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ABSTRACT.

Starting from a new definition for the general covariant derivatives of tensors in
a space defined by ds? = Eup rix’“a’xv’ the present writer proposes a theory of general
relativity from the conception that the physical world must be a flat space in his view
of the rate of change of any vector. The cordition for the physically flat space
involves the two important equations, (i) Maxwell’s equations of electrodynamics, (ii)
Einstein’s equation of gravitation, :

I. Introduction.

According to the principle of general relativity the rate of change of
a physical entity should be expressed by a tensor of some kind in order
that it may enter into the general physical laws.

Furthermore in order to agree with the customary definition in
elementary cases, the above rate of change should be reduced to that of
its rectangular components when the co-ordinates are Galilean.

Since the ordinary covariant derivative of a contravariant vector A*
defined by

04" a
(44), = o O e (1)

»
ds'=g @2, Ay e (102)
, 4" . , ,
is a tensor, and reduces to 2 in the Galilean space, this was taken
x
»

1 This is a part of the paper read before the annual meeting of the Physico-Mathematical
Society of Japan on April 1st, 1924.
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as the rate of change of a physical entity in the theory of general
relativity.

As is well known, the necescary and sufficient condition of in-
tegrability of the differential equations

(A"‘) = 0" H{EVupA =0, .iiiiiriiiiiiiin, (1-3)
Y oz,
is

B wvr =05 eeeenennens ettt eaes (1-3)
where

By ={uoo{on e} —{ura et}

0 0
{:u a,&} 7
ox, ox,

+ T 2 PN (1-5)

and therefore this equation (1-4) expresses the condition for building up
a uniform vector field.

When the condition (1-4) is satisfied the space (1-2) is said to be
flat.

When there exists no matter and no field the equations (1-3) are
integrable everywhere, so that the space is flat. But when matter and
field are present

B 50,  eevtereeenie ettt (1-6)

uve

and in this case the differential equations (1-3) are not integrable except
along some special curves, and so the space is distorted.

In such a case the space has an irreducible curvature, and so we
can not construct a uniform vector field by the parallel displacement
defined by (1-3). The gravitational field and the law of energy are
expressed in terms of this curvature of the space.

In order to express the coexistence of the electromagnetic field and
of the matter in terms of the curvature of the space, the idea to
geometralize the physical space is further extended by Weyl, Eddington,
and Einstein,

On the return voyage from Japan, Prot, A. Einstein, by adopting
Eddington’s idea of the extended parallel conditions for the displacement
vector A", namely,
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where
I =T e e v (1-8)

deduced an extended curvature equation, and applying Hamiltow’s prin-
ciple, he finally arrived at Maxwell’s equations of electrodynamics, as the
first approximation of his extended field equations.

The aim of the writer is now to extend the theory in a dlfféxcnt
way.

II. Covdrian't Derivative of a Vector.

Iet the covariant derivative of any contravariant vector A* be
defined by

\_HA

(4 h=5

where the affine condition

H “
r,="_I, ... PP RN (2-2)

is retained, and [A"q‘p nust be, of course, a mi‘ced tensor,

Instead of Fddington-Einstein’s " extended conceptlon we confine
ourselves only to the space defined by - f S

({JZ:g,u.Ddx,udx‘l‘- veseseseans Ceeeceerttainasanttacarraaaree (2'3)

Since

i)A” u AE
(A;%E o +{£v} A e e (2-4)‘

is a covariant derivative of a vector A*, it is easily inferred that LA"],,
may be generally expressed by '

8A

{ }A‘+<I>S A e, ('z-gj

where @ is an invariant and Ssl’ is a mixed tensor in the space defined by

(2-3), and consequently @va A° is a tensor of equal rank with the
ordinary covariant derivative,

This definition of the covariant derivative expresses the most general
rate of change of a physical entity in the space (2-3); it fulfils the
conditions mentioned at the outset of the paper.
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Since { é:,va)} is not a tensor and fDS':D has the tensor properties, it is

evident that in general

& "
rf={ A OS] . (26)

does not vanish, except in the case where each of the members vanishes

separately.

m
We may call aaA

L. ) oA u €
the analyitical rate of change, + A€ the
o, 24

»

M
geometrical rate of change and [A"]vs g} ({6‘;}} + CDS:,)A‘the
»

physical rate of change of any vector A* in our space.

Corresponding to the definition of the covariant derivative of a con-
travariant vector A4* (2-5), the covariant derivative of any covariant vector
Ay is naturally defined by

aA 6 H [:13
A h= .a:;Jf-— {yv}As+q)S“” &£ 88, AE ) erreereeienenenas (2'7)
»

and also those of the tensors are appropriately defined as follows:

[ cH 3 4
[A,MI’]O—E (Al“’)o' +®\Sao' A v+Sao'Alm>’ .................. (28)
» M € B e v
[A: ]o’ = (A/,,, )o’ +(D(Sa-5 A’u +Sa<rg g-ﬂ,u, Ae )’ """"" (29)
etc,

Now let us consider the derivatives; of the fundamental tensors of
our space. We have by (2-9)

» » 8 »
[gﬂ ]'f :(I)Sd"q-cl)Swg“ LR rreeeseeseseeeines (2:10)
But since g: =0 when u==w,

and g:i =1 when p=mv, .ccceiriiiiiiniiniiinii (2-11)

v
[g# ] , must be zero everywhere, and, therefore, we must have

S m =S e (2-12
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Hence we have, as might be expected,

04 3 .
[A,,.]v Eaf"‘({#v} +(I)SI~‘7’>A" ........................ (2-13)
» » .Y € € »
[‘4M ]UE(AF. )¢r +¢)(‘505A,4 —SF” 145 ), ............... (2-]4)
[A;w]« E(*A#p)., -‘I’(SWA“,, + S,.(, A”a). ............... (2:13)

From (2-14) we have

P P 047
[A ”]" :(A ”)a - ar:’

[1 ]UE BL e ~ (2:16)

ax‘,'

hence

We can easily show that the differentiation of a product of tensors
can be carried on by the relation

(4,7 ), =[], 5" +4,[B ], e (z17)

Now
[g,w].y:—q)(slw g,,,,+5,,ag#a) .................. (2-18)
= —(I)(S'uo,_v-k S’pa’-p)
=0, (by 2-12). ceieiiiniainnnnn, (219)

Similarly, we can show that

[g’“]o, o TR (2.20)

Thus we sce that our extended covariant derivatives have propertics
similar to those of the ordinary covariant derivatives,

III. Physically Flat World.

We may consider that the space, which was initially flat, must have
some sorts of the properties of flatness, so to sp@ak, even after it has
been distorted by the presence of matter and fields, and the physical
world is constructed by some vector fields which have some kinds of the
properties of uniformity.

Therefore, let us conceive that the physical world is such a space
that, when we take, at any point in it, a displacement vector which
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constitutes an element of the space, and transfer ‘it successively to an
adjoining point without any physical rate of change, then we obtain a
unique vector field independent of the path of its transference. Thus we
may regard the physical world to be constituted of systems of uniform
vector fields, and it may be called physically flat in an extended sense.

IV. Field Equations I:—Conditions of Physical Flatness.
Let us take a displacement vector A" in the space defined by

dS'=g (Ax, dx,. (41)

In order that the space be physically flat, we must have the differential
equation

I
[A"]vEZ‘il +F::A‘=o, N PP (4-2)
where
® #
r, —{é‘v}+q>sw, ................................................ (4:3)
and
® BoogH
r,=r,., Ev—S ............................................. (43)

The necessary and sufficient condition for integrability of the above
cquation (4-2) everywhere in this physical space is

[B,M] Oy erverererereretssebe e eree e ean st (4-4)
where
7 0 \
Baye)=- e O pegrercorere, L. :
[ )ME (7.? F“‘+ axv 45 + ou  Pa Yu o ! <4 5)
or .
i o), e
(cps ) Se ) —@SE Sy @SS S (47)
where the suffix ( ) dnd ( ), represent the ordinary covariant

differentiation.
If we express the uoht hand side of (4-7) in the form of the
extended physical covariant differentiation we have

BS = [ ‘PSWJU - [ se ];v TR S IS S (4'8)

ura
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The expression of [B#:.o,] of the equation (4-5) may be symboli-
cally written in a form similar to (4-8), namely,
€ € € [ € -3 ~ €
[B#W]E[I‘M]” —[rw ]y TS S RS it A (49)
As the expression of the right hand side of (4-8) is thus analogous

to the extended Riemann-Christoffel tensor, we will call it a ¢ Riemann-
Christoffel tensor of the tensor type” and denote it by the symbol

~(Bae J=[ @S0 o —[@S0 |+ S LS —w8SS L @o)

Then the condition of the physical flatness of the world becomes

€ €
B g™ — [B,M]. .......................................... (411)
This is the field equation of the physical world.

V. Field Equation II:—(a). Maxwell’'s Equation of Electrody-
namics.

Contracting {B

second rank

€

#W]zo we obtain the covariant equation of the

and

The first equation (5-1) becomes

G,,= _[G;w]’ ............................................... (5-3)

but, since Gpur is symmetrical with respect to u and y, the antisymmetrical

part of [G#v] must drop off. Therefore, we have

G o= %([Gm,] + [G“‘D ................................... (5-4)
[G,L,,] —{Gw] 20, ereeenieieieieenes e vbereereeierea—.. (35)

_[G#,,]z[fb.'iw]e —[@S pe]l’ +®:S e S ra —P1S ’wgm . (56)
The cecond equation (5-2) gives the same equation as (§-5), and therefore

(5+4) and (5-5) or

and

where
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and

[G#v]:[e’w] ................. e e (58)

are the physical laws expressed by the tensors of the second rank.
The equation (5-8) is reduced to

[Q)SF: ]p—[Q)Sw:]y =0, teees Ceerestetiitetattrantanatanaes veeer (5°9)

and if we have

S :u =WH, e, cereenenans (5:10)

where ¥ is an invariant, then

[mﬁ‘l’fb]” — [mv\lffb]“ =0,
therefore

3 _ olog(PW) log (D)
["";u]v [m”]# -M”T —k, T e (511)
B P
Putting

0/og (DY) ~2
“ox,
%y

we have

or

Let us denote the antisymmetrical tensor of the left hand side of this
equation by £ thus

F#yg[lﬁ#]v—[lﬁ”]“, ....................................... (5-14)

on or
=- K —% ............................................. (5-14)
va ('l,u.

then the equation (5-13) becomes

Fuy=myd =8 ,hy o i (53-13)
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From (5-14) it is evident that Maxwell’s equation

oF oF, oF
o S Ll e SR (5-16)
or, ax‘u 8,11,

is satisfied,
Further, if we denote the divergence of the raised tensor of

(mwh#—mﬁlw> by J#,

j"z[m”/l”-—fo“ﬂ”]v .................. e (5:17)
we have the other part of the Maxwell equation
L SR — (518)

Thus we sce that the equation (5-13) includes the law of clectro-
dynamics, and, therefore, the ecquation (5-9), or rather (5-8), cxpresses
exactly Maxwell’s cquations of electrodynamics. The laws of electro-
dynamics are the conditions for the symmetry of ¢ Einstein’s curvature of
the tensor type.”

(b). Einstein's Equation of Gravitation.

Since

GH= — [G“”],

we have

and

G =—[G]. ................................................ (5-20)

where A4 is a constant,
This must be cqual to the tensor

[GZ]-%g:[GJ—Agz ....................................... (5-22)

If we denote this by 87:[ 7’ ] e,

[GZ]—fgﬁ[G]—ﬂg’;ESn[T:], ........................ (5-23)
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we have

G”:—%gZG-Fﬂg:i:—&n[Tz] ........................... (5-24)

which is the form of Einstein- de Sitter’s equation in which [Yz]

represents the energy tensor of all kinds of our physical phenomena.

In conclusion the author’s thanks are due to Prof. K, Tamaki for his
kind advice throughout this work.



