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1 Introduction

An elastic body will restore its original shape and size when it is released from a compressed state. This
process of relaxation is typically characterized by the decay of its shrinkage. When the body is used as
a damper, mild relaxation is a desirable feature in some engineering applications. For such purposes,
materials such as silicone gel would be preferable, since they show viscoelasticity for which relaxation
proceeds even milder.

It is known that the dynamical behavior of the viscoelastic body is well represented by fractional
derivatives; for reviews, see [1, 2, 3]. Denoting the amount of the shrinkage of the body under compres-
sion by x(), the damping force is assumed to be proportional to its fractional derivative D"x, v € R,
v > 0. Its Fourier transform is proportional to (iw)”, and it has a real part, which would correspond
to elasticity, as well as an imaginary part, which would correspond to viscosity. Apart from this phe-
nomenological reasoning, one may wonder why fractional derivatives are related to viscoelasticity on
physical grounds.

The most characteristic feature of the solutions x(¢) of differential equations involving fractional
derivatives is its power-law decay characteristics. In fact, for large ¢, x(t) behaves like #77, where vy is
a positive fractional number. Recall that with the usual viscous damper, the decay is exponential, i.e.,
x(t) ~ 7. Under a scale transformation t — Az, A € R, the exponential decay scales like e™* - e,
which implies slower or faster decay depending on whether A is smaller or larger than unity. On the
other hand, the power-law decay scales like t™ — (Af)™” = const. X t~7, implying the same power-law
decay as before. This suggests a fractal structure for the underlying mechanism of viscoelasticity; due to
self-similarity of fractals there is no characteristic scale in the viscoelastic materials. In fact, viscoelastic
materials are composed of very large molecules, whose complexity would simulate fractal nature under_
deformation. N

Schiessel and Blumen [4, 1] have shown that by forming a nested ladder of the usual spring-dashpot
combinations, one can obtain a mechanical model which has fractal like properties. This has been shown
in the Laplace transform X(s) of x(t), for some special choice of parameters. Sakakibara [5] has shown
that their result can be cast into a closed form for x(¢z), which shows the power-law decay x(t) ~ 7.
It remains to be shown that such a result is a general property of the fractal structure, not necessarily
restricted to the special parameter values. We address this question in this paper, and derive the power-
law decay under somewhat relaxed conditions on the parameter values. '

In the next sections, we begin by giving a review on fractional differential equations, present some
examples of mechanical models of viscoelastic damping, and then proceed to our main discussions. We
give a detailed review on the theory of continued fractions, for which references seem to be relatively lim-
ited. At the end, some examples are presented using the symbolic mathematics software MATHEMATICA'.
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2 Fractional Derivatives

There are several variants of fractional derivatives, and we employ the Riemann-Liouville fractional
derivative. The Riemann-Liouville fractional derivative of x(¢) is defined by

D"7'x(t)=D"D"x(t), neN, O0<v<l,

where D"x(t) = d"x(tYdt" is the usual n-th derivative, and
.
D7Vx(t) = —1— f ¢ -7 xdr, 0<v=<l.
I'v) Jo

is the Riemann-Liouville fractional integral of x(¢); for reviews, see [2, 6]. Note that D! is also denoted
by D, and D~ 1x(t) is the usual integral. In contrast to the usual derivatives of integer order, D*D* + D"*#
in general.

In order to find solutions to linear differential equations involving fractional derivatives, we need the
eigenfunction of D%, v > 0, i.e., the solution of

D’x =ax.
Recalling that the eigenfunction of D, or D™, is e#, define
E,(v,a) = D" = r"e"y*(v, at),

where

* — r * v—-1_-¢
o= fo [ eletae

is the incomplete gamma function [6]. By direct calculations, it can be shown that

v

t
Tv+1Y )
D!E(v,a) = E,(v-pa), peR. ~

E(v,a)=aE,(v+1,a)+

Note that E,(v, @) may be expressed as E,(v, a) = t"E, |, (at) in terms of the Mittag-Leffler function [2]

E,p) = kZ(; Tar<f)

Using the properties (1), it is easy to show that

n—1 )
e,(t,a)= Za”“k'lE,( - -f;, a"); neN,

pary
is the eigenfunction of DV" with eigenvalue g, i.e., it satisfies
1/n -
D""e,(t,a) = ae,(t, a).

Note that the eigenfunction e, (¢, a) is singular at the origin.
Let us consider the linear differential equation P(D, D*) x = 0, where P is a polynomial of D and D".
The key observation to find its solution is that the Laplace transform of ¢,,(t, a) is given by

. v 1
-st

’ e e (t, a)dt = .

o "( ) sl/n_a

Thus, if v = 1/n, n € N, then P(D, D") is a polynomial P(DV ") of D" alone, and hence the solution
may be expressed as a linear combination of e, (¢, a). If the heighest order of derivatives in P(D") is an
integer, the solution is shown to be regular even at the origin [6, 3].
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Figure 1: A spring, a dashpot, and the Voigt model

3 Mechanical Models with a Viscoelastic Damper

Let us first consider a usual damped oscillator with a spring and a dashpot (viscous damper) joined in a
parallel configuration, called the Voigt model, shown in Figure 1. The equation of motion is given by

mD*x+cDx+kx =0, (2)

where m is the mass of the oscillator, c is the viscousity coefficient of the dashpot and k is the sprihg
constant. It is convenient to introduce the natural frequency w, and the damping coefficient { by

k c

(1)0 = - =

m 2Vkm

We also replace wyt by ¢, which means that time ¢ is now measured by radians rather than seconds. Then
the equation of motion (2) becomes

D?x+2{Dx+x=0. (3)

Assuming 0 < { < 1 for simplicity, the solution corresponding to the initial condition

X0)=0, Dx(0)=1 (4)

= e % sin (\/ 1-£2 t),

is given by

x(t) =
1-¢

which shows the exponential decay, [x(z)| ~ e™%'.
We now modify the model by replacing the viscous damper by a viscoelastic damper, with the damp-
ing force proportional to D'x in (3). The simplest case is that of v = 1/2,

P(DV*)x = D?x + ¢(DV2x + x = 0. (5)

The solution corresponding to the initial condition (4) is given by

4

*t)=) et )

j=1 P (aj)

where f J = 1,2,3,4, are the roots of the equation P(z) = 0, and P'(z) is the derivative of P(z). A
detailed study of this solution is given in [3], and it is shown that for large ¢,

{
t) ~ . 6
Thus, the oscillation damps away following the power-law decay.

In the limit of m - 0 in (3), a model of pure damping, or relaxation is obtained, whose solution is
known to show exponential decay. On the other hand, if the term D?x is omitted in (5), corresponding to
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Figure 2: A parallel combination, and a series combination of a spring and a dashpot

the limit of m - 0, the solution becomes singular at the origin, which would not be physically acceptable.
In order to overcome this difficulty, an alternative relaxation model

Dx+¢(D"’x+x=0

has been suggested [7, 8]. The solution with x(0) = 1 is shown to obey also the power-law decay (6).

These examples implies that the power-law decay is the characteristic behavior of the fractional
derivative viscoelasticity. We now proceed to investigate if power-law decay would emerge from frac-
tal structure.

4 Mechanical Model with Fractal Structure

The force f(t) and the resulting shrinkage x(¢) of a spring, shown in Figure 1, is given by
@) = kx(@)

where k is the spring constant. In terms of Laplace transform, it reads

X(s) = %F(s) =Y F(s).
For a viscous damper, the force f(¢) is proportional to the velocity of the shrinkage,

f(@) = c Dx(t),

or 1
X(s) = —F(s) = ZF(s).
cs

The coefficient of F(s) is the impedance, which we denote by Z = 1/cs and Y = 1/k. When the spring
and the dashpot are connected in parallel, as in Figure 2, the force F is the sum of the two elements while
the shrinkage X is shared in common, and hence the resulting impedance L is given by

1 1 1

—_—= — <4 =,

L Z'Y
When they are connected in series, the shrinkage X is the sum of the two elements while F is shared in
common, and hence ’ ‘

L=Z+Y.
Thus, in the combination shown in Figure 3, the resulting impedance L,, is given by

1

1,1
Ln Zn Yn+1 +Ln+l,
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Figure 3: A recursion block of a spring-dashpot loop
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Figure 4: A modified Schiessel-Blumen ladder of spring-dashpot loops

which can be rewritten as
(7

1+

L
=+l
1"')'

n+l

This is a recursion relation in the form of a continued fraction [9, 10].

We are eventually interested in a modified Schiessel-Blumen ladder in Figure 4, whose impedance .
will be denoted by L,. The impulse response is obtained by setting F(s) = 1, which corresponds to
f(®) = 6(@t). Thus, it is given by the inverse Laplace transform of Ly(s). The impedance Ly(s) is the
infinite continued fraction, which is obtained by repeated application of the recursion relation (7), with

Z, =1c,s, Y =Vk, n=123.... (8)
By choosing an appropriate unit of time, we can have ¢, = 1 and hence
Zy = 1/cys = 1/s.

We assume that k, > 0 and ¢, > 0 on physical grounds, but we also discuss the case with k, < 0 and
¢, < 0in the last section.

5 Continued Fraction Expansion
A simple example of a continued fraction representation of a fractional number is

233_1+ 1. _1+1 111

177~ 1 T 3464442
3t ——

6+
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In order to facilitate notational simplicity, the continued fraction is denoted as

a a 4 a0, a4, _ ’ aj
b =by+—- = =2 ... L=ph + —a
b+ p
by + 3
b3+'--+¢_1£
n
Denoting
fo=By=b
Ay a,
=t-p 4L
fl Bl 0 bl
_4 _ 4 @
h=g =ty 5 ®
_ég:b 4 9 a,

the sequences {f,}, {A,} and {B,} are called the n-th approximant, numerator and denominator, respec-
tively.
Continued fractions may be infinite, such as
I S
T1+34+547+9+77

or, infinitely periodic, such as the Golden ratio,

(10a)

V5¢1_ 11111
2 1+l +1+1+1+77
Note that the continued fraction representation is not unique. For example, an alternative form of the
example of  in (10a) is

4 1%3 2%3.5 3%5-7 4%7-9

TEITT 4T 1+ 1+ 1+ (100)
6 The General Form of Continued Fractions
Consider the map ¢,: C - Cby
th,,(w)=:"::"‘;, by, ~ad, #0, n=012,.... oan

n

These maps are called Mébius transformations. We also define

n

Tyw) =tgw), Tw)=T, ,¢t,w), neN

We can show that 7, (w) is a Mobius transformation. In fact, we see that
Lo ataw
“ 0, +dw _ (aghy + cay) + (agd + cycp)w

a+coyw
°+d°bl +dw

T(w) = Ty(t,(w)) = t(t,(w)) =
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which is a Mobius transformation. Note that the condition

is satisfied. Since the successive Mébius transformations is a Mobius transformation, by repeating the
process, we see that 7, (w) is a Mébius transformation. Thus, we can write T,,(w) as

A +Cw
T = n
"M =3 D w
Then, A, b, +C )F(A d,+C, c,)
+C, _,a,)+ +C,_ic,)w
T =T 1 = n~1%n n—1%n n—1%n n—1~n
n¥) *““M)(&4@+04%yu&4¢+04%w
from which follows that
A,=A,_b,+C,_ia,
Bn = n-—lbn + Dn—lan’
C',l = An—ldn + Cn—lcn’ (12)
Dn = Bn—ldn + Dn¥lcn’
Ay=ay, By=b, Cy=cy, Dy=d,
and .
BnCn _AnDn = (bncn - andn)(Bn—lc -1 _'An—lD —1) = n(bkck - akdk)' (13)
k=0

The inverse relations are obtained by solving (12) as

a = An—an _Aan—l
" An-—lD -1 -Bn—lc -1
b = An-—an - Bncn—l

" An—lD -1 _Bn—lc -1 '

The general form of continued fractions is obtained by using the result of the Mobius transforma-
tions. To this end, let us define

so(w) = by + w,

5,0) = bajw, n=123....

n

(14)

and

kSQ(W) = sp(w),
S,w) =8, (s,w), n=123... (15)
=50, n=012,....

Note that s5(w) is a Mobius transformation to(w), with by = 1, ¢y = 1, dy = 0 and a replaced by b in
(11), and that s, (w) are M6bius transformations ¢,(w), with ¢, = 0, and d,, = 1 in (11). Thus, the third
and fourth relations in (12) reduce to

Cn =An—l’ Dn = Bn—l
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from which the first and second relations in (12) become

An = An—lbn + An—Zan’

(16)
B, =B, b, +B,_,a,.
Thus, we can write A +A
~ “n +A, W
=5 B _w
and
A, ,
f=5,0 === (17)
Bn
is the n-th approximant in (9). Note also that (13) reduces to
Anbpy =B A,y = (1! l'[ak (18)

which is called the determinant formula.
With the general form of the continued fractions, we can show the equivalence. Continued fractions
by + K(a,/b,) and b, + K(a,/b,) are said to be equivalent if their n-th approximants are equal, i.e.,

f,=Ff, n=012.... (19)

Theorem 1 Continued fractions are equwalent iff there exists a sequence of non-zero constants {r,} with
ro = 1 such that

t

=8, n=123..., (20)
~n=rnbn’ n=0,1,2,...

Proof Define §,(w) and :S",,(w) as in (14) and (15) with a, and b, replaced by @, and En, respectively.
Then (19) may be rewritten as
$.0)=S,0, n=012.... (21)

From the second equation in (15), we have

s,(w) = S71,(S,w), (22)

and similarly for §,(w) and S'n (w).
Now, from (21) with n = 0, we have

by = 5(0) = 55(0) = S,(0) = 54(0) = by

Therefore we can write
by = roby

with 7 = 1. Then, S,(rgw) = 5y(rgw) = b0 + row = ro(by + w) = roso(w) = rgSo(w) = Sy(w), or
(W) = rpSp ' (W). o (23)

Next, from (21) with n = 1 and (23),

L

L=50) = 85'(5,(0)) = rS5" (5,(0) = ros(0) = (;)alr
: 1

Qe
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which implies that there exists r, such thatd, = ryrya, and b, = rb,. It then follows that

5,(rw) = 4 __ Ny _ "%
! by+rw rb+rw b +w

=rps (w),
and 3 3
Sy (ryw) = §yG 1 (ryw) = Syrgs;w)) = Sols;(w)) = S, (w),

a1 -1
orSy (w)=r;S1 (w).
Now, assume that there exist r, such thata, = r,7,_,a;, b, = r;b;, and

5:tw) = rSetw) (24)

fork=0,1,2,..., m Then, by (22), (24) and (21),

>4

@+ 1
b ’

m+1

mil _ ~m+l(0) = S‘;,l(smﬂ(o)) = "ms;ll (smﬂ(o)) = rmsm+l(0) =

m+1

[ al]

and hence there exists 7,,, such that &,,,; = 7., 17n@pns1 a0d By = 7y iBpsr- This proves (20) by
induction.

Conversely, assume that (20) hold. Then
a 4,

5 (row)= 4

e b,+rw r,(b,+w)

=71,_15,(W).

Using this result, and noting that S, (w) = s¢(s,(s,(: - - 5,,(W) - - - ))), and similarly for S'n(w), we see that
S,r,w)=8,w), n=012....
This proves (21). m}

The alternative representations (10a) and (10b) are related by this equivalence.

7 Continued Fraction Representation of Analytic Functions

The sum
L=c,Z" +Cpp " +Cpin?™+..., me2, c,eC c,*0,

is called the formal Laurent series (fLs). L = 0 is also considered as a fLs. The set L of all fLs forms a
filed. DefineA: L - R by
A(L) = m,

and A(L) = o for L = 0. The following relations follow readily by definition;

MLyLy) = ALy) + ML),
AML/Ly) =MLy) - ML), Ly#0 (25)
A(L, * L) = min {A(L), A(L,y)}.
If f(z) is a function meromorphic at the origin, then its Laurent expansion will be denovted by L(f),
and we denote A(L()) simply by A(f). A sequence {R,(z)} of functions meromorphic at the origin is said

to correspond to a fLs L if
lim A(L - L(R,)) = oo.
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Every function f(z) meromorphic at the origin has a unique fLs expansion L(f). If {R,(z)} corresponds
to an fLs, then the order of correspondence of R, (z) is defined to be

v, = AL - LRR,)).

A continued fraction
a,(z) ay(2) a3(2)

b(2)+ by @) + by (D) +

is said to correspond to a fLs L if each approximant f,(z) is a meromorphic function of z at the origin
and if {f,,(z)} corresponds to L.

by(2) +

Theorem 2 Let {a,(z)} and {b,(z)} be sequences of functions meromorphic at the origin, with a,(z) # 0,
n=123,... andlet Ly be a fLs. Let {L,} be a sequence of fLs defined recursively by

L(a,)

= — = ceey 26
L, L —LbY n=012 (26)
provided
L +Lb), n=012.... (27)
Then the continued fraction
2,(x) a2 a@)
b 1 e 28
0@+ 5@ + by + 5@ + 28
corresponds to Ly provided that
A, +Ab, ) <Aa,), n=123..., 29)

AL)+20,) <Aa,), n=1,23....

Proof Suppose that (27) holds, and let A, (z), B,(z) and f,(z) = A, (z)V/B,(z) denote the nth numerator,
denominator and approximant, respectively, of (28). From (26) we have

L=Lp)+ 20 o010,
'n+1
and hence L L L
Ly=Lby+ X&) May) L) s

L) +Lby+ + L,
Since it is equal to S, (0) in which L(b,,) is replaced by L, in (17), it follows from (16) that

L(a,)LA,_,) + L, LA, )

Lo = L@ LB, ) +LLB, ) " 3,3,4,....

Using (18), we have

-1y~ | L@y
LA, ) _ knl ¢

= . n=234,....
LB,,) LB, )La)LB, )+ LLB, )] >

Ly~ L) = Lo -
Under the assumption (29); from the recursion relation (16) we have

AB) =0, AB)=) Ab) n=123...,
k=1



31

and hence
n—1

NL@)IL(B, ) + L LB, D) = ALY+ ) Ay, n=234,....

k=1
Thus, we finally have
n n-1
MLy = L)) = D M@ =2 3 Mby) — AL,
k=1 k=1
n-1
= AMay) - Ab)) + Z [A@) - 2B - A )] + A@,) - Ab, ) -AL,), n=23,4,....
k=2

Due to (29), each term in the summation and the term following it is a positive interger. Hence

lim A(Ly - L(f,_;)) = o

n—o0

proving that (26) corresponds to L. O

Sequences that satisfy a system of three-term recurrence relations may be related to continued frac-
tions. In fact, we have the following theorems.

Theorem 3 Let {a,(z)} and {(b,(2)} be sequences of functions meromorphic at the origin, with a,(z) # 0,
n=1273,..., and let {P,} be a sequence of non-zero fLs satisfying the three-term recurrence relations

Pn =L(bn)Pn+1 +L(an+l)P"+2, n =0, 1, 2,.... (30)
Then @ 2@ a;@
a, (2 a- {2z a\\Z
b 10 9@ 4@
o(e) + b(2) + by(2) + by(2) +
corresponds to .

PO
“=R

provided
Ab,) +Ab,_)) < Aa,),
AP/P,.)+Ab,) <Aa,), n=1,23....
Proof LetL, = P/P,,,. Then (30) reduces to

L, —-Lb,) = —L—(-a"—“-z, n=012....
Ln+1
Due to the condition a,(z) # 0 Theorem 2 applies. This completes the proof. ]

The continued fraction of the form 1 + K(a,z/1) is called the regular C-fraction. The following
theorems are relevant for our purposes.

Theorem 4 Let 1 + K(a,z/1) be a regular C-fraction such that
lima, =0 (a,#0). (31)

n—»oo

Then,

(A) The C-fraction converges to a meromorphic function f(z).
(B) The convergence is uniform on every compact subset K of C which contains no poles of f(z).
(C) £(2) is holomorphicatz = 0, and f(0) = 1.
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Theorem 5 Let 1 + K(a,2/1) be a regular C-fraction such that

lima, =a+0 (32)

-0

where a is a complex constant, and let

R, ={z |arg (az + )|<:r}.
Then,

(A) The C-ﬁdction converges to a function f(z) meromorphicinR,.
(B) The convergence is uniform on every compact subset K of R, which contains no poles of f(z).
(C) f(2) is holomorphic atz = 0.

The proofs are length and we refer the reader to the literature [9].

8 Hypergoemetric Functions

As direct consequences of Theorems 4 and 5, we have the continued fraction representation of the hy-
pergeometric function, and the confluent hypergeometric functlon
The hypergeometric function is defined by

abz a(a+Dbb+1) é N aa+ Da+2)bb+1)b+2)7

Fabaa=1+2q+—crn a2 e+ Dc+2) TR
where a, b, ¢ are complex constants and n € [0, -1, =2, .. .]. Itis also denoted as ,F,(a, b; c; 2).
Theorem 6 Let{a,} be a sequence of complex numbers defined by

_ (a+n)c-b+n) 3
Gane1 = (c+2n)c+2n+1) =0L2...,
(34)
o =— (b+n)c—a+n) 123
T (c+2n-1)c+2n) BELSS
where a, b, ¢ are constants such that
a,#0, n=123,.... (35)
Then: .
(A) The regular C-fraction 1 + K(a,2/1) converges to a function f(z) meromorphic in the domain
={z: 0<arg(z—1) < 2x}. (36)
(B) The convergence is uniform on every compact subset of D which contains no poles of f(z).
(C) f(2) is holomorphic atz = 0, and f(0) = 1.
(D) For all z such thatlz]l < 1, 5
Fla, b;c;z
f@ = 226D (37)

Flab+1;c+1;2)’

and hence f(2) provides the analytic continuation of the functzon onthe nght—hand side of the above equatton
into the domain D. : o
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Proof The identities

a(c —b)

clc+1)

b+ )(c—a+1)
(c+ D(c+2)

Fla b,c;2)=F@ab+1;c+1;2) - zFl@a+1,b+1;c+2;2),

Flab+l;c+1;2)=F@a+1,b+1;c+2;z) — zFla+1,b+2,c+3;2)

may be derived straightforwardly by definition. Therefore, if we set

Py, =Fl@a+nb+n,c+2nz), n=012...,
Ppy=F@+nb+n+lc+2n+12, n=012...,

we see that the three-term recursion relation
P,=P 1 +a,, 2P,
holds. Note also that
AMa,2)=1, AB,)=2A(1)=0,

and
AP/P,)=0, n=123....
From (34), we have
Jma, = -7

Therefore, by Theorem 5, the regular C-fraction

C(4) =14+ 92 B2 T
1+,£<1("H“1+1+1+1+

corresponds to f(z) in (37). g

Since F(a, 0; c; ) = 1, by setting b = 0, and replacing ¢ by ¢ —1 in (37), the C-fraction representation
of F(a, 1; ¢; ) may be obtained.

Corollary 7 Leta and c be complex constants such that {a,) defined by

(@a+n)c+n-1)

Yl = T am-Deray "0 bZee %)
@ =— nic—-a+n-1) n=123
27 (c+2n-2(c+2n-1y TV
is a sequence of non-zero complex numbers. Then,
(A) For all z such that |z} < 1,
1
Fa 1;¢,2) = BRI
1 Znt
+K()
a 1(c-a) (a+ 1) 2(c-a+1) . (a+2)c+ 1)z
1 der D)’ e+ ©+c+d). (c+3)c+a) (39)
T1-1- 1 - 1 - 1 - 1 -

(B) The continued fraction on the right-hand side of (39) converges to a function f(z) meromorphic in
the domain D of (36), and f(z) is the analytic continuation in D of F(a, 1;¢;2). f(z) is holomorphic at
z2=0, and f(0) = 1. The continued fraction converges uniformly on compact subsets of D.
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Note that the C-fraction (39) is equivalent to

Fla lic: 1 az llc~a)z (@+1cz 2c-a+1)z (@+2)(c+1)z
* ’C’z)_l——c— c+l - ¢c+2 - ¢+3 - c+4 -
which follows from Theorem 1.

The confluent hypergeometric function, also called the Kummer function, is defined by

az ala+1Z2 al@a+1)a+2)7
A=1+2% 4 z i 40
Ma =1+ oo+ i na T der De+2) 3l (40)
where a and ¢ are complex constants with ¢ € [0, -1, -2,...]. Itis also denoted as | F,(a; c; 2).
Theorem 8 Let {a,} be a sequence of complex numbers defined by
a+n
= , =123...,
= crm-ec+2my "
(41)
__ c—-a+n w012
Gl = T o) c+ 2n+ 1) it
where a and c are complex constants chosen such that
a,+#+0, n=123,....
Then:
(A) The regular C-fraction
1+ K(‘—li'—z) (42)
n=1
converges to the meromorphic function
_ Mg
f@= M@+ 1,c+1;2)
forall C.
(B) The convergence is uniform on every compact subset of C which contains no poles of f(z).
(C) f(z) is holomorphic atz = 0, and f(0) = 1.
Proof Let
P,, =M(a +n;c + 2n; 2),
Py,,=Ma+n+1l;c+2n+12, n=012....
Then it can be shown that P, satisfy the three-term recurrence relations
Pn=Pn+]+an+1ZPn+2, n=0,1,2,....
Since
Aa, =1 AMa)=0, A{P/P,,)=0 n=012,...,
by Theorem 4, the C-fraction (42) corresponts to Py/P;. Furthermore, since
fime, =0
the statements (B) and (C) follow. » : 0O

Setting b = 0 and replacing ¢ + 1 by ¢ in (41), we obtain the C-fraction representation of M(1; c; 2).
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Corollary 9 Let ¢ be a complex number such that {a,} defined by

n
=T m-crm-1
c+n-—1 (43)
a2"+1=—- , n=0,1,2,...,
{(c+2n—1)(c + 2n)
is a sequence of non-zero complex numbers. Then
1. 1 Z c 2 2 2 c+1 z
MLiciz)= 2 Eode+])” c+De+2)’ (€+2)Nc+3)" (c+3)c+4) (44)
T I-1+ 1 - 1 + 1 - 1 +

Note that the C-fraction (44) is equivalent to

l-z ¢z 2.z (c+Dz 3-z
c+tl-c+2+c+3— c+4 +c+5-

1
MG =1 <,

9 Emergence of Power Law Decay out of Exponential Decay

The recursion relation (7) may be written as

zZ, L
Ln_ 1 ~1 Y—,,:T n+l
z, A 1+ 1+ 1
1+—4
1+ 72tk

L, _

LH 4 Z I
1''v, 7 % 7

1
Z, 1+1+1+1+1+  T+1+1+1+1+

with Z; = 1/¢;s. By choosing an appropriate unit of time ¢, we can set ¢, = 1. Let {a,} be the sequence
such that

C

azn+1=kn, n=0,1,2,...,
Cn+1 (45)
%:—n, n=1,2,3,...,
kn

then we obtain
(46)

_ Iyl ay/s ays ays
L°‘§(1v+ 1+ 1 + 1 + )
Thus, if we choose a,, as given by (38), we obtain

Ly(s) = i—F(a, 1;c; —-%)

Using the Doetch symbol to denote the Laplace transform F(s) of f(t) as F(s) &0 f(t), we have

. T as0 (47)
| F *—O m, n>0u.
By applying this relation to the defining equations (33) and (40), it can be shown that

l F(a, 1;c; —l) oo M(a;c; -t).
§ s
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Thus, the impulse response of the modified Schiessel-Blumen model is given by
x(t) = M(a; c; —t). (48)
For large ¢, we have the asymtotic expansion [11]

_ T
xp) = =———

(c-a)

(1 +034™),

and hence if a is a fractional number, we have the power-law decay x(t) ~ ¢~ with a fractional exponent.

10 Examples

As a typical example, let us choose a = % and ¢ = 1 in (34) and (38). Then, q; = %, and a, = 41,
n=2,3,4,...,and the (2n + 1)-th approximant f,,,, gives the n loop approximation of the modified
Schiessel-Blumen model (46). We list some of the approximants explicitly.

1

pooLrds 12,
37 354482 3°3
1+125 + 1657 1 Z(e-aswsn”-g(s-\/s),)
5

Fs = 551202 7 1653
1 + 24s + 80s2 + 64s° (49)

= TSR s 127 v 6t 0
1 + 405 + 24052 + 44853 + 2565

= Os+ 1202 + 4325° + 5765° + 2565

3
-3t

-+
o ¢

Sy

1 /1 1 1
Ly = ;F(E’ 1; l;f;)o—o M(E; 1;-1)
Note that the inverse Laplace transform of f,, ., for n = 3 may not be expressed in terms of exact
numbers. It is nevertheless clear that they are sums of exponential functions since f,,,, are rational
functions of s. '
In order to produce figures of such results, we use MATHEMATICA' 5.0. We first define the sequence
{a,} defined in (38),

(a+(n-1)/2) (e+(n-1)/72-1) .
(c+ (n-1)-1) (c+ (n-1)) !

(n/2) (c-a+n/2-1) .
(c+n-2) (c+n-1) !

In({1]:= an[a_, c_, n_?0ddQ] :=

anf[a_, c_, n_?EvenQ] :=

a
anfa_, c_, 1] := —;
c
anfa_, c_, 0] :=1;
and the function which generates the continued fraction as
In[5]:= £[x_] := Append[Drop[x, ~2], Last[Drop[x, -1]] / (1 + Last[x])]
In[6]:~ cFraction[a_List] :=First[Nest[f, a, Length{a] -1]]
The n-loop approximation of the impedance Ly(s) is obtained by the inverse Laplace transform of the
(2n + 1)-th approximant of the C-fraction,

In[7]:~ Loops[n_, t_] :=
InverseLaplaceTransform[Simplify[cFraction[Take[seq, 2n+1]/s]], s, t]
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These are essentially all the definitions that we need. For producing plots, it is convenient to define
another function,

Inf{8]:= PlotSequence[seq , opt__ ] :=Module[{pl, p2},
pl = ListPlot [seq, PlotStyle -+ PointSize[0.015], DisplayFunction -» Identity];
P2 = ListPlot [seq, PlotJoined -» True, DisplayFunction -» Identity]; Show[pl, p2, opt,
PlotRange -+ {0, 1}, AxesLabel » {"n", "a,"}, DisplayFunction -+ $DisplayFunction]]

and load the package,

In[9]:~ Needs["Graphics'Graphics'"]
which is needed for log-log plots. We can now see that the function cFraction generates the contin-
ued fraction, e.g.,

In[10]:= cFraction[{al, a2, a3, a4}]

al

Out[10]= g
l‘ﬁﬂ!

Case 1l
Witha = % and ¢ = 1, which yield the result (49), the first 21 terms of {a,} are
) 1
Inf11]:= neq-'rable[an[;, 1, n], {n, O, 20}]

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
{lr ?r }

Out(l1]= 'El '4’! T' TI TI Tr Tr Tr TI T’ "4—7 ‘4‘1 Tl Tr TI TI ?1 T: T

In[12]:= PlotSequence[seq];

Ll )
E]

5 10 15 20 °

The impulse response x(¢) of two loops with five elements of the modified Schiessel-Blumen ladder
is given by the inverse Laplace transform of fs.

In{13]:= Loops[2, t]

out [13]= % + _g_ e (5+V5)t (1 +e14?_=)

In this way, we can plot the impulse response x(¢) from one to six loops,

Inf14]:= Do[p[n] = LogLogPlot[Evaluate[Loops[n, t]], {t, 0.1, 100}], {n, 1, 6}];
Here, we do not show the plot. In the limit of infinite loops, x(t) approaches M (-;-, 1, —t), which is plotted
as

1
In(15]:= p[0] = LoqLqulot[Bypergemtricli‘l[-i— ., 1, -t] ’
{t, 0.1, 100}, PlotStyle -+ Thickness[0.01], AxesLabel » {"t", "x"}];

Here, we show all the curves together,

In[16]:= Show[Table[p[n], {n, 0, 6}11;
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X
1
0.7
0.5
0.3}
0.2
.15
0.1
t
0.1 0.51 5 10 50100

As n increases, x(t) approaches M ( %, , —t) shown by the thick line. The straight line implies its power-law
decay ~ +~1/2, and the slope corresponds to its exponent —1/2.

Case2

Fora = 33~ and ¢ = 2, we can repeat the same computations.

In[17]:

Out(17]

In(18]:

In[19]:

In{20]:

Inf21]:

[}

it

2
seq-Table[an[?, 2, n], {n, 0, 20)]

(i, L,2,5 1 4 5 1 13 7
"3’ 9’ 18’ 30’ 15’ 21’ 42' sS4’ 27’
B, L7, 19 10 a1 23 25 13 14 29 31,
33’ 66’ 78’ 39’ 45’ 90’ 102’ S1’ 57’ 114’ 12
PlotSequence(seq];
an
0.4
.35
0.3
.25
0.2
.15
5 10 is 20 ©

Do[p[n] = LogLogPlot [Evaluate[Loops(n, t]], {t, 0.1, 100}], {(n, 1, 6}];
2
p[0] = LogLogPlot [Hyperqeon‘etricl!‘l [-—3— , 2, -t] ,
{t, 0.1, 100}, PlotStyle -» Thickness[0.01], AxesLabel -» {"t", "x“}];

Show[Table[p[n], {n, 0, 6}11;

X

0O O OO
. . .
O W g

t
0.1 0.51 5 10 50100

Again, as n increases, x(t) approaches M (% 2, -t). Again, the straight line implies the power-law decay
with the exponent —2/3.
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Case 3

We do not know the general form of x(¢) other than the case with {a,} given by (38). But for some finite
loops, we could try any sequence in the same way as above. For example, let us consider the sequence

In[22):= seq=Join[{1, -:—}, 'rable[an[—:—, 1, n]/z, {n, 2, 20}]]

1 1 1 1 1 1 1 1
gr ‘é‘r “8‘1 —8‘1 _8‘1 ?I il '8_1 "8‘1

1
1.8_1

1 1

1
Out [22]= {l, E, ’ ‘§‘I FI

oo =
oo -
~

o =
~

cof
A

X 1
8 8

oo} =

In[23]:= PlotSequence[seq];

5 10 15 20 °

which is obtained by gy = 1,4, = %, and {%an}, n =2,3,..., where {a,} is the sequence (38) witha = %
and ¢ = 1. The corresponding impulse response becomes

In[24]:= Do[p[n] = LoglLogPlot (Evaluate[Loops|n, t]],
{t, 0.1, 150}, PlotPoints +» 50, PlotRange —+ All], {n, 1, 6}];
1
In[25]:= p[0] = LogLogPlot [Hypergeometricl!‘l[;, 1, -t],
{t, 0.1, 150}, PlotStyle » Thickness[0.01], AxesLabel » {"t", "x" )] ;
In[26]:= Show[Table[p[n}, {n, 0, 6}]];

X

O O OO
= OON W 9

0.1 0.51 5 10 50100

Here, M(%, 1, ——t) is plotted together just for reference. It is amusing to speculate that, as n increases,
x(t) approaches a straight line in the log-log plot, but in fact we were unable to prove it. If this is in-
deed the case, we could estimate the exponent a of x(t) = ¢~ for large ¢ by plotting curves with more
approximations.

Case 4

If we choose the sequénce {a,} as given by (43), then we have |
1

)

1 ;
Ly =~ M(1;¢c;-
Again, by applying (47), we can show that ‘

1 1
~M(L;¢;-~) 80 oFy(c; 1)
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where
Fleg=1+ili L 2, ! 2,
G =T T T e+ D2 T dcr Die+2)3! T

is the confluent hypergeometric function. Hence the inverse Laplace transform of Ly(s) is given by

x(t) = oF(c : =)

4
In[27):= Plot[ﬂypergamtrict)!‘l[-;, -t], {t, 0, 100}, PlotRange -+ All,

PlotStyle » Thickness[0.01], AxesLabel » {"t", "x"}];

X

o o O o
N b Y 00

] 2 %0 3 100t
-0.2

According to (45), the sequence (43) corresponds to the alternating sign for &, and c,. Negative
values of these parameters imply anti-damping, i.e., the oscillation of the system will be amplified, as is
expected by the above plot.

11 Conclusions

The impulse response x(t) of the modified Schissel-Blumen ladder in Figure 4 shows relaxation that obeys
the power-law decay. In fact, we have shown that x(¢) is explicitly given by the hypergeometric function,
as in (48), when the parameters obey the relation (45) with (38). We remark that the relation (45) may
be rewritten as
kn+l = Dn Cn+l - a2n+2-
ky  @nii € Gony

Therefore, from (38) it follows that &, ,/k, - 1 and c,,,/c, = 1 asn - oco. Thus the strengths of
the springs and dampers in the substructure of the modified Schiessel-Blumen ladder are all the same
for large ladders. This establishes the fact that the power-law decay is a characteristic property of the
underlying fractal structure of the ladder.

Since not much is known about the asymptotic expansion of continued fractions, we were unable
to identify the general structure of fractional power-law in a more general form. It is expected from the
examples, however, that the power-law decay would emerge in a wide class of parameter relations.

It is also shown that if some of the spring constants and damping coefficients have negative values,
the impulse response may be oscillatory. This is consistent since negative values of such parameters imply
amplifying effects of the oscillators.

Finally, we remark that the successive approximations of the continued fraction expansion of the
modified Schiessel-Blumen ladder is reminiscent of the successive approximations of the Taylor series.
In fact, the Taylor series expansion of e~ is given by

- 1 1 1
e t - kzo H(-t)k =1+ _l_!(—t) + i(—t)z + 5(_”3 +....
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(=2 o BN« Nel
HOON W g

t
0.1 0.51 -5 10 50100

Figure 5: Successive approximations of the Taylof expansion of e and Schiessel-Blumen ladder

The exponential decay is successively approximated by polynomials, which have power-law behavior. On
the other hand, in our result

- /s 1{1 a/s ay/s
a ., O — = e————— e — _1__ —_— e
7% =~ M(a; c; —t) o—e Ly(s) (1 +T1 + 1 + ),

1+g(%’—‘) s

the power-law decay is successively approximated by the inverse Laplace transform of the continued
fraction expansion. It is amusing to compare these cases in the figure shown in Figure 5.
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