals. 197
a=E=0 (),
and consequently R°s=0 (2U,).

If, conversely, none of the quotient-rings is a field, we have,
by the last theorem, R"*'=0 (U,).

§ 8. THEOREM : If in set (2) of quotient-rings there are v fields,
the distinct maximal ideals of the first kind which are divisors of U, are

v in number.

Let M be a maximal ideal of the first kind which is a divisor
of %,. Beginning with A,, examine the ideals A,, Wpyy-o-cen. in
series (1), whether they are divisible by M, then we shall have the
ideal A, such that

A=E=0 (M), while A;=0 (M).
And, since U;, ¥U,,; are consecutive terms of the chief-series,
we have
[gria §D?]=2[i+1.
If A,=R, evidently A,,,=M and A,/A;,, is a field (§ 3, theorem).
If on the contrary ,#R, the quotient A,/A;,, is of the same type as
(2, M)/M ; and moreover (A;, M)=R. Therefore /A, is also a field.
Thus to a maximal ideal of the first kind which divides %, there
corresponds one field in set (2).
If N be another maximal ideal of the first kind which divides
A,, there corresponds to N a field distinct from 9;/A,,,. Indeed, if
we had
A==0 (?R), Aiy1=0 (9?),
it would be
(26, N]=W;
and consequently =M. [§ 5, 5°].
Therefore the number of maximal ideals of the first kind which
divide 9, is either equal or less than that of the fields in set (2).
If, coaversely, %,/,,, is a field, we have
9'[124»1:[9[73! Em]»
I being a maximal ideal of the first kind [§ 5], and evidently
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A,=0 (M). Let A,,;/A;,;,; be another field in set (2), and
E)f[fi+j+1:[?Ii+ja m] (1—S—j>n—i_1)'
Then we have
Wy =E0M), while A, ;=0 W:v1),
and hence N+M.

Therefore if in set (2) of quotient-rings there are v fields, the
maximal ideals of the first kind which divide 9, are at least v in
number.

The two results above obtained give the theorem.

The theorem may also be stated as follows:

An ideal of the first kind is divisible by a finite number of
maximal ideals of the firsi kind ; this number is equal to that of the
fields in the quotient-rings derived from a chief-series having that ideal
as the last term.

§ 9. TueorEM: If in set (2) of quotient-rings there is only one
field, N, is of the first kind and divides a power of a maximal ideal of
the first kind ; this maximal ideal is a divisor of W,. Conversely, if U,
s of the first kind and a divisor of a power of a maximal ideal of the
Sirst kind, there is one and only one field in set (2).

Let %,/9,,, be a field and the others no field. Then

A =1[A; M],
where I is a maximal ideal of first kind. Since R/, /W, .. .. ..
A/, are no fields by assumption, we have
Ri=0 (A;) [by § 6, theorem],

and consequently Miti=0 (A,),
while [, M=%,
M =0 (W,py)-
And, moreover, U/ Wirgyevoenn-. A,—/A, are no fields by
supposition.

=0 ().
Therefore, we have
Em(HIXn—i)EO (grn)

Next, to prove the converse, let M be a maximal ideal of first
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kind and Me=0 (A,). Since A, is assumed to be of the first kind,
there must exist a field in set (2) [§ 7, theorem] ; hence, %, is divisible
by a maximal ideal of the first kind [by the last theorem], and let
it be N. If N=+E=M, we should have

™, M=,
whence follows :

N, M)=R
from the theorem which will be given in § 11.

R, W)= [ MW'=0 AW)],

contradictory to the assumption that ,=0 (N). Therefore, N=], i.e.
9N is the only maximal ideal of the first kind which divides %, ; so
that set (1) contains only one field. )

N. B. Throughout this paper we denote by 9 the ring in
which ideals are treated.

§ 10. Definition. An ideal which is divisible by only one
maximal ideal M of the first kind is called a primary ideal belonging
to M.

A primary ideal belonging to M is of the first kind and divides
a power of M, as immediately follows from the last two theorems,
and conversely an ideal of the first kind which divides a power of a
maximal ideal of the first kind is primary.

THEOREM: Let P be a primary ideal belonging to the maximal
ideal M. If the product of two ideals A, B

AB=0 (P),
a power of W or B (or both) is divisible by P.

Let Me=0 (P). If A=0 (M), A°'=0 (M) and consequently
We=0 (P)- |

If, on the contrary, A==0 (M), we have (A, M)=R, whence
it follows that

A, M)=Re.
For, RP= (A, M)R= AR, M, M) )
= (AR, AM, M2)=(ANR, M?).
W= (AR, MHR=(ANR?, M2, M) )
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— (T, AM?, M) — (AR, ).

Re= AR, T°).

It follows from AB=0 (P) that ABR*'=0 (P), while BM=0
(). Hencc, we have

(AR, MYB=0 (), or R*B=0 (M), and consequently B**'=0
(B).

It may happen in the case where =0 (M) that B> ==0 (P)
for every index 4 even if A==0 (). In this respect the primary ideal
above defined is different from what has been defined by Noether!.

§ 11. THEOREM: Let WM be a maximal ideal of the first kind.
Then from (N, M)=R and (B, M)=NR, it follows that (HB, M)==N.

(As already stated, R always denotes the ring in which ideals
are treated.)

RNi=(A, M)(B, M)=(AB, AMM, BM, M?).
But Ni=k=0 (M),
since M is of the first kind.
R=(N?, M)=AB, AM, BW, WM?, M) = (AB, M).

§ 12. TuHeorReM : If an ideal N of the first kind is not primary,
it is capable of representation as the cross-cut of two ideals & and P
subject to the following conditions :

(i) 20 ).

(ii) P consists of the elements P of the ring R, which satisfy
the congruence

LP=0 (N).

(iii) P s primary.

Proof. 1° Let 9,, ;.. be two consecutive terms of a chief-
series, of which A,/%,,; is no field, ie. W=0 (A;,;). And suppose
that 9, may be represented as the cross-cut of two ideals £ and P
subject to the following conditions :

(1) There exists an element 4 in & such that £°=0 ().

(ii) P is the ideal which consists of the elements P for which

1 Math. Ann., 83, 37 (1921).
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P=0 (%,).
(1) 9P is primary and belongs to a maximal ideal M, i.e.
Me=0 ().

Consider the ideal { consisting of the elemnts Q for which

AQ=10 (%,,,), 4 being the element taken above. Then evidently
Ai=0 (D), D=0(%),

and, by our assumption, ; and ,;,, are consecutive terms of a

chief-series. Therefore we have the following three cases :

(a) The case where =93, i.e. AR=0 (¥;,;) when and only
when R=0 (W4,).

AP =0 (), while =0 (U,s,).
APP=0 (W;py).
X%ZEO (Qxi+1)- [ QZ%HI]
P'=0 (Wsrr), while M=0 (P).
M*=0 @[Hx),
that is, 9,,, must be a primary ideal belonging to M.
(b5) The case where QFN,,,, [, Q]=N;.;.
Since Q=0 (B) and [, PL]=A;, we have
[8, D]=0 QL).
[¢, Q=0 ([%; D).
(e, Q]:[gri; Q=W

And O is a primary ideal belonging to M. Recause XP=0
(%;,,) and hence, AB’=0 (Q), while 1=0 ().

AP=0 ([8, D), or MP’=0 Q).
Pr=0 (L), while M=0 (P).
M¥=0 (D).

Thue %;,, can be reduced into the cross-cut of € and Q. which
satisfy the same conditions as assumed for & and P.

(¢) The case where [%;, Q]=9,.

If AL=0 (¥A;) for an eclement L. of £, we have L=0 (%), and
consequently L=0 (2(;); hence AL=0 (%,,,), because ;=0 (Q) and
D=0 (AU;,). Therefore the elements of A€, which belong to 9;, must
belong to A;.,. So that

[()‘2: %['Hl)’ S'E]:QL'+1~
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The ideal: (2%, A,,,) and P also satisfy the three conditions.

For, take the element 2 of (g, A,,,), then A==0 (¥,,,). Indeed,
if =0 (¥,,,), 2 would =0 (¥,) and consequently, 4 would =0 (P),
while /=0 (2) and [¢, P]=%,. Hence, & would =0 (¥;), contradictory
to assumption (i).

Next, if #R=0 (A;,,), we have AR=0 (Q), and hence, AR=0
(e, Q]), while [¢, Q]=0 (A;). Therefore, R=0 ().
; Moreover A2B=2/P=0 (43;) and ;=0 (%,,,), as already shown
above., Therefore, »P=0 (A;,,). Thus the elements X for which
X=X (N,,,) form the ideal .

Lastly 9 is primary as has been assumed.

We can conclude from (a), (b) and (c) that if 3, may be
represented as the cross-cut of two ideals subject to the conditions

(1), (i), (iii), it is also for ,,,, unless A;,, is primary.

2° Let
Wygy Wiy Wigyerveenns €A,
-be consecutive terms of a chief-series, and suppose that the quotient-
ring ,_,/%; is a field, but not the others A Wsyyee-r ... /2L,

Then
Ay=[A;y, M,

where M is a maximal ideal of the first kind, so that the three
conditions in 1° are satisfied in this representation.

If A, is not primary, it is also for M.\, Wypeyo v v v e A, [by §7,

theorem]. Therefore, by the repeated use of the result obtained in

V 1°, 9, must be reduced into the cross-cut of two ideals satisfying the
same conditions as assumed for € and P in 1°

3° Again, returning to the reduction of A, in 1°, we have
LP=0 (A,). Butif LX=0 (%;), evidently AX=0 (3(;) and consequently,
X=0 (B). Therefore, P consists of the elements X for which 8X=0
(%;). And the three conditions given in the theorem are satisfied.

The results in 1°, 2°, 3° furnish a proof of the theorem.

§ 13. In the representation of an ideal : A=[L, ¥] given in
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the last section, € is prime to P according to Noether’s definition’;
because if @N=0 (B), we have immediately €9=0 (%) and consequently
N=0 (P). But P is not necessarily prime to L.

Let 3 be the aggregate of such elements 7Z that ZR=0 for
every element R of the ring. Then it follows from the definition by
Noether that, if an ideal § is prime to another &, & must be a divisor
of 8, and that if § and & are mutually prime? both divide 3. In
other words, the ideals which do not divide 3 are relatively-prime-
irreducible®. -

§ 14. TueoreMm : If an ideal of the first kind is divisible by
y maximal ideals of the first kind, it is representable as the cross-cut of
v primary ideals belonging to the respective maximal ideals.

Let %A be an ideal of the first kind and not primary. Then
A can be so reduced that A=[8, P], where P is primary,

And € is also of the first kind. For otherwise, 3¢ would =0
(Q) for a certain exponent d, and consequently ¢ would =0 (X).
But M=0 (P), M being the maximal ideal to which P belongs.
Therefore, M* would =0 (A), contrary to our assumption that U is
of the first kind and not primary.

If € is not primary, reduce £ so that one of the components
is primary. But the number of maximal ideals of the first kind
which divide ¥ is finite. Therefore, after a finite number of reduc-

tions, A can be represented as the cross-cut of the primary ideals :

PIESTR G (IR Bl
where P, Ppeeoonnn. B, are primary ideals respectively‘ belonging to
the maximal ideals M, ,........ m,.
If 9 is a maximal ideal, distinct from M, M. ...... m,,

of the first kind, we have

(B, N)=(R, W=...... =(P,, N)=N

1 Math. Ann., 83, 45 (1921).
2, 8 For these nomenclatures, see Loc. cit. p. 531.
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and consequently
(PPyeevvne B,, N)=NR [by § 11, theorem].
(IBPyyeeeeens B, M=R, or (A, N)=%K.
Therefore, the maximal ideals which divide o are M, My,.... M, ; so
that r4+1=v.
By the above theorem the study of the representation of ideals
as the cross-cut of their divisors is reduced to that of primary ideals

and of ideals of the secend kind.

December, 9, 1923.



