On the Projective Line Element upon a Hypersurface.

By

Jôyò Kanitani.

(Received May 21, 1925)

Abstract.

Let $\boldsymbol{\rho}$ be a quadratic differential form such that all the curves upon a hypersurface which satisfy $\rho=0$ are asymptotic, and g be a function of the referred curvilinear coordinates upon the hypersurface which makes $g \rho$ an invariant form. In this paper, I investigate the geometrical meaning of the integral

$$
\int V g \Phi
$$

taken along a curve on the hypersurface and the property of the extremal curves of this integral, and I prove that a necessary and sufficient condition that a hypersurface may be represented upon a hypersurface of the second degree in such a manner that the asymptotic curves are in correspondence is that p may be reduced to the form

$$
\rho\left(u_{1}, \ldots \ldots, u_{n}\right)\left\{d u_{1}^{2}+\ldots \ldots+d u_{n}^{2}\right\}
$$

CHAPTER

FUNDAMENTAL QUANTITIES.

1. Consider a regular hypersurface ${ }^{1}$ (i.e. a hypersurface such that both of the manifoldness of points on it and the hyperplanes tangent to it are n) in the $u+1$ dimensional projective space defined by the equations
(1) $\quad \begin{aligned} & x_{i}=x_{i}\left(u_{1}, u_{2}, \ldots \ldots, u_{n}\right), \\ &(i=0,1, \ldots \ldots, n+1),\end{aligned}$
where the functions x 's are analytic functions of u 's in a domain R.
[^0]Put
(2) $\quad h_{i j}=\left|\begin{array}{lllll}x_{0} & \frac{\partial x_{0}}{\partial u_{1}} \ldots \ldots & \cdots \cdots & \frac{\partial x_{0}}{\partial u_{n}} & \frac{\partial^{2} x_{0}}{\partial u_{i} \partial u_{j}} \\ \cdots \cdots \cdots \cdots \cdots & \cdots \cdots \cdots \cdots \\ x_{n+1} & \frac{\partial x_{n+1}}{\partial u_{1}} \cdots \cdots \cdots & \frac{\partial x_{n+1}}{\partial u_{n}} & \frac{\partial^{2} x_{n+1}}{\partial u_{i} \partial u_{j}}\end{array}\right|$
(3) $h=\left|k_{i j}\right|$

Hereafter, we shall denote the determinant as on the right side of (2) by

$$
\left|x \frac{\partial x}{\partial u_{1}} \cdots \cdots \cdots \cdots \cdots \cdots \cdot \frac{\partial x}{\partial u_{n}} \frac{\partial^{2} x}{\partial u_{i} \hat{c} u_{j}}\right|
$$

Put
(4) $\varphi={ }^{n} \sum h_{\sigma \tau} d l_{\sigma} d \iota_{\tau}$,

$$
\sigma, \tau=1
$$

(5) $\quad q=-\frac{3}{2} d \varphi-\frac{3}{2(n+2)} \varphi d \log h-\left|x \frac{\partial x}{\partial u_{1}} \ldots \ldots \ldots \frac{\partial x}{\partial u_{n}} d^{3} x\right|$

$$
\underset{\sigma_{2} ; f=1}{=}{ }_{2}^{n} \quad K_{\sigma ; p} d u_{\sigma} d v_{\tau} d u_{\rho} \quad\left(K_{i j l}=K_{i l j}=K_{j i i}\right) .
$$

The curves which satisfy $\varphi=0$ are asymptotic curves and those which satisfy $\varphi=0$ are Darbou curves. ${ }^{1}$

Hereafter, we shall omit the symbol of the summation Σ and denote the indices which shall be summed up from i to n by greek letters α, $\beta, \gamma, \lambda, \mu, \nu, \sigma, \tau, \rho$, etc.
2. Consider the transformation of the curvilinear coordinates

$$
\begin{aligned}
u_{i}= & =u_{i}\left(u_{1}^{\prime}, \ldots \ldots, u_{n}^{\prime}\right), \\
& (i=\mathrm{I}, 2, \ldots \ldots, n), \\
\tau u= & \frac{\partial\left(u_{1}, u_{2}, \ldots \ldots, u_{n}\right)}{\partial\left(u_{1}^{\prime}, u_{2}^{\prime}, \ldots \ldots, u_{n}^{\prime}\right)} \neq 0 .
\end{aligned}
$$

By this transformation, we have

$$
\begin{aligned}
h_{i j}^{\prime} & =w / h_{\sigma ;} \frac{\partial u_{\sigma}}{\partial u_{i}^{\prime}} \frac{\partial u_{j}}{\partial u_{j}^{\prime}}, \\
h_{j}^{\prime} & =w w^{n+2} / h, \\
K_{i j l}^{\prime} & =K_{\sigma \tau \rho} \frac{\partial u_{\sigma}}{\partial u_{i}^{\prime}} \frac{\partial u_{\tau}}{\partial u_{j}^{\prime}} \frac{\partial u_{\rho}}{\partial u_{l}^{\prime}} .
\end{aligned}
$$

[^1]On the Projective Line Element upin a Hypersurfacc. 359 If $h^{i j}$ be the cofactor of $h_{i j}$ in the determinant $\left|h_{i j}\right|$ divided by h,
(6) $h_{i \sigma} h^{j \sigma}=\varepsilon_{i j},\left(\varepsilon_{i i}=\mathrm{I}, \varepsilon_{i j}=0\right.$, if $\left.i \neq j\right)$,
(7) $h^{\prime i} j=\frac{I}{w} h^{\sigma \tau} \frac{\partial u_{i}^{\prime}}{\partial u_{\sigma}} \frac{\partial u_{i}^{\prime}}{\partial u_{\tau}}$.

Put

$$
E_{i j}=K_{i \lambda \sigma} K_{j \mu \tau} h^{\lambda \mu} h_{\cdot}^{\sigma \tau}
$$

Then

$$
E_{i_{j}}^{\prime}=E_{\sigma \tau} \frac{\partial u_{\sigma}}{\partial u_{i}^{\prime}} \frac{\partial u_{\tau}}{\partial u_{j}^{\prime}} .
$$

Let ρ be any constant and put

$$
\frac{\mathrm{I}}{h}\left|\begin{array}{c}
E_{11}+\rho h_{11} E_{12}+\rho h_{12} \ldots \ldots \ldots E_{1 n}+\rho h_{1 n} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
E_{n 1}+\rho h_{n 1} E_{n 2}+\rho h_{n 2} \ldots \ldots \ldots E_{n n}+\rho h_{n n}
\end{array}\right|
$$

Then we have

$$
E^{\prime}=E, E_{i}^{\prime}=\frac{\mathbf{I}}{w^{n i}} E .
$$

3. Next, consider the transformation

$$
\begin{aligned}
& x_{i}^{\prime}=\lambda x_{i} \\
& (i=0,1, \ldots \ldots, n+1)
\end{aligned}
$$

where λ is an analytic function of u 's in the domain R.
By this transformation, we have

$$
\begin{aligned}
h_{i j}^{\prime} & =\lambda^{n+2} h_{i j}, \\
h^{\prime} & =\lambda^{n(n+2)} h, \\
K_{i j l}^{\prime} & =\lambda^{n+2} K_{i j l}, \\
h^{\prime \prime} j & =\lambda^{-(n+2)} h_{j}{ }^{, j} \\
E_{i_{j}}^{\prime} & =E_{i j} .
\end{aligned}
$$

Therefore, the differential forms

$$
\left(E_{i}\right)^{\frac{1}{n-i}} \varphi,\left(E_{i}\right)^{\frac{1}{n-i}} \psi, E_{\sigma \tau} d u_{\sigma} d u_{\tau}
$$

remain unchanged by any projective transformation of the hypersurface and by any transformation of the curvilinear coordinates and also by the multiplication of the point coordinates by any common factor.

CAHPTER II

PROJECTIVE LINE ELEMENTS.
4. Suppose that a congruence of ($n-1$)-flats (a system of $\infty^{n}(n-1)$ flats) is associated with the hypersurface in such a manner that to any point on the hypersurface corresponds one and only one ($n-1$)-flat which lies in the tangent hyperplane at this point.

The ($n-1$)-flat corresponding to the point $b(x)$ on the hypersurface may be determined by the n points

$$
b_{i}\left(\alpha_{i}(x)+\left(\frac{\partial x}{\partial u_{i}}\right)\right) . \quad(i=\mathrm{I}, 2, \ldots \ldots, n)
$$

Let $P_{n+1}(y)$ be a point which satisfies

$$
\left|B B_{1} \ldots \ldots \ldots B_{n} b_{n+1}\right|=1
$$

Then we have the equations of the form
(1) $\left\{\begin{aligned} d B & =-\alpha_{\sigma} d u s_{\sigma}+d u s_{\sigma} B_{\sigma} \\ d B_{i} & =d \theta_{i \rho} B+d \theta_{i 1} B+\ldots \ldots d \theta_{i n+1} i_{n+1} \\ (i & =1,2, \ldots \ldots, n)\end{aligned}\right.$
where $d \theta_{i j}$ are Pfaffian expressions. ${ }^{1}$
From (I) we have
(2) $d \theta_{i n+1}=\left|B B_{1} \ldots \ldots B_{n} d B_{i}\right|$

$$
\begin{aligned}
& =\left|x \frac{\partial x}{\partial u_{i}} \cdots \cdots \frac{\partial x}{\partial u_{n}} d\left(\frac{\partial x}{\partial u_{i}}\right)\right| \\
& =h_{i_{\sigma}} d u_{\sigma} \\
0 & =(\delta, d) B \\
& =\left(-\delta\left(\alpha_{\sigma} d u_{\sigma}\right)+d\left(\alpha_{\sigma} \delta u_{\sigma}\right)+d u_{\sigma} \delta \theta_{\sigma_{o}}-\delta u_{\sigma_{i}^{-}} d \theta_{\sigma \sigma}\right) B+\ldots \ldots
\end{aligned}
$$

where terms not written are linearly dependent on
$B_{1}, B_{2}, \ldots \ldots, B_{n+1}$, and accordingly
(3) $\frac{\partial \theta_{i o}}{\partial u_{j}}-\frac{\partial \vartheta_{j \rho}}{\partial u_{i}}=\frac{\partial \alpha_{i}}{\partial u_{j}}-\frac{\partial \alpha_{j}}{\partial u_{i}}$

If the point B moves along a curve on the hypersurface, the corresponding ($n-1$)-flat generates a hypersurface which we shall call a hypersurface of the congruence.

[^2]Through the ($n-1$)-flat $B_{1} B_{2} \ldots \ldots B_{n}$ pass ∞^{n} hypersurfaces of the congruence. Any one of these surfaces which has the property that the tangent hyperplanes to it at all the points on $B_{1} B_{2} \ldots \ldots B_{n}$ are the same, may be called the developable hypersurfaces of the congruence.

Any point on the ($n-1$)-flat $B_{1} B_{2} \ldots \ldots B_{n}$ may be put in the form

$$
P=\mu_{1} B_{1}+\ldots \ldots \ldots \ldots+\mu_{n} B_{n}
$$

and from (I) we have

$$
d P=\mu_{\sigma} d \theta_{\sigma \sigma} B+\ldots \ldots \ldots \ldots+\mu_{\sigma} d \theta_{\sigma n+1} B_{n+1},
$$

where terms not written are linearly dependent on $B_{1}, B_{2}, \ldots \ldots, B_{u}$.
The tangent hyperplane at P to a hypersurface of the congruence is determined by the $n+$ I points

$$
B_{1}, \ldots \ldots, B_{n}, \mu_{\sigma} d \theta_{\sigma^{o}} B+\mu_{\sigma} d \theta_{\sigma n+1} B_{n+1} .
$$

Therefore, the curves corresponding to the developable hypersurfaces are determined by the equations
(4) $\frac{d \theta_{1 \rho}}{d \theta_{1 n+1}}=\ldots \ldots \ldots \ldots=\frac{d \theta_{n o}}{d \theta_{n, n+1}}=\rho$.

From (4) we have
(5) $\left\{\begin{array}{l}\left(\frac{\partial \theta_{10}}{\partial u_{1}}-\rho h_{u_{1}}\right) d u_{1}+\ldots \ldots+\left(\frac{\partial \theta_{10}}{\partial u_{n}}-\rho h_{1 n}\right) d u_{n}=0, \\ \ldots \\ \left(\frac{\partial \theta_{n o}}{\partial u_{1}}-\rho h_{n 1}\right) d u_{u_{1}}+\ldots \ldots+\left(\frac{\partial \theta_{n o}}{\partial u_{n}}-\rho h_{n n}\right) d u_{s_{n}}=0 .\end{array}\right.$

From (5) we have

$$
\left|\begin{array}{c}
\frac{\partial \theta_{1 o}}{\partial u_{1}}-\rho h_{11} \ldots \ldots \ldots \frac{\partial \theta_{1 o}}{\partial u_{n}}-\rho h_{1 n} \tag{6}\\
\ldots \ldots \ldots \ldots \ldots \ldots \cdots \\
\frac{\partial \theta_{n o}}{\partial u_{1}}-\rho h_{n 1} \ldots \ldots \cdots \frac{\partial \theta_{u_{o}}}{\partial u_{n}}-\rho h_{m u}
\end{array}\right|=0 .
$$

A system of the equations of the form

$$
\frac{d v_{1}}{p_{1}}=\frac{d v_{2}}{p_{2}}=\ldots \ldots \ldots=\frac{d v_{n}}{p_{n}},
$$

where p 's are analytic functions of u 's in the domain considered, defines a system of ∞^{n-1} curves such that through any point on the hypersurface passes a curve which belongs to it. We shall call such system the family of curves.

Since (6) is an equation of the degree n with respect to ρ, there are
n families of the curves which correspond to the developable hypersurfaces of the congruence.

Let ρ_{1}, ρ_{2} be any two roots of (6) and

$$
\begin{aligned}
& d u_{1}: d u_{2}: \ldots \ldots \ldots \ldots \ldots \ldots: d u u_{n}, \\
& \delta u_{1}: \delta u_{2}: \ldots \ldots \ldots \ldots \ldots: \delta u_{n}
\end{aligned}
$$

be the two directions corresponding to these roots.
Then we have.

$$
\begin{aligned}
& d \theta_{i o}=\rho_{1} d \theta_{i n+l}, \\
& \delta \theta_{i o}=\rho_{2} \delta \theta_{i n+1}, \\
& d u_{\sigma} \delta 9_{\sigma^{o}}-\delta u_{\sigma} d \theta_{\sigma^{o}}=\left(\rho_{1}-\rho_{2}\right) \quad u_{\sigma \tau} d u_{\sigma} \delta u_{\tau} .
\end{aligned}
$$

Therefore, if
(7) $\frac{\partial \alpha_{i}}{\partial u_{j}}=\frac{\partial x_{j}}{\partial z_{i}},(i, j=\mathrm{I}, 2, \ldots \ldots, n)$,
any two curves of the said families issuing from a point on the given lypersurface are conjugate to each other.

If a congruence of ($n-1$)-flats associated with the hypersurface in the said manner satisfies condition (7), we shall say this congruence is conjugate to the hypersurface.
5. Assume that condition (7) is satisfied and α to be a function which satisfies

$$
d \log \alpha=\alpha_{\sigma} d u_{\sigma} .
$$

Then the coordinates of the point B_{i} are of the form

$$
\frac{\partial \log \alpha}{\partial u_{i}}(x)+\left(\frac{\partial x}{\partial u_{i}}\right) . \quad(i=\mathrm{I}, 2, \ldots \ldots, n) .
$$

If we make the transformation

$$
x_{i}^{\prime}=\lambda x_{i},
$$

we have

$$
\lambda\left\{\frac{\partial \log \alpha}{d u_{i}}(x)+\left(\frac{\partial x}{\partial u_{i}}\right)\right\}=\frac{\partial \log }{\partial u_{i}}\left(\frac{\alpha}{\lambda}\right)\left(x^{\prime}\right)+\left(\frac{\partial x^{\prime}}{\partial u_{i}}\right)
$$

and if we make the transformation

$$
\begin{aligned}
& u_{i}^{\prime}=u_{i}^{\prime}\left(u_{1}, u_{2}, \ldots, \ldots, u_{n}\right), \\
& (i=\mathrm{I}, 2, \ldots \ldots, u),
\end{aligned}
$$

we have

$$
-\frac{\partial \log \alpha}{\partial u_{i}}(x)+\left(\frac{\partial x}{\partial u_{i}}\right)=\frac{\partial u_{\sigma}^{\prime}}{\partial u_{i}}\left\{\frac{\partial \log \alpha}{\partial u \sigma_{\sigma^{\prime}}}(x)+\left(\frac{\partial x}{\partial u \sigma^{\prime}}\right)\right\} .
$$

Accordingly, the $(n-1)$-flat of the congruence corresponding to the point $B(x)$ may be determined by the n points

$$
B_{i}\left(\frac{\partial \log \alpha}{\partial u_{i}^{\prime}}(x)+\left(\frac{\partial x}{\partial u_{i}^{\prime}}\right) . \quad(i=\mathbf{1}, 2, \ldots \ldots, n) .\right.
$$

Therefore, if a congruence of ($n-1$)-flats conjugate to the hypersurface is given, we can determine a function α which becomes α / λ, if we multiply the point coordinates of the points on the hypersurfaces by a common factor λ, and which remain unaltered by any transformation of the curvilinear coordinates.

Reciprocally, if a function α which has such a property is given, we can determine a congruence of ($n-1$) flats conjugate to the hypersurface, by making correspond the $(n-1)$ flat determined by the n points

$$
B_{i}\left(\frac{\partial \log \alpha}{\partial u_{i}}(x)+\left(\frac{\partial x}{\partial u_{i}}\right)\right) \quad(i=\mathbf{1}, 2, \ldots \ldots, n)
$$

to the point $B(x)$ on the hypersurface.
If we put

$$
g=\frac{\alpha^{2}}{\sqrt[n+2]{h}}
$$

then $g \varphi$ is an invariant form.
Reciprocally, if θ is a function which makes $\theta \varphi$ an invariant form, we can determine by the function β such that

$$
\beta==^{2 n+2 n} V / \pi \sqrt{\theta}
$$

a congruence of $(n-1)$-flats conjugate to the hypersurface by the way above mentioned.

We shall call the quantity $d s$ defined by the equation

$$
d s^{2}=\theta \varphi
$$

a projective line element and the congruence of $(n-1)$-flats determined by the function β the congruence subjected to this projective line element. 6. The quadratic differential form $g \varphi$ may be reduced to thes sum of the squares of the n independent Pfaffian expressions.

Let
(7) $d w v_{i}=a_{i \sigma} d v_{\sigma}$
be these Pfaffian expressions. Then we have

$$
\begin{aligned}
& g h_{i j}=a_{\sigma^{i}} a_{\sigma j} \\
& \left|a_{i j}\right|=\sqrt{g^{n} h}
\end{aligned}
$$

Let $a^{i j}$ be the cofactor of $a_{i j}$ in the determinant $\left|\alpha_{i j}\right|$ divided by the value of this determinant. Then we have

$$
\begin{gathered}
\alpha_{i_{\sigma}} a^{j \sigma}=a_{\sigma^{i}} a^{\sigma j}=\varepsilon_{i j}, \\
d u_{i}=a^{\sigma_{i}} d w w_{\sigma}, \\
a_{i j}=g a^{i \sigma} h_{\sigma j}, \\
g i^{j}=a_{i_{\sigma}} h^{\sigma j}, \\
h^{i j}=g a^{\sigma^{i}} a^{\sigma j} .
\end{gathered}
$$

Put

$$
\begin{aligned}
& k_{i j l}=g \quad K_{\sigma \tau,} a^{i_{\sigma}} a^{j \tau} a,^{i_{\rho}} \\
& \mathfrak{c}_{i j}=E_{\sigma \tau} a^{i_{\sigma}} a^{j_{\tau}}
\end{aligned}
$$

Then we have

$$
\begin{gathered}
g^{\sigma} \psi=k_{\sigma \tau} d w w_{\sigma} d w{ }_{\tau} d w w_{\rho}, \\
E_{\sigma \tau} d u_{\sigma} d u_{\tau}=e_{\sigma \tau} d w w_{\sigma} d w{ }_{\tau}, \\
e_{i j}=k_{i_{\sigma \tau}} k_{j \sigma \tau} .
\end{gathered}
$$

7. We shall call any system of n Pfaffian expressions $d \Omega_{1}, d \Omega_{2} \ldots \ldots$, $d \Omega_{n}$ which satisfy

$$
g \varphi=d S_{1}^{2}+\ldots \ldots+d S_{n}^{2}
$$

fundamental.
The necessary and sufficient condition that a system of n Pfaffian expressions
(8) $\quad d w_{i}^{\prime}=q_{\sigma}^{i} d \tau v_{\sigma},(i=1,2, \ldots \ldots, n)$,
q_{j}^{i} being analytic function of $n ' s$ in the domain R, be fundamental is that
(9) $q_{i}^{\sigma} q_{j}^{\sigma}=\varepsilon_{i j}$.

From (9) we have

$$
\left|q_{j}^{i}\right|^{2}=\mathrm{I}
$$

Assume that the functions q_{j}^{i} are so chosen that

$$
\left|q_{j}^{i}\right|=\mathrm{I} .
$$

Then we have from (8)

$$
d w_{i}=q_{i}^{\sigma} d w_{i}^{\prime} .
$$

8. Let $f\left(u_{1}, \ldots \ldots, u_{n}\right)$ be any function of $w^{\prime} s$.

Then

$$
d f=\frac{\partial f}{\partial u_{\sigma}} d u_{\sigma}=\frac{\partial f}{\partial u_{\sigma}} a^{\tau \sigma} d w_{\tau} .
$$

Denote by the symbol $\frac{\partial f}{\partial \tau t_{i}}$ the sum

$$
a^{i \sigma} \frac{\partial f}{\partial v_{\sigma}}
$$

Then we have

$$
d f=\frac{\partial f}{\partial w_{\sigma}} d w_{\sigma .} .
$$

Any Pfaffian expressions $d \Omega$ may be put in the form

$$
d \Omega=b_{\sigma} d \tau v_{\sigma}
$$

We shall also denote b_{i} by $\frac{\partial \Omega}{\hat{c} \tau w_{i}^{\prime}}$ - so that we have

$$
d \Omega=\frac{\partial \Omega}{\partial w_{\sigma}} d w_{\sigma} .
$$

From the equation

$$
\frac{\partial f}{\partial \pi u_{i}}=a^{i \sigma} \frac{\partial f}{\partial s_{s}}
$$

we have

$$
\frac{\partial f}{\partial u_{i}}=a_{\sigma_{i}} \frac{\partial f}{\partial \tau u_{\sigma}} .
$$

9. Put
(Io) $\sigma_{i j k}=\alpha_{/ \lambda}\left(\frac{\partial a^{j \lambda}}{\partial \tau_{i}}-\frac{\partial a^{i \lambda}}{\partial v_{j}}\right)$,
(II) $\tau_{i j k k}=\frac{1}{2}\left(\sigma_{j k i}+\sigma_{k i j}-\sigma_{i j k}\right)$.

Then we have
(12) $\sigma_{i j k}+\sigma_{j i k}=0$,
(13) $\tau_{i j k}+\tau_{j i k}=0$,
(14) $\boldsymbol{\tau}_{j k i}-\boldsymbol{\tau}_{i k j}=\sigma_{i j k}$,
(15) $(\delta, d) w_{i}=\sigma_{\lambda \mu i} d w_{\lambda} \delta w_{\mu}$,
(16) $\left(\frac{\partial}{\partial w_{i}}, \frac{\partial}{\partial w_{j}}\right) f=\sigma_{i j \lambda} \frac{\partial f}{\partial w_{\lambda}}$,
(17) ($\delta, d) \Omega=\left(\frac{\partial b_{\lambda}}{\partial w_{\mu}}-\frac{\partial b_{\mu}}{\partial w_{\lambda}}+{ }_{b \nu} \sigma_{\lambda, \nu}\right) d w w_{\lambda} \delta w_{\mu}$.

If by a transformation of the fundamental system to which we refer, a m-usple system of the quantities $X_{r_{1} \ldots \ldots . r_{m}}\left(r_{1}, \ldots \ldots, r_{m}=\mathrm{I}, 2, \ldots \ldots, n\right)$ defined by a sequence of operations is transformed to the system
$X_{r_{1} \ldots . . . r_{n}}^{\prime}\left(r_{1}, \ldots \ldots, r_{m}=\mathrm{I}, 2, \ldots \ldots, n\right)$ which is connected to the original system by the equations

$$
X_{r_{1} \ldots \ldots . r_{/ /}}^{\prime}=q_{\sigma_{1}}^{r_{1}} q_{\sigma_{2}}^{r_{2}} \cdots \cdots \cdots q_{\sigma_{m}}^{r_{m}} X_{c_{1} \sigma_{2}} \cdots \cdots \sigma_{\sigma_{m}}
$$

we shall call this system to be covariant.
If $X_{r_{1} \ldots \ldots . r^{\prime}, \ldots}$ be an element of a m-uple system, we shall call the quantity defined by the equation
(i8) $\frac{\bar{\partial} X_{r_{1} \ldots \ldots . r_{m}}}{\partial w_{h}}=\frac{\partial X_{r_{1} \ldots \ldots . r_{m}}}{\partial w_{\mathrm{h}}}-\tau_{c \lambda h} X_{r_{1} \ldots \ldots r_{\sigma_{-1}} \lambda r_{\sigma_{+1}} \ldots \ldots r_{m}}$
the absolute partial derivative of $X_{r_{1} \ldots \ldots . r_{m t}}$ and the quantity defined by the equation
(19) $\bar{d} X_{r_{1} \ldots . . r_{m}}=d X_{r_{1} \ldots \ldots r_{m}}-\tau_{r_{\sigma} \lambda \rho} X_{r_{1} \ldots \ldots r_{\sigma_{-1}}{ }^{\lambda} r_{\sigma_{+1}} \ldots \ldots r_{m}} d \tau v_{\rho}$ the abso'ute differential of $X_{r_{1} r_{m}}$.

By the transformation of the fundamental system, we have
(20) $\quad \sigma_{i j=}^{\prime}=q_{\lambda}^{i} q_{\mu}^{j} q_{\nu}^{k} \sigma_{\lambda \mu \nu}+q_{\lambda}^{i} q_{\mu}^{j}\left(\frac{\partial q_{\lambda}^{k}}{\partial w_{\mu}}-\frac{\partial q_{u}^{k}}{\partial w_{\lambda}}\right)$,
(2 1) $\quad \tau_{i j k}^{\prime}=q_{\lambda}^{i} q_{\mu}^{j} q_{\nu}^{k} \tau_{\lambda \mu \nu}+q_{\lambda}^{j} q_{\mu}^{k} \frac{\partial q_{\lambda}^{i}}{\partial w_{\mu}}$.
In virtue of (21), we know that the assemblage of all the partial derivatives of all the elements of a covariant system forms also a covariant system.

The absolute differentiation obeys the following lavs.
(22) $\bar{d}\left(X_{r_{1} \ldots \ldots . r_{m}}+Y_{r_{1} \ldots \ldots r_{i m}}\right)=\bar{d} X_{r_{1} \ldots \ldots r_{m}}+\bar{d} Y_{r_{1} \ldots \ldots r_{m}}$,
(23) $\bar{d}\left(X_{n_{1} \ldots \ldots . r_{, 1}} Y_{s 1 \ldots \ldots s l}\right)$

$$
=Y_{s_{1} \ldots \ldots s_{l}} \bar{d} X_{r_{1} \ldots \ldots r_{m}}+X_{r_{1} \ldots \ldots r_{1}} \bar{d} Y_{s_{1} \ldots \ldots s_{l}}
$$

(24)

$$
\begin{aligned}
& \bar{d}\left(X_{r_{1} \ldots \ldots r_{m}} c_{1} \ldots \ldots \sigma_{p}\right.\left.V_{s_{1} \ldots \ldots . s_{l} \sigma_{1} \ldots \ldots \sigma_{p}}\right) \\
&=Y_{s_{1} \ldots \ldots s_{l} \sigma_{1} \ldots \ldots . \bar{d}} \bar{d} X_{r_{1} \ldots \ldots . r_{m} \sigma_{1} \ldots \ldots \sigma_{p}} \\
&+X_{r_{1} \ldots \ldots . r_{, j}} \sigma_{1} \ldots \ldots \sigma_{\phi} \\
& \bar{d} Y_{s_{1} \ldots \ldots s_{l} c_{1} \ldots \ldots r_{p}}
\end{aligned}
$$

10. From (15) and (16) we have
(25) $\bar{o}\left(d z u_{i}^{\prime}\right)-\bar{d}\left(\partial \tau v_{i}\right)=0$,

On the Projective Line Element upon a Hypersurface. 367
(26) $\left(\frac{\partial}{\partial w_{i}}, \frac{\partial}{\partial w_{j}}\right) f=0$

Put
(27) $\tau_{i j_{k l}}=\frac{\partial \tau_{i j k}}{\partial w_{l}}-\frac{\partial \tau_{i j l}}{\partial w_{k}}-\tau_{j \lambda l} \tau_{i \lambda k}+\tau_{j_{\lambda} \varepsilon^{2}} \tau_{i \lambda l}+\tau_{i j_{\lambda}} \sigma_{k i \lambda}$.

Then we have
(28) $(\overline{\delta, d}) X_{r_{1} \ldots \ldots, r_{n}}=(\delta, d) X_{r_{1} \ldots \ldots . r_{m}}$

$$
-\boldsymbol{r}_{r_{\iota} \rho \lambda \mu} X_{r_{1} \ldots \ldots . r_{\sigma_{-1}} \rho r_{\sigma_{+1}} \ldots . . . r_{\mu /}} d w_{\lambda} \delta w_{\mu},
$$

(29) $\frac{\bar{\partial}}{\partial w_{j}}\left(-\frac{\bar{\partial} X_{r_{1} \ldots \ldots . r_{m}}}{\partial w_{i}}\right)-\frac{\bar{\partial}}{\partial w_{i}}\left(\frac{\bar{\partial} X_{s_{1} \ldots \ldots . s_{m}}}{\partial w_{j}}\right)$

(30) $\boldsymbol{\tau}_{i j k l}+\tau_{j i k l}=0$,
(3 I) $\tau_{i j k l}+\tau_{i j i l k}=0$,
(32) $\tau_{i j k l}+\tau_{i k l j}+\tau_{i l j_{k}}=0$,
(33) $\tau_{i j k l}^{\prime}=q_{\lambda}^{i} q_{\mu}^{j} q_{v}^{k} q_{\sigma}^{l} \tau_{\lambda \mu \nu}$.

CHAPTER III

FUNDAMENTAL EQUATIONS.

11. Let us denote by A not only a point on the hypersurface but its coordinates multiplied by α. Then the ($n-1$)-flat corresponding to A of the congruence subjected to the projective line element $g \varphi$, is determined by the n points

$$
A_{i}=\frac{\partial A}{\partial v_{i}} . \quad(i=\mathrm{r}, \quad 2, \ldots \ldots, n)
$$

Consider the point
(I) $\quad A_{n+1}=\frac{\mathrm{I}}{n} \frac{\bar{\partial} A_{\sigma}}{\partial w_{\sigma}}$.

Then

$$
\left|A A_{1} \ldots \ldots A_{n} A_{n+1}\right|=\frac{\mathrm{I}}{n}\left|A \frac{\partial A}{\partial v_{1}} \cdots \cdots \cdot \frac{\partial A}{\partial w_{n}} \frac{\partial^{2} A}{\partial v_{\sigma}^{2}}\right|
$$

$$
\begin{aligned}
& \left.=\frac{a^{\sigma \lambda} a^{\sigma \mu}}{n J} \right\rvert\, A \frac{\partial A}{\partial g^{n}} \\
& =\frac{\mathrm{I}}{n} h^{\lambda \mu} \cdot \frac{\partial A}{\partial u_{n}} \frac{\partial^{2} A}{\partial u_{\lambda}} h_{\lambda \mu}=\mathrm{I} .
\end{aligned}
$$

Hence, any point M in the space may be expressed in the form

$$
M=\lambda_{0} A+\lambda_{1} A_{1}+\ldots \ldots \ldots \ldots+\lambda_{n+1} A_{n+1} .
$$

Suppose that the points $d A, \bar{d} A_{i},(i=1,2, \ldots \ldots, n), d A_{n+1}$ are expressed in the form
(2) $\left\{\begin{array}{c}d A=d w_{o o} A+d w_{o 1} A_{1}+\ldots \ldots \ldots+d w_{o n} A_{n+1}, \\ \bar{d} A_{1}=d w_{10} A+d v w_{11} A_{1}+\ldots \ldots \ldots+d v w_{1 n} A_{n+1}, \\ \ldots \ldots \ldots \ldots \ldots \ldots . \\ d A_{n+1}=d v w_{n+1} A+\ldots \ldots \ldots+d v_{n+1, n+1} A_{n+1},\end{array}\right.$
where $d z w_{i j}$ are Pfaffian expressions.
We shall call the equations (2) the fundamental equations. Evidently,
(3) $d w_{o o}=d w_{o n}=0$,
(4) $d w_{o i}=d w_{i} . \quad(i=\mathrm{I}, 2, \ldots \ldots, n)$.

From (2) we have
(5) $d v_{i n}=\left|A A_{1} \ldots \ldots A_{n} \bar{d} A_{i}\right|$

$$
\begin{aligned}
& =\frac{a^{i_{r}}}{V \overline{g^{n}}}\left|A \frac{\partial A}{\partial u_{1}} \cdots \cdots \frac{\partial A}{\partial u_{n}} d\left(\frac{\partial A}{\partial u_{\sigma}}\right)\right| \\
& =g a^{i \sigma} h_{\sigma \lambda} a_{i_{\lambda}} d u_{\lambda}=d \tau v_{i}
\end{aligned}
$$

12. The system of the equations (2) is equivalent to system
(2') $\quad\left\{\begin{array}{l}d A=d w_{\lambda} A_{\lambda}, \\ d A_{i}=d w v_{i v} A+\left(d w_{i_{\lambda}}+\tau_{i_{\lambda \rho}} d w v_{\rho}\right) A_{\lambda}+d w v_{i} A_{n+1}, \\ d A_{n+1}=d w_{n+1,} A+d \tau v_{n+1} A_{\lambda}+d w w_{n+1, n+1} A_{n+1} .\end{array}\right.$
The necessary and sufficient condition that the system of the total differential equations (2^{\prime}) and accordingly (2) may be completelyi integrable, is that the equations
(6) $(\delta, d) A=0$,
(7) $(\hat{c}, d) A_{i}=0,(i=1,2, \ldots \ldots, n)$,
(8) $(\delta, d) A_{n+1}=0$.
follow as the consequence of (2).
The equation (6) is equivalent to

On the Prijective Line Element upon a Hypersurface. 3^{69}
(9) $\quad d z v_{\sigma} \delta v_{\sigma k}-\delta z v_{\sigma} d w_{c k}=0$.

From (9) we have
(10) $\frac{\partial z u_{i k}}{\hat{\delta w} v_{j}}=\frac{\partial w_{j k}}{\partial w_{i}} .\binom{i, j=1,2, \ldots \ldots, n}{k=0, \quad \mathbf{I}, \ldots \ldots, n}$

From (2) and (5) we have
(II) $\frac{\bar{\partial} A_{i}}{\partial w_{j}}=\frac{\partial w_{i o}}{\partial w_{j}} A+\ldots \ldots \ldots+\frac{\partial w_{i n}}{\partial w_{j}} A_{n}+\varepsilon_{i j} A_{n+1}$.

From (io) we have

$$
\frac{\partial z v_{\sigma k}}{\partial w_{\sigma}}=0 . \quad(k=0, \quad \mathrm{I}, \ldots \ldots, n)
$$

From (4), (5) and (II) we have

$$
\frac{\partial}{\partial w_{i}}\left(\frac{\bar{\partial} A_{i}}{\partial w_{j}}\right)=\ldots \ldots \ldots+\left(\frac{\hat{c} w_{i i}}{\partial w_{j}}+\varepsilon_{i j} \frac{\partial w_{n+1}, n+1}{\partial w_{i}}\right) A_{n+1},
$$

where terms not written are linearly dependent on $A, A_{1}, \ldots . ., A_{n}$
But
(12)

$$
\frac{\bar{\partial}}{\partial w_{i}}\left(\frac{\bar{\partial} A_{i}}{\partial w_{j}}\right)-\frac{\bar{\partial}}{\partial w_{j}}\left(\frac{\partial \bar{\partial} A_{i}}{\partial w_{i}}\right)=-\boldsymbol{\tau}_{i \lambda j i} A_{\lambda .} .
$$

Therefore, we have

$$
n d A_{n+1}=\ldots \ldots \ldots+\left(d w_{\sigma \sigma}+d w_{n+1, n+1}\right) A_{n+1}
$$

and accordingly

$$
(n-1) d w_{n+1}=d v_{\sigma \sigma}+d v_{n+1, n} \cdot
$$

On the other hand, we have

$$
\begin{aligned}
\mathrm{o} & =d\left|A A_{1} \ldots \ldots A_{n} A_{n+1}\right| \\
& =d w_{\sigma \sigma}+d w_{n+1} \mid
\end{aligned}
$$

Hence, we have

$$
d z v_{n+1, n+1}=0 .
$$

13. In virtue of (28) in article $\mid 0$, the system of the equations (7) is equivalent to
(13) $\bar{\delta}\left(d w_{i o}\right)-\bar{d}\left(i w_{i o}\right)+\sum_{c=\mathrm{r}}^{n+\mathrm{I}}\left(d w_{i \sigma} \delta w_{\sigma 0}-\delta z v_{i \sigma} . d w_{\sigma_{0}}\right)=0$,
(14) $\bar{\delta}\left(d w_{i j}\right)-\bar{d}\left(i w_{i j}\right)+\sum_{\sigma=1}^{n+1}\left(d w_{i \sigma} \delta v_{\sigma j}-\delta w_{i \sigma} d v_{, j}\right)$
$+v_{i j_{\lambda \mu}} d \tau v_{\lambda} \delta w_{\mu}=0$,
(15) $d i w_{i_{\sigma}} \delta v_{\sigma}-\delta w_{i_{\sigma}} d w_{\sigma}=0$.

From (15) we have
(16) $\frac{\partial w_{h i}}{\partial w_{j}}=\frac{\partial w_{h j}}{\partial w_{i}} . \quad(h=\mathrm{I}, 2, \ldots \ldots, n)$

From (10) and (16) we have
(17) $\frac{\hat{\partial} w_{i j}}{\partial w_{h}}=\frac{\partial w_{j i}}{\partial w_{h}}$.

From (2) we have
(18) $\quad d^{2} A=d w_{\sigma} d w_{0} A+\left\{d w_{\sigma} d w_{c \tau}+\bar{d}\left(d w_{\tau}\right)\right\} A_{\tau}+d w_{\sigma} d w_{\sigma} A_{n+1}$,
(19) $d^{3} A=\ldots \ldots \ldots \ldots+\left\{d w_{\sigma} d w_{\tau} d w_{\sigma \tau}+\frac{3}{2} d\left(d w_{\sigma} d w_{\sigma}\right)\right\} A_{n+1}$,
where terms not written are linearly dependent on $A, A_{2}, \ldots \ldots, A_{n}$
From (19) we have

$$
-d w_{\sigma} d w_{\sigma} d w_{\sigma \tau}=g \psi=k_{c \tau \rho} d w_{\sigma} d w_{\tau} d w_{\rho}
$$

and accordingly,
(20) $\frac{\partial w_{i j}}{\partial w_{i}}=-k_{i j l}$.

From (12) and (20) we have
(21) $k_{\sigma \sigma}=0$.
14. From (14) we have
(22) $\frac{\bar{\partial} k_{i j l}}{\partial w_{h}}-\frac{\bar{\partial} k_{i j h}}{\partial w_{l}}+k_{i_{\sigma} h} k_{\sigma j l}-k_{i \sigma l} k_{\sigma j i}$

$$
+\varepsilon_{j l l} \frac{\partial w_{i o}}{\partial w_{h}}-\varepsilon_{j l l} \frac{\partial w_{i o}}{\partial w_{l}}+\varepsilon_{i l l} \frac{\partial w_{n+1 j}}{\partial w_{l}}-\varepsilon_{i l} \frac{\partial v_{n+1 j}}{\partial w_{h}}+\tau_{i j h l}=0 .
$$

From (22) we have
(23) $\quad 2 \frac{\bar{\partial} k_{i j l}}{\partial w_{h}}-2 \frac{\partial k_{i j_{h}}}{\partial w_{l}}+\varepsilon_{j l}\left(\frac{\partial w_{i 0}}{\partial w_{h}}-\frac{\hat{\partial} w_{n+1 i}}{\partial w_{h}}\right)$

$$
-\varepsilon_{j h}\left(\frac{\partial w_{i o}}{\partial w_{l}}-\frac{\partial w_{n+1 i}}{\partial w_{l}}\right)-\varepsilon_{i h}\left(\frac{\partial w_{i o}}{\partial w_{l}}-\frac{\partial w_{n+1 j}}{\partial w_{l}}\right)
$$

$$
+\varepsilon_{i i}\left(\frac{\partial w_{j o}}{\partial w_{h}}-\frac{\partial w_{n+1 j}}{\partial w_{h}}\right)=\mathrm{o},
$$

(24) $2 k_{i h_{\sigma}} k_{j l_{\sigma}}-2 k_{i l_{\sigma}} k_{j h_{\sigma}}+2 \tau_{i j h_{l}}$
$+\varepsilon_{j:}\left(\frac{\partial w_{i o}}{\partial w_{h}}+\frac{\partial w_{n+1 j}}{\partial w_{l}}\right)-\varepsilon_{j h}\left(\frac{\partial w_{i 0}}{\partial w_{l}}+\frac{\partial w_{n+1 i}}{\partial w_{l}}\right)$
$+\varepsilon_{i i n}\left(\frac{\partial w_{j \rho}}{\partial w_{l}}+\frac{\partial w_{n+1 j}}{\partial w w_{l}}\right)-\varepsilon_{i l}\left(\frac{\partial w_{j o}}{\partial w_{h}}+\frac{\partial w_{n+1 j}}{\partial w_{h}}\right)=0$.

From (21) and (23) we have
(25) $n\left(\frac{\partial w_{j o}}{\partial w_{h}}-\frac{\partial w_{n+1 j}}{\partial w_{h}}\right)=2 \frac{\bar{\partial} k_{\sigma j h}}{\partial w_{\sigma}}-\varepsilon_{j i} \frac{\partial w_{n+1 \sigma}}{\partial w_{\sigma}}$.

From (21) and (24) we have

$$
\begin{equation*}
(n-2)\left(\frac{\partial w_{j o}}{\partial w_{h}}+\frac{\partial w_{n+1 j}}{\partial w_{h}}\right)=2 e_{h j}+2 \tau_{\sigma j_{\sigma}}-\varepsilon_{j h} \frac{\partial w_{n+1 \sigma}}{\partial w_{\sigma}} . \tag{26}
\end{equation*}
$$

From (26) we have
(27) $\frac{\partial w_{n+1} \sigma}{\partial w_{\sigma}}=e_{\sigma \sigma}+\tau_{\sigma \lambda \lambda \sigma}$.

From (I3) we have
(28) $\frac{\bar{\partial}}{\partial w_{l}}\left(\frac{\partial w_{i o}}{\partial w_{h}}\right)-\frac{\bar{\partial}}{\partial w_{h}}\left(\frac{\partial w_{i \rho}}{\partial w_{l}}\right)-k_{i h_{J}} \frac{\partial w_{\sigma^{0}}}{\partial w_{l}}+k_{i i_{\sigma} \sigma} \frac{\partial w_{\sigma^{0}}}{\partial w_{h}}$

$$
\varepsilon_{i h} \frac{\partial w_{n+1,0}}{\partial w_{l}}-\varepsilon_{i l} \frac{\partial w_{n+1, j}}{\partial w_{h}}=0
$$

From (28) we have

$$
\begin{equation*}
(n-1) \frac{\partial w_{n+1,} \cdot}{\partial w_{h}}=\frac{\bar{\partial}}{\partial w_{\sigma}}\left(\frac{\partial w_{\sigma^{v}}}{\partial w_{h}}\right)-k_{\sigma \tau} \frac{\partial w_{\sigma^{o}}}{\partial w_{\tau}} \tag{29}
\end{equation*}
$$

CHAPTER IV

PROJECTIVE NORMALS GEODESIC CURVES.

15. Any point M on the hypersurface in the vicinity of A is given by the equation

$$
\begin{aligned}
M & =A+d A+\frac{1}{2} d^{2} A+\frac{1}{6} d^{3} A+\ldots \ldots \\
& : A\left[\mathbf{1}+\frac{1}{2} d w_{\sigma} d w_{\sigma}+\ldots \ldots\right. \\
& +A_{\lambda}\left[d w_{\lambda}+\frac{1}{2}\left\{d w_{\sigma} d w_{\epsilon \lambda}+d\left(d w_{\lambda}\right)\right\}+\ldots \ldots\right] \\
& +A_{n+1}\left[\frac{1}{2} d w_{\sigma} d w_{\sigma}+\frac{1}{6}\left\{d w_{\sigma} d w_{\tau} d w_{\sigma \tau}+\frac{3}{2} d\left(d w_{\sigma} d w_{\sigma}\right)\right\}+\right.
\end{aligned}
$$

\qquad
I.ct $\left(z_{1}, z_{2}, \ldots \ldots, z_{n}\right)$ be nonsymmetrical coordinates referred to the system $\left[A ; A_{1}, \ldots \ldots, A_{n+1}\right] .^{1}$ Then
(I$)\left\{\begin{array}{c}z_{i}=d w_{i}+\frac{1}{2}\left\{d w_{\sigma} d w_{\sigma^{i}}+\bar{d}\left(d \tau v_{i}\right)\right\}+\ldots \ldots \\ \quad(i=1,2, \ldots \ldots, n) \\ z_{n+1}=\frac{1}{2} d w w_{\sigma} d w w_{\sigma}+\frac{1}{6}\left\{d w_{\sigma} d w_{\tau} d w v_{\sigma \tau}+\frac{3}{2} d\left(d w_{\sigma} d w_{\sigma}\right)\right\}+\ldots \ldots .\end{array}\right.$

[^3]The equations (I) give for the development in the power series of $z_{1}, \ldots \ldots, z_{n}$ to the third degree,

$$
z_{n+1}=\frac{1}{2}\left(z_{1}^{2}+\ldots \ldots+z_{n}^{2}\right)+\frac{1}{3} k_{\sigma \tau_{\rho}} z_{\sigma} z_{\tau} z_{\rho}+\ldots \ldots
$$

Let $\left(\xi_{0}, \xi_{1}, \ldots ., \xi_{n+1}\right)$ be projective coordinates referred to the coordinate frame of reference whose vertices and unit point are respectively

$$
A, A_{1}, \ldots \ldots, A_{n+1}, A+A_{1}+\ldots \ldots+A_{n+1}
$$

Then the osculating quadric at A is

$$
\xi_{a} \xi_{n+1}=\frac{1}{2}\left(\xi_{1}^{2}+\ldots \ldots+\xi_{n}^{2}+a \xi_{u+1}^{2}\right) .
$$

Therefore, the line $A A_{n+1}$ is reciprocal to the ($n-1$)-flat $A_{1} A_{2} \ldots \ldots A_{n}$. We shall call this line the projective normal subjected to the projective line element given by the equation
(2) $d s^{2}=d w v_{1}^{2}+\ldots \ldots \ldots+d w v_{n}^{2}$.
16. The tangent hyperplane to a developable hypersurface of the congruence subjected to the projective line element given by (2) which passes through $A_{1} A_{2} \ldots \ldots A_{n}$ is determined by the points

$$
A_{1}, A_{2}, \ldots \ldots, A_{n}, p_{i} A+A_{n+1}
$$

where ρ_{i} is a root of the equation

Since

$$
\rho_{\sigma}=\frac{\partial w_{\sigma^{\circ}}}{\partial w_{\sigma}}=0
$$

the point A_{n+1} is the harmonic conjugate of A with respect to the n points at which the n tangent hyperplanes at any point on $A_{1} A_{2} \ldots \ldots A_{n}$ to the n developable hypersurfaces passing through $A_{1} A_{2} \ldots \ldots A_{n}$.
17 The assemblage of the projective normals at all the points on the hypersurface forms a congruence. When the point moves on a curve on the hypersurface, the projective normal at A generates a surface which we shall call a surface of the congruence. Through $A A_{n+1}$ pass ∞^{n} surfaces of the congruence. Any one of them such that the tangent planes to it at all the points on $A A_{n+1}$ are the same may be called the developable surface of the congruence.

The curves corresponding to the developable surfaces are defined by the equations

$$
\frac{d \tau v_{n+1,1}}{d w_{1}}=\ldots \ldots=\frac{d w_{n+1, n}}{d w_{n}}
$$

By the same method as in article 4, we can prove that through $A A_{n+1}$ pass n developable surfaces of the congruence and that two curves corresponding to any two of them are conjugate to each other.
18 The equation of a quadric of the $n-1$ dimensions on the tangent hyperplane at A which touches the cone of the asymptotic tangents at A over the variety at which it intersects with $A_{1} A_{2} \ldots \ldots A_{n}$ is of the form

$$
k^{2} \xi_{0}^{2}+\xi_{1}^{2}+\ldots \ldots+\xi_{n}^{2}=0 .
$$

If this quadric is regarded as the absolute, the distance d between A and a point on the tangent hyperplane at A in the vicinity of A, is

$$
\begin{aligned}
d & =\frac{k}{2 i} \log \frac{k+i \sqrt{z_{1}^{2}+\ldots \ldots+z_{n}^{2}}}{k-i \sqrt{z_{1}^{2}+\ldots \ldots+z_{n}^{2}}} \\
& =\sqrt{z_{1}^{2}+\ldots \ldots+z_{n}^{2}+\ldots \ldots \ldots \ldots}
\end{aligned}
$$

where $z_{1}, \ldots \ldots, z_{n}$ are the nonsymmetrical coordinates of the point referred to the system $\left[A ; A_{1}, \ldots . ., A_{n}\right]$.

Now, let P be a point on the hypersurface in the vicinity of A, and Q be the projection of P from a point on $A A_{n+1}$ upon the tangent hyperplane at A, then we have

$$
\sqrt{\overline{z_{1}^{2}+\ldots \ldots+s_{n}^{2}}}=\sqrt{d w_{1}^{2}+\ldots \ldots+d z v_{n}^{2}}+\ldots \ldots
$$

Therefore, we have the following theorem.
Let

$$
u_{1}=f_{1}(t), \ldots \ldots \ldots \ldots \ldots ., u_{n}=f_{n}(t),
$$

be the equations of a curve on the hypersurface and $P_{o}, P_{1}, \ldots \ldots, P_{n}$ be the points on this curve which correspond to the values $t_{o}, t_{1}, \ldots ., t_{n t}$ of t such that

$$
t_{t}<t_{1}<\ldots \ldots \ldots \ldots<t_{n} .
$$

Let $Q_{i}(1 \leqslant i \leqslant n)$ be the projection of P_{i} fiom a point on the projective normal at P_{i-1} subjected to the projective line element given by (2) upon the tangent hyperplane at P_{i-1} and d_{i} be the distance between P_{i-1} and Q_{i} in the case where a quadric of the $n-1$ dimensions on the tangent hyperplane at P_{i-1} which touches the cone of the asymptotic tangents at P_{i-1} over the variety at which it intersects with the ($n-1$)-flat corresponding to P_{i-1} of the congruence subjected to the projective line element givon by (2) is the absolute. Then

$$
s=\int_{t_{0}}^{t_{1}} \sqrt{d w_{1}^{2}+\ldots \ldots+d w_{n}^{2}}=\lim _{\substack{t_{i}-t_{i-1} \rightarrow 0}}\left(d_{1}+\ldots \ldots+d_{n}\right)
$$

19. Let us call the extremal curves of the integral

$$
s=\int \sqrt{d w_{1}^{2}+\ldots \ldots+d v v_{n}^{2}}
$$

the geodesic curves.
The equations of the geodesic curves are
(3) $\frac{d^{2} u_{i}}{d s^{2}}+\left\{\begin{array}{c}\sigma \tau \\ i\end{array}\right\} \frac{d u_{\sigma}}{d s} \frac{d u_{\tau}}{d s}=0$,

$$
(i=\mathrm{I}, 2, \ldots \ldots, n)
$$

where $\left\{\begin{array}{c}i j \\ k\end{array}\right\}$ are Cristoffel symbols formed with respect to $g q$.
In virtue of (10) in article 9, we have
(4) $\left[\begin{array}{c}i j \\ k\end{array}\right]=a_{\lambda^{i}} a_{\mu j} a_{\nu k} \tau_{\mu \nu \lambda}+a_{\sigma^{k}} \frac{\partial a_{\sigma j}}{\partial u_{i}}$,
(5) $\left\{\begin{array}{l}i j \\ k\end{array}\right\}=a_{\lambda^{i}} a_{\mu j} a^{2 k} \tau_{\mu \cdot \lambda}+a^{c k}-\frac{\partial a_{\sigma^{j}}}{\partial u_{i}}$.

From (3) and (5) we have
(6) $\quad d\left(d w v_{i}\right)=d w_{\lambda} d w_{\mu} \tau_{i_{\lambda_{i}}}$.

In virtue of (6), we have

$$
\bar{d}\left(d w_{i}\right)=d\left(d w_{i}\right)-\tau_{i \lambda \mu} d v_{\lambda} d w_{\mu}=0 .
$$

Therefore, the equations of the geodesic curves may be written
(7) $\bar{d}\left(d w_{i}\right)=0 . \quad(i=1,2, \ldots \ldots, n)$.
20. Consider a family of curves defined by the equations

$$
\frac{d u_{1}}{p_{1}}=\frac{d u_{2}}{p_{2}}=\ldots \ldots \ldots \ldots=\frac{d u_{n}}{p_{n}}
$$

which are not asymptotic. Let C be a curve of this family which passes through A.

Choose the fundamental system to which we refer so that the equation of the above family of the curves becomes ${ }^{1}$

$$
d w_{2}=d w_{3}=\ldots . . d w_{n}=0 .
$$

The osculating plane of the curve C at A is determined by the points

[^4]$$
A, A_{1}, \sum_{\sigma=2}^{n}\left(-k_{11_{\sigma}}+\tau_{1_{\sigma^{1}}}\right) A_{\sigma}+A_{n+1} .
$$

The $(n-2)$-flat reciprocal to this osculating plane is determined by the $n-I$ points

$$
\left(-k_{112}+\tau_{121}\right) A+A_{2}, \ldots \ldots,\left(k_{11 n}+\tau_{1 n 1}\right) A+A_{n}
$$

The characteristic of the curve C at A is the intersection of the three hyperplanes

$$
\begin{array}{r}
\left|M A A_{1} \ldots \ldots \ldots . A_{n}\right|=0 \\
d\left|M A A_{1} \ldots \ldots \ldots . A_{n}\right|=0 \\
d^{2}\left|M A A_{1} \ldots \ldots \ldots \ldots A_{n}\right|=0
\end{array}
$$

where M is a current point in the space and d denotes the differentiation along the curve \mathcal{C}.

This intersection may be determined by the three hyperplanes

$$
\begin{aligned}
& \left|M A A_{1} \ldots \ldots \ldots \ldots \ldots \ldots \ldots . A_{n}\right|=0 \\
& \left|M A A_{n+1} A_{2} \ldots \ldots \ldots \ldots \ldots A_{n}\right|=0, \\
& \left|M A_{1} A_{n+1} A_{2} \ldots \ldots \ldots \ldots \ldots A_{n}\right| \\
& \quad+\sum_{\sigma=2}^{n}\left(-k_{11 \sigma}+\tau_{\sigma 14}\right)\left|M A A_{n+1} A_{2} \ldots \ldots A_{\sigma-1} A_{1} A_{\sigma+1} \ldots \ldots A_{n}\right|=0 .
\end{aligned}
$$

and, accordingly, by the $n-1$ points

$$
\left(k_{12}+\tau_{121}\right) A+A_{2}, \ldots \ldots,\left(k_{11 n}+\tau_{1 n 1}\right) A+A_{n}
$$

A line 1 which passes through A and through the point

$$
\sum_{\sigma=2}^{n} \mu_{\sigma} A_{\sigma}
$$

intersects the characteristic and the reciprocal of the osculating plane at the points

$$
\sum_{\sigma=2}^{n} \mu_{\sigma}\left\{A_{\sigma}+\left(k_{112}+\tau_{121}\right) A\right\}
$$

and

$$
\sum_{\sigma=2}^{n} \mu_{\sigma}\left\{A_{\sigma}+\left(-k_{112}+\tau_{121}\right) A\right\}
$$

respectively.
The harmonic conjugate of A with respect to these two points is

$$
\sum_{\sigma=2}^{n} \mu_{\sigma}\left(A_{\sigma}+\tau_{121} A\right) .
$$

If the line 1 moves about A in the $(n-1)$-flat conjugate to C at A, this point generates a $(n-2)$-flat which is determined by the $n-1$ points

$$
\tau_{121} A+A_{22}, \ldots \ldots, \tau_{1 n 1}+A_{n}
$$

and which we shall call harmonic ($n-1$)-flat of C at A.
If C is a geodesic curve, we have

$$
\tau_{311}=\tau_{311}=\ldots \ldots=\tau_{n 11}=0 .
$$

Therefore, we know that the harmonic $(n-2)$-flat of a geodesic curve at any point A on it lies in the $(n-I)$-flat corresponding to A of the congruence susjocted to the referred projective line clement. The relation dual to it is also true: the plane rcciprocal to the harmonic ($n-2$)-flat of a geodesic curve at any point A on it passes through the projectize normal at A.
21. Suppose that all the $(n-1)$-flats of the congruence subjected to the projective line element (2) are upon a hyperplane. In this case, the $2 n$ points $A_{1}, \ldots \ldots, A_{n}, d A_{1}, \ldots \ldots, d A_{n}$ must be on a hyperplane whatever the values of $d w_{1}, \ldots . ., d w_{n}$ may be.

Suppose that this hyperplane is determined by the points

$$
A_{1}, A_{2}, \ldots \ldots, A_{n}, \lambda A+\mu A_{n+1}
$$

Then we have
(8) $\left\{\begin{array}{l}\mu \frac{\partial w_{i j}}{\partial w_{i}}=\lambda, \\ \frac{\partial w_{i \rho}}{\partial w_{s}}=0, \text { if } i \neq j .\end{array}\right.$

From (8) we have

$$
\lambda=\frac{\mu}{n} \frac{\partial w_{\sigma^{o}}}{\partial w_{\sigma}}=0
$$

and, accordingly,

$$
\frac{\partial w_{i o}}{\partial w_{i}}=0 . \quad(i=\mathrm{I}, 2, \ldots \ldots, n) .
$$

Therefore, in virtue of (29) in the article 13, we have
(9) $d w_{k v}=0 . \quad(k=1,2, \ldots \ldots, n+\mathrm{I})$.

Reciprocaliy, if the condition (9) is satisficd, the points $A_{1}, A_{2}, \ldots \ldots$, A_{n+1} lie always upon a fixed hyperplane.

In fact, if this condition is satisfied, we have the following completely integrable system of the total differential equations.
(⿺夂) $\left\{\begin{array}{l}d A_{i}=\left(d w_{i \lambda}+\tau_{i \lambda_{\rho}} d w_{\rho}\right) A_{\lambda}+d \tau v_{i} A_{n+1},(i=\mathrm{I}, 2, \ldots \ldots n), \\ d A_{n+1}=d w w_{n+1 \lambda} A_{\lambda} .\end{array}\right.$
Let

$$
\left(y_{i}^{(0)}, y_{i}^{(2)}, \ldots \ldots, y_{i}^{(n+1)}\right) \quad(i=1,2, \ldots \ldots, n+1)
$$

be $n+1$ independent system of the solutions of (io). Then any system of the solutions of (10) $\left(Y^{(1)}, \ldots \ldots . Y^{(n+1)}\right)$ may be put in the form

$$
Y^{(i)}=\sum_{\sigma=1}^{n+1} C_{\sigma} y_{\sigma}^{(1)}
$$

Now, if the coordinates of the points $A, A_{1}, \ldots \ldots, A_{n+1}$ are

$$
\begin{aligned}
& \left(t_{o}, t_{1}, \ldots \ldots, t_{n+1}\right), \\
& \left(t_{o}^{(i)}, t_{\mathrm{t}}^{(i)} \ldots \ldots, t_{n+1}^{(i)}\right),(i=1,2, \ldots \ldots, n+\mathrm{I})
\end{aligned}
$$

then

$$
\left(t_{j}^{(1)}, t_{j}^{(2)}, \ldots \ldots, t^{(n+1)}\right)(j=0, \mathrm{I}, 2, \ldots \ldots, n+1)
$$

are $(n+2)$ systems of the solutions of (10).
Accordingly, we have

$$
t_{j}^{(i)}=C_{j_{\sigma}} y_{\sigma}^{(i)} .
$$

Therefore, the points $A_{1}, \ldots ., A_{n+1}$ are on the hyperplane

$$
\left|\begin{array}{ll}
x_{0} & C_{01} \ldots \ldots C_{0 n+1} \\
x_{1} & C_{11} \ldots \ldots C_{1, n+1} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
x_{n+1} & C_{n+1,1} \ldots \ldots C_{n+1,1 n+1}
\end{array}\right|=0
$$

22. If

$$
d w_{k o}=0,(k=\mathrm{I}, 2, \ldots \ldots, n+\mathrm{I})
$$

then

$$
(1, o, o, \ldots \ldots, o)
$$

is a system of the solutions of (io).
But

$$
\left(t_{j}, t_{j j}^{(1)} \ldots \ldots, t_{j}^{(n+1)}\right)(j=0,1,2, \ldots \ldots, n+\mathrm{I})
$$

are $n+2$ independent systems of the solutions.
Hence we have

$$
\begin{aligned}
\mathrm{I} & \left.=C_{0} t_{0}+C_{1} t_{1}+\ldots \ldots+C_{n+1} t_{n+1}\right) \\
& =\alpha\left(C_{0} x_{0}+C_{1} x_{1}+\ldots \ldots+C_{n} x_{n+1}\right) .
\end{aligned}
$$

Therefore, we know that the congruence of the ($n-1$)-flat conjugate to the hypersurface such that all the ($n-1$)-flats of it are upon a fixed hyperplane, is determined by the function

$$
\alpha=\frac{\mathrm{I}}{C_{0} x_{0}+\ldots \ldots+C_{n+1} x_{n+1}}
$$

where the C 's are constants.

CHAPTER V

IIYPERSURFACES WHICH CAN BE REPRESENTED UPON A HYPERSURFACE OF THE SECOND DEGREE SO THAT THE ASYMPOTIC CURVES ARE IN CORRESPONDENCE.
23. The equation referred to the nonsymmetrical coordinates of an osculating quadric at the point A is of the form

$$
z_{n+1}=\frac{1}{2}\left(z_{1}^{2}+\ldots \ldots+z_{n}^{2}+a z_{n+1}^{2}\right)+z_{n+1}\left(a_{1} z_{1}+\ldots \ldots+a_{n} z_{n}\right)
$$

which gives for the development of z_{n+1} in the power series of $z_{1}, \ldots, ., z_{n}$ to the third order

$$
z_{n+1}=\frac{1}{2}\left(z_{1}^{2}+\ldots \ldots+z_{n}^{2}\right)+\frac{1}{2}\left(z_{1}^{2}+\ldots \ldots+z_{n}^{2}\right)\left(a_{1} z_{1}+\ldots \ldots+a_{n} z_{n}\right)+\ldots \ldots
$$

If the given hypersurface is a quadric, there must be a quadric which has the contact of the third order with the given hypersurface, and accordingly we have
(I) $a_{i}=k_{11 i}=k_{22 i} \ldots \ldots=k_{n n i}$,
$k_{i j k}=0 . \quad(i \neq j \neq k)$.
From (I) we have

$$
a_{i}=\frac{\mathbf{I}}{n} k_{\sigma \sigma^{i}}=0 .
$$

Therefore, we know that if the given hypersurface is a quadric, we must have
(2) $k_{i j k}=0 . \quad(i, j, k=\mathrm{I}, 2, \ldots \ldots, n)$.

Next, suppose that the condition (2) are satisfied.
Denote by a the hyperplane tangent to the given hypersurface at A as well as its hyperplane coordinates multiplied by a common factor properly chosen and put

$$
\begin{aligned}
& a_{i}=\frac{\partial a}{\partial v_{i}}, \quad(i=\mathrm{I}, 2, \ldots \ldots, n), \\
& a_{n+1}=\frac{\bar{\partial} a_{\sigma}}{\partial v_{\sigma}} .
\end{aligned}
$$

Then $a, a_{1}, \ldots . ., a_{n+1}$ also satisfy the system of the fundamental equations (2) in article 11. ${ }^{1}$ But

1 Joyó Kanitani, loc. cit.

$$
\left(t_{j}, t_{j},{ }^{(1)} \ldots \ldots, t_{j}^{(n+1)}\right)(j=0,1, \ldots \ldots, n+\mathrm{r})
$$

are $n+2$ independent systems of the solutions of the system of fundamental equations

Therefore, if

$$
\left(T_{o}, T_{1}, \ldots \ldots, T_{n+1}\right)
$$

be the hyperplane coordinates of a, we have
(3) $\left\{\begin{array}{l}T_{o}=C_{o o} t_{0}+C_{o 1} t_{1}+\ldots \ldots+C_{o n+1} t_{n+1}, \\ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \\ T_{n+1}=C_{n+1, o} t_{o}+\ldots \ldots \ldots+C_{n+1, n+1} t_{n+1}\end{array}\right.$

From (3) we have

$$
\mathrm{O}=\sum_{\sigma=0}^{n+1} t_{\sigma} T_{\sigma}=\sum_{\sigma, \tau=0}^{n+1} C_{\sigma \tau} t_{\sigma} t_{\tau}
$$

Therefore, the given surface is a quadric.
24. On a hypersurface of the second degree, choose a projective line element so that all the ($n-1$)-flats of the congruence subjected to it are on a fixed hyperplane. Then we have

$$
\begin{aligned}
& \frac{\partial w_{n o}}{\partial w_{i}}=0, k_{i j l}=0 . \\
& \binom{i, j, l=1,2, \ldots \ldots, n}{h=1,2, \ldots \ldots, n+1}
\end{aligned}
$$

From (23), (24) in article 13 and these equations we have

$$
\begin{aligned}
& \tau_{i j n l}=0,(i \neq j \neq k \neq l) \\
& \tau_{i j k i}=0,(i \neq j \neq k) \\
& \tau_{i j j i}=\frac{\partial w_{n+1 i}}{\hat{\imath} u_{i}},(i \neq j) \\
& \frac{\partial w_{n+1 i}}{\partial v_{i}}=\frac{1}{n} \frac{\partial w v_{n+1 \sigma}}{\partial v_{\sigma}}=\theta .
\end{aligned}
$$

Therefore, the fundamental equations become

$$
\begin{aligned}
& d A=d z v_{\lambda} A_{\lambda} \\
& d A_{i}=\tau_{i_{\rho} \rho} d w_{\rho} A_{\lambda}+d v_{i} A_{n+1},(i=\mathrm{I}, 2, \ldots \ldots, n) \\
& d A_{n+1}=\theta d A .
\end{aligned}
$$

From the last equation we have

$$
\mathrm{o}=\frac{\partial}{\partial u_{j}}\left(\frac{\partial A_{n+1}}{\partial u_{i}}\right)-\frac{\partial}{\partial u_{i}}\left(\frac{\partial A_{n+1}}{\partial u_{j}}\right)=\frac{\partial \theta}{\partial u_{j}} \frac{\partial A}{\partial u_{i}}-\frac{\partial \theta}{\partial u_{i}} \frac{\partial A}{\partial u_{j}}
$$

and accordingly,

$$
\frac{\partial \theta}{\partial u_{i}}=0 . \quad(i=\mathrm{I}, 2, \ldots \ldots, n)
$$

Therefore, θ is constant.
Put

$$
\theta=k
$$

Then, by the theorem of R. Lagrange, ${ }^{1}$ we can choose the curvilinear coordinates so that

$$
\begin{aligned}
& d z v_{1}^{2}+\ldots \ldots \ldots \ldots+d z v_{n}^{2} \\
& =\frac{1}{2} \frac{d u_{1}^{2}+\ldots \ldots+d u_{n}^{2}}{u_{1}^{2}+\ldots \ldots+u_{n}^{2}-k}
\end{aligned}
$$

25. Suppose that a hypersurface S is represented upon another hypersurface S_{1} in such a manner that the asymptotic curves are in correspondence. Choose the curvilinear coordinates in such a manner that the corresponding points on S and S_{1} correspond to the same values of them. Then

$$
\mu h_{i j}{ }^{(1)}=h_{i j},(i, j=\mathrm{I}, 2, \ldots \ldots, n),
$$

where $h_{i j}{ }^{(1)}$ denotes the quantities on S_{1}.
Jf

$$
d s^{2}=g h_{\tau \tau} d u_{\sigma} d u_{\tau}
$$

is an invariant form,

$$
d s_{1}^{2}=\mu g \quad h_{\sigma \tau}^{(1)} d u_{\sigma} d_{u_{\tau}}
$$

is also an invariant form, and we have

$$
d s^{2}=d s_{1}^{2}
$$

Therefore, a necessary and sufficient condition that a hyfersurface S may be represented to a hypersurface of the second degree in such a manner that the asymptotic curves are in correspondence is that the form φ may be reduced to the form

$$
\rho\left(d v_{1}^{2}+\ldots \ldots \ldots \ldots+d u_{n}^{2}\right)
$$

where ρ is a function of u's.
This condition may be written as follows. ${ }^{2}$

$$
\begin{aligned}
\tau_{i j \lambda i} & =0,(i \neq j \neq k \neq l) \\
\tau_{i j i l} & =\frac{\mathrm{I}}{n-2}-\tau_{\lambda j \lambda^{\prime}}, \quad(i \neq j \neq l) . \\
\tau_{i j i j} & =\frac{\mathrm{I}}{n-\mathrm{I}}\left(\tau_{i_{\lambda i \lambda}}+\tau_{j \lambda j \lambda}\right)-\frac{\mathrm{I}}{(n-\mathrm{I})(n-2)} \tau_{\lambda \mu \lambda u^{\prime}} .
\end{aligned}
$$

1 Loc. cit.
2 R. Tagrange, loc. cit.

On the Projective Line Element upon a Hypersurface. 38 I

$$
\frac{\mathbf{I}}{n-\mathbf{I}} \frac{\bar{\partial} \tau_{\lambda i \lambda j}}{\partial w_{i}}=\frac{\mathbf{I}}{n-\mathbf{I}} \frac{\bar{\partial} \tau_{\lambda i \lambda j}}{\hat{\partial} \pi w_{j}}-\frac{\mathbf{I}}{2(n-\mathbf{I})(n-2)} \frac{\bar{\partial} \tau_{\lambda \mu \lambda, \mu}}{\partial w_{j}} . \quad(i \neq j) .
$$

The author wishes to cxpress his sincere thanks to Professor ${ }^{\top}$. Nishiuchi for his kind guidance and helpful encouragement.

[^0]: 1 J. Kanitani, These Memoires, 8, 1 (1925).

[^1]: 1 J. Kanitani, loc- cit.

[^2]: I In this and the subsequent chapters I will use the absolute differential calculus due to M. René Lagrange. (Ann. Touloase, ser. 3, vol. 14, (1922) pp. 5-69) and denote Pfafian expressions by $d w, d \Omega, d)$, etc. instead of w, Ω, θ, etc.

[^3]: 1 Jôyô Kanitani, loc. cit.

[^4]: I Joys Kanitani, loc. cit.

