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1. The object of this paper is to apply to the geometry of 

circles the mothed of the discussion of line geometry in non-euclidean 

space.1 As the Study coordinates of circles are analogous to those of 

the soma of the second sort2
, the present discussion is also analogous 

to that of the soma in non-euclidean space which was given by Prof. 

Nishiuchi3• 

In order to carry out this study, we shall confine ourselves to 

the discussion of such a system of circles that the planes of the circles 

pass through a fixed point P and that the power of the circles with 

respect to that point is constant. 

Let d be the distance between the fixed point P and the center 

of a circle of our system whose radius is r, then the power will be 

where K is constant. 

1 Study, 'Zur nicht euklidischen und linien Geometrie.' Jahresber. D. M. 
Ver., 11 (1902). Coolidge's dissertation, 'The Dual projective Geometry of 
Elliptic and Spherical Space,' Greifswald (1902). Beck's dissertation, ' Die 
Strahlenketten im hype-rbolischen Raume,' Hannover (1005). 

2 Study, Geometrie der Dynamen. Nishiuchi and Kashiwagi. ' Oriented 
Circles in Non-Euclidean Space,' Mem. Coll. Sci. Kyoto, 4 (1920). 

1 'Geometry of Soma in Non-Euclidean Space,' Mem. Coll. Sci. Kyoto. 
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When K is positive, we have a fixed sphere orthogonal to circles 

of our system whose center is at P, and its radius R is given by 

But in this case the radius of the circle which is in bi-involution with 

another circle will be imaginary, so for the present treatment we may 

abandon such a case, and take the case only where K is negative. 

Here, we can put 

where cp is constant. 

d 
cos-

k 
r 

COS-
k 

1-K( 1 ) 
t+K = coscp , 

Suppose that the coordinates of the point P are 

(k : 0 : 0 : 0), 

then we have 

r 
a0=k cos,; seccp, (a a)=k2, 

h0=0, (b b)=k2, (ah)=O, 

where (a) is the coordinates of the center of a circle and (b) those 

of the plane of the circle, and r is its radius. 

In this case, if we take (I) as the Study coordinates of the 

circle, then we have 

And we easily see that 

b, !!i 
k k 

(i, j=1, 2, 3). 



Oriented Circles in Non-Euclidean Space, IV. 299 

shall be taken as the coordinates of a circle of our system. 

It is evident that there exists the following relation 

When the circle is null, we have 

(II)== ~Iijiij=O. 

Next, suppose that we have two circles of our system whose 

cooridnates are (I) and (I') re-,pectively, then their mutual power will 

be proportional to 

(II'), 

and the cosine of the intersecting angle (} will be given by 

(II') 
cos fJ= ✓(II) ✓(I' I') 

The condition that they should be in involution is that 

(II')=O, 

and the condition that they should be cospherical is that 

(I I I')=O. 
This is also the condition that the two circles intersect at two points. 

Their moment and commoment will be 

. d . k' tancp 
sin-sin-= , 

k k k3 .r.r sin-sin-
k k 

d d' 
coskcos k 

(II I') 
✓ (l:I)(I'l:') ' 

(II') 
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And their non-intersecting angle fJ will be given by 

(IX)(I'X')sin4fJ+[(IX')2-(XIX')2-(XX)(X'X')]sin2fJ+(XIX')2=0. 

And the condition that the circles should be paratactic is 

{ ((XIX')+ (XX') )2-(IX)(X'X')} x 

The equations 

{ ((XI X')-(XX') )2-(XI)(I'X') }= 0. 

PID..:J=AXv+ µX~j 
(i,j=O, 1, 2, 3), 

will represent a circle when, and only when 

(XIX')=O, 

i. e. the two circles (X) and (X') are cospherical or intersect at two 

points, and by varying A : µ in this case we get all circles coaxal with 

(X) and (X'). 

Similarly, when we have three circles (X), (X') and (X"), then 

the equations 

PID..:j=AXij+ µXij+vxi 

(i,j=O, 1, 2, 3), 

will represent a circle when, and only when, 

(X' I X")=(X" I X)=(X I X')=O, 

i. e. two by two they are cospherical, and in this case either all pass 

through two points, or are on one sphere. 

Next, we shall find a circle of our system which is in bi-involution 

with the circle (X). 

where 

Let (X') be the coordinates of the required circle, then we have 

b'=v~lt a bl 
• at 

(i=l, 2, 3), 
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, 
r r . 2 -cos-cos-sin cp 
k k 

. r r' 
szn1kcoskcoscp 

r 
cos2<p-cos2k 

r 
r' cos2cp-cos2k 

cos2-=--------
k . 2 r 2 r "" sm -- cos - sm·cp 

k k 

a'\ k _-r sincp 
-.:x.oi. 

b~ J sin2 ; - cos2 
; sin2<p 
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2. We shall define as a complex of circles of our systems one, 

the coordinates of each member of which are porportional to analytic 

functions of three independent variables, the ratios not being all 

functions of two variables. 

According to this definition, a general complex may be written by 

the equation 

f (I)=O. 

If f (?) be linear, the complex 1s said to be linear and the 

simplest linear complex may be given by 

(ml)== l)r.jx•J=o. 
If 

(m!m)=O, 
the complex consists m the totality of circles cospherical with the fixed 

circle whose coordinates (ID) are 

lfo=pm,j• 
A system of circles whose coordinates are proportional to analytic 

functions of two independent variables, their ratios not being all func­

tions of one variable, shall be called a congruence. It is evedent that 
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our circles may form a focal congruence1 and it may be given by the 

two equations 

f (I)=0, ¥1(I)=0. 

Circles of our system which are in bi-involution with those of 

the given complex 

will generate a second complex 

(mJI)=0. 

The focal congruence, whose equations are 

(mI)=(mJ I)=0, 

will be composed of all circles of our complex and those which are in 

bi-involution with them, or common to all complexes 

These complexes shall be said to form a coaxal system. 

In the coaxal system, there are two special complexes for which 

l: m is given by the relation 

~(lmij+mmkz) (lmk1+mmij)= 0, 

1. e. 

(l2--t-m2)(m Im)+ 2lm(mm)= o. 
Let the two values of l/m be l1/m1, l2/m2, then 

and the two special complexes are given by 

l1(mI)+mi(mJI)=0, 

limx)+mim JI)= 0, 

respectively. 

If 

J=/=t, 
then the two are distinct and each of the complexes will be composed 

1 Kashiwagi, Mem. Col. Sci. Kyoto, 5, 383, 6, 97, 
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of all circles common to the two complexes 

(illI)=O, (ill I I)=O, 

and consists in the totality of circles cospherical with the fixed circles 

p(Y.;_j= ( -J+✓ ] 2
- 1 )il(ij+il(kl> 

pOC~j=il(ij+( -J+,j:J2-1 )&k1, 

respectively. 

It is immediately evident that these two are in bi-involution. 

Let (I) be any circle of our system, then the ratio of the moment 

and commoment of the circle with regard to those two circles will be 

. di . d2 
stnkstn-y; 

. d; . d~ 
sznksink 

-
(-J+✓:r-T)(m1x)+(mx) 

(mlI)+(-J+,jJ2-1 )(mi)' 

(-J+,j:fz=T)( m1:)+( 9!/ I) 
-

cos !;cos!; ( i!!X )+( -J+,jJ2-1 )( fil)I)' 
respectively. For a circle of our complex 

(i!!I)=O, 

these ratios will be reduced to 

and 
-J+✓J2 1, 

-J--JJz-1, 
respectively. 

Conversely, when one of these ratios is reduced to -J+-J ]2-1 
or - J-✓ J2

- 1 the circle (I) will satisfy the relation 

(&I)=O, 

that is, the circle belongs to our complex. 

A pair of real circles which are. in bi-involution with each other 

shall be said to form a propre cross, and the cross formed by these 

two circles (oc) and (oc') shall •be the axial cross of the complex. 

A linear complex where (oc) and (oc') are distinct, i. e. 

J=i= 1 
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is said to be general. 

CIRCLE CROSSES IN HYPERBOLIC SPACE. 

3. We shall now continue the discussion of our systems of 

circles in the special direciton where the fundamental element is not, 

in general, a circle, but a pair of circles (circle cross) invariantly 

connected. 

Let us start in the real domain of hyperbolic space, and for 

the sake of brevity, we put the measure of curvature of space 1/k2 

equal to -1, and take as the coordinates of a point (x) four numbers 

(x) such that 

The equation to the absolute may be written m the form 

And for the coordinates our circle, we can take the following 

real numbers 

;iot= b,coshrtan<p, 

;ik1= - a,. al 

(i, k, l= 1, 2, 3., i =l=k=l=l). 

If (.I') be the coordinates of our circle which is in bi-involution 

with the given circle (I), then 
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Next, we shall consider a linear complex whose equation is 

(frlI)= ~&o;lo;- ~filikiik=O. 

Then the coaxal system will be given by 

and the coordinates of the circle of the axial cross will have the form 

(X,,,= lWoc-mfuik• (Xik= l&ik + m'Mot• 

Let us now write 

W01+-J-l W2s=PX1, 

'il!o2+..J=i fils1=PX2, 

'il!os+ ✓ -1 fu12=pX3, 

If we replace (X) by l(X)+im(X), we get 

p' X/ =(/'Mu,-m'il!ik)+-J-1 (l2!Jk+mWo;), 

and the new linear complex 

(W'l)=O 
where 

( 1 ) 

will be a coaxal system and have the same axial cross as the original 

one. 

If either of the circles of a cross have the coordinates (i) tl?,en 

the three numbers (X) given by equation (1) may be taken to represent 

the cross. 

Suppose that we have a triad of coordinates (X), then the co­

ordinates of the corresponding cross will be found from (1) by assuming 

for p such a value that the coordinates (2!) shall satisfy the identity 

(2! JW)=O. 

For that it is necessary and sufficient that the imaginary part 

of p2(XX) should vanish, i.e. 
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( 2) 

(XX)=l=O, (XX)=l=O. 

Let the circles of a cross have the coordinates (ci) and (oc'), 
where 

(k,= -J.f/.'jk, 

f/.jk=A(i' Oi• 

In the same way let a second cross be determined by the circles 

(~) and (~'). The condition that the circles (ci) and (~) should be 

cospherical, or that one should be cospherical with the mate of the 

other in a circle cross, is that 

1.e. 
(fl.1~)=0, 

(XY) (XY) 
✓<XX)✓(YY)=± ✓<XX)✓(YY)" 

They will be cospherical and in involution, if 

(XY)=(XY)=O. 

( 3) 

( 4) 

We shall say that two crosses intersect orthogonally if their 

circles intersect and are in involution. 

If the circle (ex:) be cospherical with the two circles ('3) and 

(f3') of a certain cross, then 

((ii ~)=(ci ~)= 0, 

(~~') = (ci/ ~')=0. 

And we have the following : 

If a not null circle be cospherical with two cricles of a cross, it 

will cut each of them orthogonally and tit involution with them. 

Let 81 , 02 and d1 , d2 be the angles and the distances of the circles 
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(d:) and (~) respectively, then their commoment and moment will be 

( 5) 

Here, we can establish one to one correspondence between the 

totality of all circle crosses in hyperbolic space and the totality of a11 

complex points ( or lines) in an elliptic plane. Two intersecting crosses 

will correspond to points, and crosses intersecting orthogonally will 

correspond to orthogonal points of the elliptic p'.ane. 

The totality of crosses ( U) which intersect a given cross (X) 

orthogonally will be given by means of the linear equation 

(UX)=O. 

A linear equation will be transformed linearly into another linear 

one, if the variables and coefficients be treated contragrediently. Now, 

for the sake of clearness, we shall assume our cross space is doubly 

overlaid. We shall say that a cross belongs to the upper layer, when 

it is represented by a complex line in the complex plane ; when it 

is represented by a point in that plane, we shall speak of a cross of 

the lower layer. 

The necessary and sufficient condition that two crosses of def­

f erent layers should intersect orthogonally is that the corresponding 

point and line of the complex plane should be in united position. 

Thus two crosses of different layers which intersect orthogonally to each 

other may be represented by a complex line element (system of a point 

and a line through this point) after Lie. 
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4. The simplest one-dimensional family of crosses is the circle­

chain composed of all crosses whose coordinates are linearly dependent, 

by means of real coefficients, on those of two given crosses, 1. e. 

pX,=a Y,+bZ,, 

(i= 1, 2, 3). 

(6) 

In the representing complex plane, we see that we have 00
1 

points of a line so related that the cross ratio of any four is real. 

All crosses of the circle-chain will cut orthogonally by another 

cross ( of the other layer) called the axis of the chain. Let ( U) be 

the coordinates of the axis of the chain, then we have 

and 

(UY)=O, 

(UZ)=O 

u,=_j_lt Y zj 
iJt, . 

Every circle-chain has at least one pair of real crosses, called 

the principal crosses of the chain, which intersect orthogonally. To 
find these, we must solve the equation 

aa'(YY)+(ab' +a'b)(YZ)+bb'(ZZ)=O, 

aa'(YY)+(ab' +a'b)( YZ)+bb'(ZZ)=O. 

By the elimination of a' : b' from these equations, we have a 

quadratic in a : b; i.e. 

(YY) (YZ) (YY) (ZZ) (YZ) (ZZ) 
a2 +ab +b2 =0. 

(YY) (YZ) (YY) (ZZ) ( Vz) (ZZ) 

It is easily seen that this equation has real and distinct roots. 

If we take the principal crosses as (1, 0, 0), (0, 1, 0), we can express 

our chain in the simple form 

Eliminating a/b, we get 

(p~s1+q2!02)(r2fio-S2f23)=(p&o2-qifa1)(r&23+J2!01). 
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Let (x) be the coordinates of a point on the circle of our system, 

then we have 

Or 
(ax)= -coshr. 

Al01 = x2x3 sin<p A!02 = - 5c 1 x3 sin<p A.x03 = 0, 

Al23=X1(Xo-COS<p), Ala1=Xixo-COS<p), A.xu=O. 

Hence, the equation of the chain surface in point coordinates 

will be 

where 

If 

(ps-qr{ -(xo-cos<p)2+x:rin2<p },x2 
+(pr+qs)(xr+x;)(xo-COS<p)Xa sin <p=O, 

(xx)=-1. 

(ps-qr)=O, or (pr+qs)=O, 

we have two real and two imarginary circle systems. 

( 8) 

Next, suppose that we have a focal congruence of circles of such 

a nature that the corresponding cross coordinates are analytic functions 

of two real parameters u, v, then the cross cutting orthogonally the 

adjacent crosses (U) and (U+dU) will be determined hy the equation 

If 

uj uk 
Xi= auj auk du+ 

~au Tit 

uj uk 
iJUj auk dv. 
av av 

l
uau aul==o, 

au av 

there is but one cross cutting orthogonally. 

( 9 ) 

(10) 

If we take u and v as the focal parameters, then we have 

obi l. . h or l oai h b. 
QU =Aa,,sm r au +Aa; cos r+µ ,, 
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abi )I• • 1 ar )f aai h 'b' (I) -=A a szn,zr -+A - cos r + µ . av i av av ., 

(i=0, 1, 2, 3) 

and from the identitv (10) 

i.e. 

or 

Hence, we get 

(a ab )=(a ab )=o. 
au av 

But from the last condition, we have 

A=A'=0, or r=const. 

Therefore, in this case, the focal congruence is pseudo-normal 

and the space axis of the circles of the congruence is a normal one, 

or the radius of the circles of the congruence is constant. 

Let us exclude this case and pass over to the other, where 

I u au avl $O. 
au av 

In this case we shall call the cross m general position in our 

congruence. Hence, we have the following : 

The crosses cutting orthogonally a corss in generq.l position zn a 

focal congruence, and each adfacent one, will generate a chain. 

The simplest two-dimensional system of circle crosses 1s the 

circle chain congruence whose coordinates (X) are linearly dependent 

on those of the crosses ( Y), (Z), (T) with real coefficients a, b, c, i.e. 

(I) Kashiwagi, Mem. Coll. Sci., 6, 109 (1923), 
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Xi=a Yi+bZ,+cTi, 

(i= 1, 2, 3). 

I y z Tl=l=O. 
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(11) 

In this case the chain congruence is represented by all points of 

the real domain of the representing plane. 

The cross intersecting orthogonally pairs of crosses of the chain 

congruence will generate a second congruence of like sort in the other 

layer called the conjugate to the first. 

The conjugate to the chain congruence ( 11) will have the 

equation 

The relation between the two is reciprocal. We can prove that 

there are three crosses in a chain congruence which belong at once 

to qoth systems. Let their coordinates be (1, 0, 0), (0, 1, 0), (0, 0, 1) 

· respectively, then the equations of our chain congruence may thus be 

reduced to the simple form 

where a, b, c are real homogeneous variables and i= ~ -1. 

( h) 

I y z T l=O (12) 

but ( Y), (Z), (T) are not linearly dependent on real coefficients A,µ, 

11, i.e. 

In this case, we have a cross ( U) which cuts orthogonally all 

crosses of the system, where 

Conversely we can prove that every cross which cuts orthogonally the 

cross ( U) may be expressed in this form. 



312 Hidetoshi Kashiwagi. 

CIRCLE CROSSES IN ELLIPTIC SPACE. 

5. As we relate the geometry of the circle cross in hyperbolic space 

with that of a point in the complex plane, so we may relate a circle cross 

m elliptic space to a pair of real points in two planes. 

First, let us choose such a unit of measure that k= 1. 

We have for absolute 

and the coordinates of a circle of our system will be 

-r I ll2 ll3 j P:k23= b b 
2 3 • 

Next consider a linear complex whose equation is 

and put 

filo1+&23=p1X1, filo1-fil23=n,Xi, 

filo2+lll31=p1X2, lllo2-llls1=a,X2, 

filos+lll12=P1X3, ~{03-fil12= 11rXs, 

If we replace our complex by another coaxal therewith we shall 

merely multiply (1X), (,.X) by two different constants. When we 

wish to move back from independent sets of coordinates (1X), (rX) 

to the degenerate complexes of the system, i.e. to the circles of the 

cross defined thereby, we have to take for p and 11 such values that 

(& jfil)=O. 

For this, it is necessary and sufficient that 

And we have 
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Thus we see that (1X), (rX) may be taken as two separate 

triads of coordinates to determine the cross. 

Let the circles of the cross have the coordinates (ex) and (ex') ; 
then we have 

ex,3 = pr:1.' kl· 

And let (/1), W) be the coordinateg of circles of the other cross 

and let IJ, IJ' ; d, d' be the angles and distances of the cirles (ex) and 

('3) ; then, 

I} I} , d d' (ex{3) 
cos cos =cos cos --J(exex)-J('3'3)' 

• tJ . IJ' . d . d' (ex I~) 
sin sin =sin sin - -J(exex)-,J('f,{3)' 

Hence, we easily find 

(,.Xr Y) (1X1 Y) 
cos(d+d')= -J(,.X,.X)-J(,.YrY)' cos(d-d')= -J(1X1X)-J(,Y1Y)' 

or else 

The quantities 1D and rD which are given by the equation 

cos 1D 
-J(1X1X)-,J(1 Yi Y)' 

(XrY,.) 

-J(,.X ,.X)-J(,. Y,. Y)' 

shall be called left and right distances of the two crosses respectively. 

These are the algebraic sum of their moment and commoment and 

are analogous to the Clifford angles of two line crosses in elliptic space. 

The condition that the circles (ex) and ('?,) should be cospherical, 

or that one should be cospherical with the mate of the other in a 

circle cross, is that 
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i.e. 

They will be cospherical and in involution, i.e. the two crosses 

cut orthogonally, if 

The condition for parataxy will be 

This may be written 

The only real solutions will be 

We can establish one to one correspondence between the totality 

of all real crosses in elliptic space and the totality of all pairs of points 

(or lines), one in each of two real planes. 

As in the hyperbolic case, so here, we shall look upon cross 

space as doubly overlaid, and assign a cross to the upper layer if it 

be determined by two points in the representing planes, while it shall 

be assigned to the lower layer if it be determined by two lines. 

Hence, we have the following: 

In order that two crosses of different layers should intersect 

orthogonally, it is necessary and sufficient that they should be represented 

by line elements in the two planes. 
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6. The one-dimensional circle chain has the equations 

1X1=a1Y,+b1Z, rX,=arY,+brZ, 

(a, b : real, i= 1, 2, 3). 

Let us consider the case in which 

l Yi¥PzZ,, r Y,=/=a,.Z,. 

A fixed cross whose equations are 

cuts orthogonally all the crosses of the system considered. 

315 

Suppose that we have a focal congruence of circles of our system. 

We may exprese them parametrically 

Let us assume that 

1X,=1X, (u, v), 

rX,=rX, (u, v). 

XiJ1X iJ1X X XiJrX iJrX d,,,O 
l <JU <JV r <JU <JV --F • 

The cross cutting orthogonally the adjacent crosses (1X), (rX) 

and (1X +d1X), (,.X +d,.X) will be determined by the equations 

1Xj 1Xk lxj ,xk 
p,W-1== a1X.1 a,xk 

iJu ou 
du+ a,X,1 olXk dv, 

iJv iJv 

,.xj rXk 
a,.W,= a .. X; a,.xk du+ 

Ott OU 

rXj ,.Xk 
a,.xj a,.xk 
av av 

dv. 

We shall mean by the general position of a circle in our con­

gruence, one where 

xalx 0zX X xarx a,.x d,,,o 
I OU i)v r OU av T • 
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In the general position, if the crosses (1X), (rX) and (1X+d1X), 

(rX+drX) are fixed, then the totality of the orthogonal crosses to these 

crosses forms a circle chain. 

Specially, in the case 

X a1Xa1X =O 
I au av - • 

XarXarX =O 
r au av - ' 

the cross whose coordinates are 

a1XJ a1Xk 
PzW,= Tu du 

a1X 3 a1Xk' 
av av 

a1X_1 arXk 
PrW,= TuTu 

arX.1 alxk 
av av 

is the common orthogonal cross to a cross (1X), (rX) and every one of 

the crossen adjacent to it. 

As in hyperbolic space, there is but one common perpendicular 

to a cross and its adjacent crosses. And the congruence is pseudo­

normal or the radius of the circle of the congruence is constant. 

Also, in the elliptic case, every circle chain has at least one pair 

of real crosses, called principal crosses, which are orthogonal. To find 

these, we must solve the equation 

aa'( 1 Y, Y)+(ab' +b' a)(1 Y 1Z)+bb'( 1Z1Z)=O, 

aa'(r Yr Y)+(ab' +b' a)(r YrZ)+bb'(rZrZ)=O. 

Eliminating a' : b', we get 

The discriminant of the equation is 

Therefore the roots cannot be be complex. The discriminant 

may be considered as the simultaneous invariant of the form 

(a 1Y+h1Z, a1Y+b1Z)=O, 

(arY+brZ, arY+brZ)=O, 
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for a: b. When our crosses have real coordinates, the roots of these 

two quadratic equations are conjugate complex pairs. The two quadra­

tics can have no common roots unless they are identical. Hence the 

simultaneous invariant is not zero. Thus the crosses are distinct ones. 

Let us take the crosses corresponding to them as (0, 1, 0) 

(0, 1, 0), (0, 0, 1) (0, 0, 1). Then we may express our chain in the 

simple form 

1•¥1=rX1=0, 

1X2=PrX2, 

1X3=qrX3• (p,q : constant.) 

To find the equation of surface generated, let (I) be the co­

ordinates of a circles of our system, then 

l'o1=l23=0, 

q(Io2-Ia1)(Io3+I12)=P(I02+s1)(Io:i-I12). 
A point (x) will lie on this circle if 

(bx)=0, (ax)=cos r -J(xx), 

( aa)= 1, (xx)= 1. 
Hence, we have 

I02=px3 tan 'P, 
I 08=-px2 tan 'P, 

Is1=p- -J(xx) __ o_ X~ - X) 
x1 cos<p , 

I12=P Xa(..J(xx) -~) x1 cos<p . 

So the required surface is given by 

q[ x1x3 tan 'P - x{ ..J (xx)-co:~)] 
[ -X1X2 tan 'P +xs( ~ - co:~)] 

= -p[ x1x3 tan 'P + x~ ..J(xx) - co:~)] 
[ x1x2 tan cp+xs( ..J(xx) - co;~)] 
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where 

or 

Or 

Hidetoshi Kashiwagi. 

(p+q)(x~+xf)x1(-Jxx-~)tan cp 
coscp 

+(p-q{( yxx-co;~ )+x~tan2 cp }~s=O. 

Suppose, next, that we have 

p1X,=a1Y,+b1Z,, n..X1.=arY,+brZ,, 

This is a new one-parameter family of circle crosses called a 

circle-strip, or, more exactly, a left strip (or a right strip), and all crosses 

of the system are paratactic. 

Let (1X') (rX') be the common perpendicular a to pair of crosses 

of the left circle-strip, then 

(1X'1Y)=O, 

(rX' rZ) = (rX' r Y) = 0. 

Hence, we may write 

1X',.=).1Y'.+µ1Z'1, rX',=rY',=rZ',. 

We thus have a right circle-strip, and each circle-strip cuts 

each of the others orthogonally. 

A left strip of the upper layer will be represented by a point 

in the left plane, and a linear range in the right plane. The right 

strip in the lower layer will be represented by the pencil through the 

point in the left plane, and the line of the range in the right. 

The simplest two dimensional system of circle-crosses will be, 

as before, the chain congruence 

1X,=a1Y,+b1Z.+c1T., 

rX1,=ar Y,+br Y.+crT, 

l,Y,Z,Tj X lrYrZrTj$0. 

( i ) 

(ii) 
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We may solve the first three equations for a, b, c and substitute 

in the last 

PrX;,= ~aij lxj, I aij I =I= o. 
j 

(iii) 

The crosses intersecting orthogonally pairs of crosses of this 

congruence will generate a second congruence of like sort called the 

conjugate to the first. And its equations are 

<11U.= ~ajirUj. 
j 

(iv) 

The relation between the two is reciprocal. If we seek a cross 

that belongs at once to both systems, we replace (1U) and (rU) in the 

equation (iv) by (p1X) and (prX) respectively and substitute the value 

(,.x) expressed by (1X) in the right hand side of the resulting equation, 

then we have 

(v) 

where 

Therefore, we have a symmetric determinant equation by eliminat­

ing (,X) from the equation (v): 

=0. (vi) 

But as a symmetric determinant equation has always real roots, 

we have three real roots for 1:. The crosses corresponding to the three 

roots of the equation (vi) are orthogonal to one another. 

We, now, give the name general chain congruence only to a 

congruence of our present type where the cubic above has distinct 

roots. If these three crosses be looked upon as (100) (100), (010) 

(010), (001) (001), then the equations to our chain congruence may 

be reduced to the form 



32() Hidetoshi Kashiwagi. 

and the equations of the reciprocal congruence will be 

Hence we have the following : 

The circle crosses cutting orthogonally pairs of crosses of a 

general chain congruence generate a second such congruence. The 

relation between the two is reciprocal, and they have in common three 

orthogonal intersecting crosses. 

The condition that the two circles of our two systems should be 

cospherical, or that one should cospherical with the circle in bi-involu­

tion with the other, is 

If the first factor vanish, 

(,U,X)=(JlrX)=0, 

the two cut orthogonally. If the second factor vanish, every circle of 

a cross of the first congruence for which 

1s cospherical with a· circle of every cross of the second for which 

A different sort of congruence will arise in the case where 

I ,Y,Z,T I =0, I rYrZrT I =#=0, ( Ir Y,ZrT I =0, I ,Y,Z,T I =#=0). (vii) 

In this case the coordinates (1Y), (1Z), (,T), (rY), (rZ), (rT) of 

the given three crosses are linearly dependent ; thus the three points 

correspondent to (1 Y), (1Z), (1 T) [(r Y), (rZ), (rT)] in the left (right) 

representing plane are colinear, i.e. 

Therefore 
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p1X,=(a+lc)1Yi+(b+mc)1Zi, 

( arXi=( a+Ac)r Yi+(b+ µc)rZiJ• 

Let us now put 

then we have 

a+ lc=p, b+mc=q, 

a+Ac=p', b+µc=q', 

p,Xi p,Yi+qzZ,, PrX1.=PrY,+qrZ1,-C(lrY,+mrZ,-rTi), 

[arX,=p',.Y.,+q',.Z,, a,X,=p' 1Y,+q'1Z,-c(J1Y.+µ 1Z.-,T,)]. 
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Hence the congruence will contain 001 circle-strip, whose reci­

procals generate the reciprocal congruence. The canonical form will 

be 
1X1=ll1 rX1, 

1X2=ll2 rX2, 

1X~=O. 
When in addition to (vii) all the first minors of the determinant 

IY,Z,TI (lrY,.Z,.TI) 
vanishes, we have a system of paratactic circle crosses. 

If, on the other hand, we have 

without the vanishing of the first minors of either determinant we have 

00 2 crosses which cut a given cross orthogonally. These crosses may 

be represented by the equations (in the lower layer) 

And the equations of this congruence may be reduced to the 

canonical form 
p 1X1=a, a rX1=b, 
p 1X2=b, (1 rX2=C, 
p 1X3=0, a ,.X3=o, 
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