
The Theory of General Reltaivity m a 

Physically Flat Space, 1 

Ry 

Umumlrn Arakat~u. 

(Received February 2, 1925) 

ABSTRACT. 

Starting from a new definition for the general covariant derivatives of tensors in 

a space defined by ds2 =g,,_vdx,,_dx'P, the present writer proposes a theory of general 
relativity from the conception that the physic:il world must be a fht space in his view 
of the rate of ch:inge of any vector. The cor.dition for the physically fbt space 
involves the two important equations, (i) Maxwell's equations of electrodynamics, (ii) 
Einstein's equation of gravitation. 

I. lntrllduction. 

According to the principle of general relativity the rate of change of 
a physical entity should be expressed by a tensor of some kind in order 
that it may enter into the general physical laws. 

Furthermore in order to agree with the customary definition 111 

elementary cases, the above rate of change should be reduced to that of 
its rectangular components when the co-ordinates are Galilean. 

Since the ordinary covariant derivative of a contravariant vector Al'­
defined by 

( Al'-)v == aAµ. + {«v,µ}A", ···········•·················· (I•I) 
axJJ 

ds2=g,..vdx,..4x,,, .......................................... (I•2) 

oAµ. . ' 
is a tensor, and reduces to -- m the Galilean space, this was taken 

ax,, 

1 This is a p:irt of the p:iper read before the annual meeting of the Physico-~•fo.them:itical 

Society of Japan on April 1st, 1924. 
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as the rate of change of a physical entity Ill the theory of general 
relativity. 

As is well known, the neces,ary and sufficient condition of 111-

tcgrability of the differential equations 
µ 

(Aµ)v=~A +{c>v,ft}A'-=o, ........................ (1•3) 
ox,, 

IS 

where 

a a + --{,w,-,6}- -, -{;w,6},........................ (1•5) ax,, ox,r 
and therefore this equation (1•4) expresses the condition for building up 
a uniform vector field. 

When the condition (1•4) is satisfied the space (1•2) is said to be 

flat. 
When there exists no matter and no field the equations (I• 3) are 

integrable everywhere, so that the sp:1ce is flat. But when matter and 
field are present 

............................................. (1-6) 

and in this case the differential equations ( 1 · 3) are not integrable except 
along some special curves, and so the space is distorted. 

In such a case the space has an irreducible curvature, and so we 
can not construct a uniform vector field by the parallel displacement 
defined by (I• 3). The gravitational field and the law of energy are 
expressed in terms of this curvature of the space. 

In order to express the coexistence of the electromagnetic field and 
of the matter in terms of the curvature of the space, the idea to 
geometralize the physical space is further extended by Wey!, Eddington, 
and Einstein. 

On the return voyage from Japan, Prot. A. Einstein, by adopting 
Eddington's idea of the extended p:1.rallel conditions for the displacement 
vector Aµ, namely, 
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where 

rµ = rµ , ................................................... (1•8) 
EP 1 E 

deduced an extended curvature equation, and applying Hamilton's prin­
ciple, he finally arrived at Maxwell's equations of electrodynamics, as the 
first approximation of his ex.tended field equations. 

The aim of the writer is now to extend the theo1y in a different 
way. 

II. Covariant Derivative of a Vector. 

Let the covariant derivative of any contravariant vector Aµ he 
defined by 

,,,LA,,.·j = aAµ +r>' A• 
,, 8,x .,, ' ,, 

where the affine condition 

I,,.. r" 
El' === J.'E •• I •••••••••••••••••••••••••••••••••• I •••••• 

1s retained, and (A,,.J
0 

must be, of course, a mixed tensor. 

Instead of Eddington-Einstein's·· extended couception, 
ourselves only to the space defined by 

Since 

(2• 1) 

we confine 

1s a covariant derivative of a vector Aµ, it is easily inferred that l AµJ'V 
may be generally expressed by 

( Al-'J= 8A,,. + {fl} A·+ <I>Sµ A· 
"- ox l'JI .,, ' 

'Jl 

where <I> is an invariant and s:,, is a mixed _tensor in the space defined by 

(2•3), and consequently <I>S:,, A• is a tensor of equal rank with the 

ordinary covariant derivative. 
This definition of the covariant derivative expresses the most general 

rate of change of a physical entity in the space (2,3); it fulfils the 
conditions mentioned at the outset of the paper. 
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Since {;'JI} is not a tensor and ¢5:v has the tensor properties, it ts 

evident that in general 

P :V ={t')/} + ¢5:v .......................................... (2-6) 

does not vanish, except in the case where each of the members vanishes 
separately. 

We may call oAµ the analyitical rate of change, ::µ + {l}AE the 
ox,, ,, 

geo//letrical rate of change and ( AµJv == ::µ + ( { £~} + ¢5:JJ )Afche 
,, 

physical rate of change of any vector Aµ in our space. 
Corresponding to the definition of the covariant derivative of a c0i1-

travariant vector Aµ ( 2-5 ), the covariant derivative of any covariant vector 
Aµ is naturally defined by 

and also those of the tensors are appropriately defined as follows : 

[AµJJJ,.= (AµJJ),,. +¢(5~,,. A"v+5:,,.A,...), .................. (2•8) 

[A" J == (A" , + c:tl s,. Af + s13 g"f ,,
13 

A')) ), ........ . µ O' µ IO' \ O'E µ <10' -'> µ E 

etc. 

Now let us consider the derivative., of the fund:imental tensors of 

our space. We have by (2•9) 

,, 
But smce g µ =O when µ=t='V, 

and 
')) 

g = I when µ='V, µ 

lg: ],,. must be zero everywhere, 

s" 513 
a)I ,,.,.- = .. ,,.g g/3µ' 

and consequently, 

S =-5 u,u•'J) '))<T•fl' 

and, therefore, we must have 
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Hence we have, as might be expected, 

( A,.]v= ;:,.-({:11} +cIJs:v)A., ........................ (2•13) 
'.Jl 

(.1: J =( A: )<T +cIJ(s:.A: -s:<TA: ), ............... (2·14) 

[ A,.,,J =( A,.v\ -cIJ( s,.:Aa,, + s;,r A,.a). 
From (2•14) we have 

hence 

[ I].-=~. . ............................................... · (2-16) 
ox<T 

We can easily show that the differentiation of a product of tensors 
can be carried on by· the relation 

[ A BvJ =[A J B,, +A [B'.ll] µ <T }'<T µ ... (2-17) 

Now 

[g,.,,],,=-cIJ(s,.:gav+s;:g,.a) ·················· (2•18) 

= -<1{ s }'<T•')) + s'))<T•µ) 
=O, (by 2·12). .................. (2-19) 

Similarly, we can show that 

[ gµv]<T =o. ···················............................. (2-20) 

Thus we see that our extended covariant derivatives have propertie_, 
similar to those of the ordinary covariant derivatives. 

III. Physically Flat World. 
We may consider that the space, which was initially flat, must have 

some sorts of the properties of flatnes.-;, so to speak, even after it has 
been distorted by the presence of matter and fields, and the phy Jical 
world is constructed by some vector fields which have some kinds of the 
properties of uniformity. 

Therefore, let us conceive that the physical world is such a space 
that, when we take, at any point in it, a displacement vector which 
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constitutes an clement of the sp:ice, and transfer it successively to an 
adjoining point without any physical rate of ch,inge, then we obtain a 
unique vector field independent of the path of its transference. Thus we 
may regard the physical world to be constituted of system3 ot uniform 
vector fields, and it may be called physically flat in an extended sense. 

IV. Field Equations I :-Conditions of Physical Flatness. 

Let us take a displacement vector A'' in the space <ldincd by 

ds2=g ,,.,,dx,,.dx,,. ............................................. (4•1) 

In order that the space be physically flat, we must have the differential 
equation 

where 

r;={f
11
}+<1>s;, ................................................ (4·3) 

and 
µ. µ. .µ. µ. r.v =I' l'E, 5 .v =5,. · ............................................. (4·3) 

The necessary and sufficient condition for integrability of the above 
equation (4•2) everywhere in this physical space is 

where 

or 

• , E -( ·) ( ·) z a E z a E .. J,,,.r<T- cI>S,,.J/ <T- ,¢s,,.<T v-¢S,,.<TSPa+¢S,,.J)S,ra' (4-7) 

where the suffix ( )<T and ( )J) represent the ordinary covariant 
differentiation. 

Jf we express the right hand side of (4•7) in the form of the 
extended physical covariant differentiation we have 

B ,,.:<T = [ ¢5 :vJ -[ S<I> :IT ]v + cI>2s,,.: s,~ .. -<1>2s,,.: S <T:.. ... .. (4-8) 
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The expression of [ Bµ:·o-J of the equation (4·5) may be symboli­

cally written in a form similar to (4·8), namely, 

[ B µ:o-] = [ r µ: ]» -[ r µ~ Jo- + r µ~ r o-: - r;. r ;.. . .. . ( 4 9) 

As the expression of the right hand side of (4·8) is thus analogous 
to the extended Riemann-Christoffel tensor, we will call it a '' Riemann­
Christoffel tensor of the tensor type '' and denote it by the symbol 

[ • ]-[ • ] [ • J 2 a • 2 • a • - BµJ'O' - <l>SµP O'- <l>Sµo- v+<l>Sµo-s,. .. -<t>.sµ,,so-... • (4•10) 

Then the condition of the physical flatness of the world becomes 

B µ:o-= -[ Bµ:o-J .......................................... (4•11) 

This is the field equation of the physical world. 

V. Field Equation II :-(a). Maxwell's Equation of Electrody­
namics. 

Contracting ( B µ;o-] = o we obtain the covariant equation of the 

second rank 

(5· 1) 

and 

(5-2) 

The first equation (5 · 1) becomes 

GµP= -[ Gµ,,], ................................... . (5·3) 

but, since Gµv is symmetrical with respect toµ and y, the antisymmetrical 

part of [ G µ;, J must drop off. Therefo:-e, we have 

Gµ 11=-+([ Gµv]+[ G,.µ]) ................................... (5-4) 

and 

(5· 5) 

where 

-[ Gµv]==[ <I>s:v]. -[ ¢5 :. ]v +cD2S :. S ,,:-cD2S :vs.:. (5-6) 

The second equation (5-2) give, the same equation as (5·5), and therefore 
(5·4) and (5·5) or 
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Gµv= -[ Gµv] .......... ~ .... ' ............................... . (s·J) 

and 

[ Gµ~]=[ GPµ] (5-8) 

are the physical laws expressed by the tensors of the second rank. 
The equation (5·8) is reduced to 

[ <1>s,..: ]v-[ <tis,,: J =o, .......................................... (5·9) 

and if we have 

where 'I' is an invariant, then 

[ 1v,.. 'l'<l> Jv-( 1v'J/ 'l'<l> J,.. =o, 

therefore 

[ Iv ] - [1v ] = Iv µ 'Ii p µ ')I 

Putting 

-Iv µ 

(5·10) 

(5·11) 

B[og(<l>'\JI) = i\,'I! ................... • ........ •• ...... ".... ... (5 I 2) 
ax')! 

we have 

(1v,..J)l-(1v')l]µ'·'"/vp/l,µ-lv/'-'J) .,.,.,,,..,.,., .. , ........... .,, ... , (5·13) 

or 

81v 81v'I! ci.i•: - ax,,. =1v')li\,µ-1vµ1,,')I ..................................... .. 

Let us denote the antisymmetrical tensor of the left hand side of thi.; 
equation by Fµ'J!' thus 

F,..v=[1v,..]v-[1vp],.., ....................................... (5·14) 

01v 01v v 
- µ -- ............................................. (5· 14) 

ax'I! ox,.. 

then the equation (5•13) becomes 
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From (5-14) it is evident that Maxwell's equation 

1s satisfied. 
Further, if we denote the divergence of the raised tensor of 

(1vP1cµ-1.;,/i-P) by}µ, 

we have the other p:trt of the Maxwell equation 

[ FµP]i,=Jµ. 

(5-17) 

(5 · I 8) 

Thus we sec that the equation (5 • 13) includes the law of electro­
dynamics, and, therefore, the equation (5•9), or rather (5•8), expresses 
exactly Maxwell's equations of electrodynamics. The laws of electro­
dynamics are the conditions for the symmetry of " Einstein's curvature of 
the tensor type.'' 
(b ). Einstein's Equation of Gravitation. 

Since 

we have 

and 

G =-[ G J (5-20) 

Consider the tensor 

where A is a constant. 
This must b~ equal to the tensor 

(5-22) 

If we denote this by sn[ T: ], i.e., 
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we have 

G: -½g; c+ig: = -s;z[ T:] ........................... (5•24) 

which is the form of Einstein - de Sitter's equation in which [ T!] 
represents the energy tensor of all· kinds of our physical phenomena. 

In conclusion the author's thanks arc due to Prof. K. Tamaki for his 
kind advice throughout this work. 


