# On the Equilibria in the System: Mercuric Chloride, Ammonium Chloride, Potassium Chloride and Water at 25°C.

By

Yukichi Osaka and Kinji Ando.

#### (Received June 3, 1924)

Mercuric chloride and potassium chloride form from their aqueous solutions at  $25^{\circ}$  the following three double salts<sup>1</sup>:

 $HgCl_2KCl.H_2O$ ,  $HgCl_2.2KCl.H_2O$  and  $2HgCl_2KCl.2H_2O$ , and mercuric chloride and ammonium chloride form at 30° the following four double salts<sup>2</sup>:

#### HgCl<sub>2</sub>.NH<sub>4</sub>Cl.H<sub>2</sub>O, HgCl<sub>2</sub>.2NH<sub>4</sub>Cl.H<sub>2</sub>O, 3HgCl<sub>2</sub>.2NH<sub>4</sub>Cl.H<sub>2</sub>O,

and 9HgCl<sub>2</sub>.2NH<sub>4</sub>Cl.

On the other hand, potassium chloride and ammonium chloride form from their aqueous solutions two series of solid solutions with a gap. At 25° the gap is 27—95 molar percentages of ammonium chloride according to Uyeda<sup>1</sup> and about 17—97 according to Fock<sup>4</sup>.

Stimulated by these facts, we have undertaken the study of the system consisting of mercuric chloride, ammonium chloride, potassium chloride and water at  $25^{\circ}$ , and the results are presented in this article.

#### Materials.

The salts were of Jp. Pharm. Mercuric chloride and potassium chloride were thrice recrystallised from neutral aqueous solutions, while

<sup>&</sup>lt;sup>1</sup> H. W. Foote and Levy, Amer. Chem. J., 35, 238 (1906).

<sup>&</sup>lt;sup>2</sup> P. M. Meerburg, Zs. anorg. Chem., 59, 136 (1908).

<sup>&</sup>lt;sup>8</sup> K. Uyeda, Int. Cong. Apl. Chem., **22**, 237 (1912); Mem. Coll. Sci. Eng. Kyoto. Imp. Univ., **5**. 148 (1912).

<sup>4</sup> A. Fock, Zs. Krystall., 28, 337 (1897).

ammonium chloride was thrice recrystallised from an aqueous solution with some free ammonia. Ordinary distilled water was used.

#### Analytical Methods.

The analysis was carried out by ordinary methods. *Mercury* was determinend as mercuric sulphide. *Ammonia* was distilled into a known quantity of a standard sulphuric acid and the excess of the acid titrated back with a standard caustic soda with sodium alizarinsulphonate as indicator. The *total chlorine* was determined by Volhard's method, improved by Rothmund and Burgstaller. *Potassium* and *water* were estimated by calculation.

## Experimental Procedure and Calculation of the Results.

The materials were mixed in certain calculated proportions and the mixture in a vessel was made to rotate in a thermostat at  $25 \cdot 0^{\circ}$ until equilibrium was attained.

When KCl is added to a system having  $HgCl_2.2NH_4Cl.H_2O$  and NH<sub>4</sub>Cl as the solid phases, the double salts,  $HgCl_2.2NH_4Cl.H_2O$  and  $HgCl_22KCl.H_2O$ , form solid solutions and the single salts, KCl and NH<sub>4</sub>Cl, also form solid solutions. In this case, the method used by Hayami<sup>1</sup> in this loboratory was adopted with some modification. A special tube of H-form, of a capacity of about 40 c.c., was used and in its horizontal part a hollow cork over which was stretched a piece of cotton cloth, instead of the latter only as Hayami did. This considerably reduced the time necessary to attain equilibrium. When NH<sub>4</sub>Cl, or a solid solution of KCl in NH<sub>4</sub>Cl, was one of the solid phases, it was nearly perfectly separated from the other, as it floated on the surface. But when a solid solution of NH<sub>4</sub>Cl in KCl was formed, the separation of the two kinds of solutions became difficult.

In other cases, an Erlenmeyer flask of a capacity of about 30 c.c. was used. When two kinds of crystals were macroscopically observed and were separable by the difference in densities, they were separeted mechanically as much as possible for analysis.

When the double salt,  $9HgCl_2.2NH_4Cl$ , is to be a solid phase, a state of supersaturation was retained and it required a long time to attain stable equilibrium, as Meerburg remarked<sup>2</sup>. Thus in this case a

<sup>&</sup>lt;sup>1</sup> These Memoirs 4, 363 (1920).

<sup>&</sup>lt;sup>2</sup> Loc. cit.

small quantity of the crystals of  $9HgCl_2.2NH_4Cl$  previously prepared was added and the rotation in the thermostat was further continued for two or three weeks.

When two kinds of solid phases, for example,  $xNH_4Cl.(1-x)$ KCl and  $HgCl_2y(NH_4Cl)_2.(1-y)(KCl)_2.H_2O$ , are in equilibrium with a liquid solution and separable from each other though incomplete, their compositions were found graphically from the composition of the solution and that of each solid phase, mixed with a small quantity of the other and also with some mother liquor, in the following way.

Let the compositions of the solution and impure solid phases be represented by the general formula:

 $100mH_2O.XHgCl_2.Y(NH_4Cl)_2(100-X-Y)(KCl)_2.$ We designate the two kinds of impure solid phases as A and B and take a special case for illustration :

|                 | X     | Y     | т     |
|-----------------|-------|-------|-------|
| Liquid solution | 26.29 | 27.92 | 10.37 |
| Solid phase A   | 3.00  | 5.00  | 0.18  |
| Solid phase B   | 48.71 | 5.38  | 0.55  |



We take rectangular coordinates, taking m as the ordinates and X as the abscisses (Fig. 1). The point S represents the liquid solution and A and B the solid solutions. The point O represents an anhydrous solid phase,  $x(NH_4)_2Cl_2.(1$  $x)K_2Cl_2$ , with no mercuric chloride and C the other pure solid solution, HgCl<sub>2</sub>.  $v(NH_4)_2Cl_2(1-y)K_2Cl_2.H_2O.$ Then the solid solutions containing no mother liquor must lie on the straight line OC and also on the

straight lines, SA and SB, respectively. Thus the points of intersection, E and F, must correspond to the two solid solutions in question.



Then to find the positions of these points on the diagram of triangular coordinates, taking  $HgCl_2$ ,  $(NH_4)_2Cl_2$ and  $K_2Cl_2$  as the components, plot the points, S, A and B, from the data given, and on the lines, SA and SB, plot the points, E and F (Fig. 2). Prolong the line EF to meet the lines representing the pure solid solutions respectively. The points of intersection will be the points required.

## **Results.**

1. The solid phases :--  $x(NH_4)_2Cl_2.(1-x)K_2Cl_2$  (1) and  $HgCl_2.y(NH_4)_2Cl_2.(1-y)K_2Cl_2.H_2O$  (11).

The results of the experiments are given in Table 1, in which the compositions of the liquid solutions and those of each of the solid solutions, somewhat mixed with the other and also with some mother liquor, are given in gram percentages.

|      |                   |              |                                |                  |                   |                          |                                |                  |                      |                               | _                              |                  |
|------|-------------------|--------------|--------------------------------|------------------|-------------------|--------------------------|--------------------------------|------------------|----------------------|-------------------------------|--------------------------------|------------------|
| NT   | Liquid solution.  |              |                                |                  | So                | lid sol                  | ution (                        | I).              | Solid solution (II). |                               |                                |                  |
| INO. | HgCl <sub>2</sub> | NH4)2<br>Cl2 | K <sub>2</sub> Cl <sub>2</sub> | H <sub>2</sub> O | HgCl <sub>2</sub> | NH4/2<br>Cl <sub>2</sub> | K <sub>2</sub> Cl <sub>2</sub> | H <sub>2</sub> O | HgCl <sub>2</sub>    | $(NH_4)_2$<br>Cl <sub>2</sub> | K <sub>2</sub> Cl <sub>2</sub> | H <sub>2</sub> O |
| 1    | 47.80             | 24.61        | 0.00                           | 27.59            |                   |                          | _                              |                  |                      |                               |                                |                  |
| 2    | 42.87             | 23.11        | 1.84                           | 32.18            | 2.89              | 95.20                    | 0.36                           | 1.55             | 65.73                | 19.93                         | 9.38                           | 4.96             |
| 3    | 39 <b>·93</b>     | 21.62        | 4.73                           | 34.71            | 2.71              | 95.17                    | 0.28                           | 1.84             | 65.54                | 17.96                         | 11.55                          | 4.95             |
| 4    | 32.96             | 20.74        | 6.88                           | 39.42            | 1.43              | 95.54                    | 0.64                           | 2.39             | 63.26                | 12.63                         | 17.78                          | 6.33             |
| 5    | 31.87             | 20.08        | 7.99                           | 40.06            | 4.35              | 91.30                    | 1.70                           | 2.55             | 63.26                | 12.44                         | 18.89                          | 5.41             |
| 6    | 30.37             | 19.44        | 8.45                           | 41.74            | 1.25              | 94.92                    | 1.56                           | 2.24             | 63.32                | 10.88                         | 19.78                          | 6.02             |
| 7    | 28.80             | 19.37        | 9.85                           | 41.98            | 2.28              | 79.32                    | 16.60                          | 1.80             | 62.08                | 10.36                         | 21.34                          | 6.22             |
| 8    | 28.88             | 19.32        | 9.68                           | 42.12            | 2.59              | 22.72                    | 71.93                          | 2.76             | 62.69                | 9.58                          | 22.22                          | 5.51             |
| 9    | 27.31             | 17.49        | 11.42                          | 43.78            | 3.34              | 13.00                    | 81.50                          | 2.16             | 60.77                | 7.84                          | 26 52                          | 4.87             |
| 10   | 24.49             | 14.40        | 13.05                          | 48.09            | 2.92              | 9.60                     | 81.10                          | 6.38             | 61-16                | 4.52                          | 28.43                          | 5.89             |
| 11   | 23.57             | 12.09        | 15.83                          | 48.51            | 2.49              | 6.79                     | 88.65                          | 2.07             | 61.32                | 3.62                          | 30.65                          | 4.41             |
| 12   | 20.04             | 8.38         | 19.17                          | 52.41            | 5.29              | 3.48                     | 89.18                          | 2.15             | 61.17                | 2.66                          | 31.62                          | 4.55             |
| 13   | 18.04             | 5.40         | 21.71                          | 54.85            | 2.25              | 2.06                     | 93-80                          | 1.89             | 60.57                | 1.36                          | 33.47                          | 4.60             |
| 14   | 16.52             | 3.04         | 23.57                          | 56.87            | 2.34              | 1.55                     | 93.26                          | 2.85             | 59.38                | 0.74                          | 35.12                          | 4.76             |
| 15   | 14.76             | 0.00         | 26.45                          | 58.79            |                   |                          |                                |                  | _                    |                               |                                |                  |
|      | IL .              | l            |                                |                  | Jj                |                          | ι Ι                            | . I              | L I                  | , I                           | 1                              |                  |

Table 1.

From these data the compositions were calculated to be represented by the formula :  $100mH_2O.XHgCl_2.Y(NH_4)_2Cl_2.(100-X-Y)K_2Cl_2$ , and those of the pure solid phases were estimated graphically by the method above described. The results of the calculation and estimation are given in Table 2.

|     | ,             |                |              |         |                |        |       | N                |               |               |              |         |              |
|-----|---------------|----------------|--------------|---------|----------------|--------|-------|------------------|---------------|---------------|--------------|---------|--------------|
|     | 1             | Liquid         |              |         | Solid solution |        |       |                  |               | Solid         | solutio      | on (11) |              |
| No. | so            | olution        | •            | Impure. |                |        | Pure. |                  | Impure.       |               |              | Pure.   |              |
|     | X             | Y              | т            | X       | Y              | m      | X     | Ŷ                | X             | Y             | m            | X       | Y            |
| 1   | 43.35         | <b>56</b> .65  | 3.77         |         |                | _      | 0.0   | 100.0            |               |               | -            | -       |              |
| 2   | 40.88         | 55 <i>·</i> 93 | 4.62         | 1.18    | <b>98</b> .55  | 0.09   | **    | 99·9             | 49·28         | 37.91         | 0.56         | 50·0    | 37·8         |
| 3   | 38.60         | <b>53</b> ·05  | <b>5</b> ∙06 | 1.10    | <b>98</b> .69  | 0.11   | ,,    | <del>9</del> 9·9 | <b>49</b> ·61 | 34.48         | 0.56         | "       | 34.2         |
| 4   | <b>3</b> 3·59 | <b>53</b> ·65  | <b>6</b> ∙05 | 0.58    | 98·94          | 0.15   | ,,    | <del>99</del> .0 | 49.56         | 25.09         | 0.74         | "       | 24.2         |
| 5   | 32.73         | <b>52</b> ·34  | 6·20         | 1.82    | 9 <b>6</b> ·88 | 0.16   | "     | 99·1             | 48.96         | 24.42         | <b>0·6</b> 3 | "       | <b>22</b> ·3 |
| 6   | 31.95         | 51.87          | 6.62         | 0.51    | 98 <b>·33</b>  | 0.14   | "     | 98.9             | 49.88         | 21.74         | 0.71         | "       | 21.0         |
| 7   | <b>30</b> .04 | 51·26          | 6.60         | 0.98    | <b>96</b> ·10  | 0.12   | "     | 97·0             | 48.79         | 20 66         | 0.74         | "       | 18·9         |
| 8   | <b>30</b> ·24 | <b>51</b> ·31  | 6.65         | 1.35    | <b>30</b> ·15  | 0.22   | ,,    | 30.0             | 49.18         | <b>19</b> ∙07 | 0.65         | "       | 18.1         |
| 9   | 29.52         | 48.00          | <b>7</b> ·30 | 1.81    | 17.86          | • 0.18 | ,,    | 17.2             | 46-95         | 15.74         | 0.57         | "       | 15·0         |
| 10  | 28.88         | 43-10          | 8.54         | 1.67    | 13·93          | 0.55   | ,,    | 12.0             | 49-16         | 9.22          | 0.71         | "       | 8∙9          |
| 11  | 28.37         | <b>3</b> 6·94  | 8.80         | 1.36    | 9·5 <b>2</b>   | 0.17   | "     | 9∙0              | <b>48</b> .55 | 7.74          | 0.53         | "       | 7.1          |
| 12  | 26.29         | 27.92          | 10.37        | 3.00    | 5.00           | 0.18   | "     | 4.7              | 48.71         | 5.38          | 0 55         | "       | 5.4          |
| 13  | 25.30         | 19.24          | 11.60        | 1.26    | 2.93           | 0.16   | ,,,   | 2.6              | 48-47         | 2.76          | 0.55         | ,,      | 2.6          |
| 14  | 24.60         | 11.50          | 12.76        | 1.33    | 2.23           | 0.24   | ,,    | 2.5              | 47.43         | 1.49          | 0∙58         | "       | 1.1          |
| 15  | <b>23</b> .45 | 0.00           | 14.08        |         |                | -      | ,,    | _                | _             |               |              | **      | 0.0          |

Table 2.

These results are graphically represented in Fig. 3, putting m out of consideration. As to the mutual solubility of KCl and NH<sub>4</sub>Cl in solid solutions, the mean of the values of Fock and Uyeda was adopted and the portions, AQ and BR, represent those solid solutions. The line DE represents the solid solutions (II), in which the miscibility is complete. The curves, FP and PG, represent the liquid solutions and the point P represents the liquid solution in equilibrium with the three solid solutions.

2. The solid phases :- 
$$HgCl_2.x(NH_4)_2Cl_2.(1-x)2K_2Cl_2.H_2O$$
  
and  $2HgCl_2.y(NH_4)_2Cl_2.(1-y)K_2Cl_2.2H_2O$ .

In this case, both the solid solutions have no gap. They could not be separated from each other and the residues were analysed only for the ascertaining of their nature. The results are given in Table 3.

| N   |                   | Liquid sol | lution.                        |               | Solid phases (mixed). |           |           |                  |  |  |
|-----|-------------------|------------|--------------------------------|---------------|-----------------------|-----------|-----------|------------------|--|--|
| 10. | HgCl <sub>2</sub> | (NH4)2Cl2  | K <sub>2</sub> Cl <sub>2</sub> | H₂O           | HgCl <sub>2</sub>     | (NH4)2Cl2 | $K_2Cl_2$ | H <sub>2</sub> O |  |  |
| 1   | 56·31             | 21.01      | 0.00                           | 22.68         | _                     |           |           |                  |  |  |
| 2   | 51-01             | 18-54      | 2.57                           | 27.88         | 66·37                 | 20.63     | 6·92      | 6.08             |  |  |
| 3   | 46·5 <b>0</b>     | 15.30      | 5.83                           | 32.37         | <b>72</b> ·95         | 9.77      | 12.63     | 4.65             |  |  |
| 4   | 41.54             | 11.90      | 9.05                           | 37.51         | <b>69</b> ·52         | 5.75      | 18.31     | 6.42             |  |  |
| 5   | 37.07             | 8.64       | 12.28                          | <b>42</b> ·01 | 61.84                 | 4.15      | 19.17     | 14.84            |  |  |
| 6   | 29.02             | 1.94       | 18.88                          | 50.16         | 60.58                 | 0.70      | 29.00     | <del>9</del> ·72 |  |  |
| 7   | 27.34             | 0.00       | 20.45                          | 52·21         |                       | -         |           | _                |  |  |

Table 3.

From Table 3, Table 4 was calculated and the results are graphically represented in Fig. 3. <sup>•</sup>The straight lines, DE and HK, represent the two kinds of solid solutions and the curve MN represents tho liquid solutions.

Table 4.

|     | Li            | quid solutior | 1.    | Solid phases (mixed). |                |               |  |  |
|-----|---------------|---------------|-------|-----------------------|----------------|---------------|--|--|
| No. | X             | X Y m         |       | X                     | Y              | m             |  |  |
| 1   | 51·37         | 48-63         | 3.12  | {50·00<br>{66·67      | 50.00<br>33.33 | 0·50<br>0·33  |  |  |
| 2   | 49-65         | 45.79         | 4.09  | 50·54                 | 39.59          | 0.70          |  |  |
| 3   | <b>48</b> .65 | 40.47         | 5.06  | 60.41                 | 20.53          | 0·58          |  |  |
| 4   | 47.10         | 34.32         | 6.41  | 59.19                 | 12-42          | 0.82          |  |  |
| 5   | 45-56         | <b>2</b> 6·95 | 7.78  | 57.65                 | 9.81           | 2 <b>.0</b> 8 |  |  |
| 6   | 42.48         | 7.20          | 11.07 | 52.60                 | 1.54           | 1.29          |  |  |
| 7   | 42-34         | 0.00          | 12.18 | {50·00<br>{66·67      | 0.00<br>0.00   | 0·50<br>0·33  |  |  |

86



3. The solid phases :- HgCl<sub>2</sub> and 9HgCl<sub>2</sub> (NH<sub>4</sub>)<sub>2</sub>Cl<sub>2</sub>.

The double salt,  $9HgCl_2(NH_{4/2}Cl_2)$  does not form any solid solution. The corresponding potassium salt does not exist. The results are given in Tables 5 and 6.

| Table | - 5. |
|-------|------|
|-------|------|

| .T  | Liquid solution.  |           |       |                  | Solid phases (mixed). |                                                 |                                |                  |  |  |
|-----|-------------------|-----------|-------|------------------|-----------------------|-------------------------------------------------|--------------------------------|------------------|--|--|
| NO. | HgCl <sub>2</sub> | (NH4)2Cl2 | K2Cl2 | H <sub>2</sub> O | HgCl <sub>2</sub>     | (NH <sub>1</sub> ) <sub>2</sub> Cl <sub>2</sub> | K <sub>2</sub> Cl <sub>2</sub> | H <sub>2</sub> O |  |  |
| 1   | 15.63             | 1.60      | 0.00  | 82.77            |                       |                                                 |                                |                  |  |  |
| 2   | 16-11             | 1.56      | 0.18  | 82.15            | 93-64                 | 1.14                                            | 0.00                           | 5.02             |  |  |
| 3   | 16.64             | 1.47      | 0.47  | 81.42            | 90.26                 | 2.53                                            | 0.02                           | 7.19             |  |  |
| 4   | 17.00             | 1.44      | 0.61  | 80.95            | 87.84                 | 2.70                                            | 0.03                           | 9.45             |  |  |
| 5   | 18-16             | 1.40      | 0.94  | <b>79</b> ·50    | 94.08                 | 1.45                                            | 0.08                           | 4.37             |  |  |
| 6   | 19.24             | 1.23      | 1.44  | 78.09            | 88.54                 | 3.19                                            | 0.15                           | 8.12             |  |  |
| 7   | 21.56             | 1.16      | 2.03  | 75.25            | 75-05                 | 2.50                                            | 0.38                           | 22.09            |  |  |
| 8   | 25.54             | 0.94      | 2.85  | 72.67            | 96.35                 | 0.84                                            | 0.12                           | 2.69             |  |  |
| 9   | 26.20             | 0.80      | 3.64  | 69·36            | 93.65                 | 2.53                                            | 0.52                           | 3.30             |  |  |
| 10  | 26.73             | 0.76      | 3.86  | 68-65            | 85.46                 | 2.13                                            | 3.04                           | 9.37             |  |  |

|     | Li             | quid solutio  | on.           | Solid             | l phases (m  | ixed). |
|-----|----------------|---------------|---------------|-------------------|--------------|--------|
| No. | X              | Y             | m             | X                 | Y            | m      |
| 1   | 79.43          | 20.57         | 63-38         | { 100<br>\$0      | 0<br>10      | 0<br>0 |
| 2   | <b>79</b> .02  | 19.44         | 60·73         | 96.26             | 3.77         | 0.98   |
| 3   | 78·42          | 17.58         | 57·8 <b>7</b> | 93.32             | 6.64         | 1.12   |
| 4   | <b>78</b> ·11  | 16.82         | 56·07         | 92.70             | 7.24         | 1.50   |
| 5   | 77·56          | 15.14         | 51.19         | 96.09             | <b>3</b> ·76 | 0.68   |
| 6   | 77·03          | 12.50         | 47.12         | 91.35             | 8.36         | 1.26   |
| 7   | <b>76</b> ·46  | <b>10</b> ·40 | 40.22         | 91.43             | 7.72         | 3.96   |
| 8   | 75 <b>·6</b> 4 | 7.68          | 35.12         | 97.61             | 2.17         | 0.41   |
| 9   | <b>75</b> ·19  | <b>5</b> ·80  | 30.00         | <del>9</del> 2·70 | 6.36         | 0.49   |
| 10  | 74.88          | 5.45          | 28.99         | <b>88</b> .65     | 5.60         | 1.46   |

| T - 1 | l. ( | •  |
|-------|------|----|
| 1 a D | le f | ۱. |
|       |      | •• |

The results are represented in Fig. 4. The solubility is represented by the curve EF, the points, C and D, representing the solid phases of the definite compounds respectively. The solution at the point F (No. 10) is in equilibrium with another solid phase besides the two, namely a solid solution of the series,  $4\text{HgCl}_2.y(\text{NH}_4)_2\text{Cl}_2.(1-y)$  $K_2\text{Cl}_2.4\text{H}_2\text{O}$ .

4. The solid phases :--  $HgCl_2(I)$  and

 $4 \text{HgC!}_2 y(\text{NH}_4)_2 \text{Cl}_2 (1-y) \text{K}_2 \text{Cl}_2 4 \text{H}_2 \text{O}.$  (II).

The results are given in Tables 7 and 8 and graphically represented in Fig. 4. The liquid solutions are represented by the curve FH and the solid solutions by the straight line KL, where the position of K was not directly determined. The extension of HF to G represents a metastable equilibrium and is denoted by a broken line.

| N    | I                 | iquid.        | solutio                        | n.               | Solid phase (II). |               |                                |                  | Solid phase (I).  |               |                                |                  |  |
|------|-------------------|---------------|--------------------------------|------------------|-------------------|---------------|--------------------------------|------------------|-------------------|---------------|--------------------------------|------------------|--|
| INO. | HgCl <sub>2</sub> | (NH4)2<br>Cl2 | K <sub>2</sub> Cl <sub>2</sub> | H <sub>2</sub> O | HgCl <sub>2</sub> | (NH4)2<br>Cl2 | K <sub>2</sub> Cl <sub>2</sub> | H <sub>2</sub> O | HgCl <sub>2</sub> | (NH4)2<br>Cl2 | K <sub>2</sub> Cl <sub>2</sub> | H <sub>2</sub> O |  |
| 1    | 25.12             | 0.00          | 4.66                           | <b>70</b> ·22    | -                 | -             | -                              | -                | -                 |               |                                |                  |  |
| 2    | 25.75             | 0.47          | <b>4</b> ∙05                   | <b>69</b> ·73    | 78.78             | 0.49          | 6·73                           | 14.00            | -                 | -             |                                |                  |  |
| 3    | 25.68             | <b>0</b> ∙56  | 3.97                           | <b>6</b> 9·79    | 79.42             | 0.80          | <b>8</b> ∙37                   | 11.41            | 98· <b>7</b> 7    | 0.01          | 0.03                           | 1.19             |  |
| 4    | <b>27</b> ·85     | 1.31          | 3.47                           | 67·37            | 81.70             | 1.54          | 5.07                           | 11.69            | 99.19             | 0.12          | 0.39                           | 0.30             |  |
| 5    | 29.23             | 1 <b>·8</b> 5 | 3.15                           | 65·77            | <b>75</b> .69     | 2.32          | 6.60                           | 15-39            | <del>9</del> 8·45 | 0.16          | 0.31                           | 1.08             |  |

Table 7.

|     | Lig           | uid solut | ion.  | Solid phase (II). |      |      | Solid phase (I). |                   |      |      |  |
|-----|---------------|-----------|-------|-------------------|------|------|------------------|-------------------|------|------|--|
| No. |               |           |       | Impure. H         |      |      | Pure. Impure.    |                   |      |      |  |
|     | X             | Y         | m     | X                 | Y    | m    | Y                | X                 | Y    | m    |  |
| 1   | 74.74         |           | 31.49 | 80.00             |      | 0.80 | 0.0              | <del></del>       |      |      |  |
| 2   | 75.02         | 3.50      | 30.61 | 85.39             | 1.33 | 2.29 | 1.7              |                   |      | l —  |  |
| 3   | 74.84         | 4.11      | 30.65 | <b>82</b> ·13     | 2.11 | 1.78 | 2.4              | 99·11             | 0.03 | 0.02 |  |
| 4   | 74.29         | 8.84      | 27.08 | 86·14             | 4.13 | 1.86 | 6.0              | <del>99</del> .00 | 0.30 | 0.05 |  |
| 5   | <b>73</b> .69 | 11.84     | 24.99 | 80.86             | 6.29 | 2.48 | 6.3              | <del>9</del> 9·04 | 0.40 | 0.16 |  |

| Table | 8. |
|-------|----|
|-------|----|

# 5. The solid phases :-- $9HgCl_2.(NH_4)_2Cl_2$ and $4HgCl_2.y(NH_4)_2Cl_2.(1--y)K_2Cl_2.4H_2O.$

The two solid phases were separated from each other and analysed. The data for equilibrium are given in Tables 9 and 10. The solubility curve is represented by FP in Fig. 4. The solid solutions coexisting with the liquid solutions are represented by the line KJ, of which the terminal points were not directly determined.

| Т | al | Ы | e | 9 |  |
|---|----|---|---|---|--|
|   |    |   |   |   |  |

| Na  |                   | Liquid s  | solution.                      |                  | Solid solution. |                                                 |                                |                  |
|-----|-------------------|-----------|--------------------------------|------------------|-----------------|-------------------------------------------------|--------------------------------|------------------|
| No. | HgCl <sub>2</sub> | (NH4)2Cl2 | K <sub>2</sub> Cl <sub>2</sub> | H <sub>2</sub> O | HgCl2           | (NH <sub>4</sub> ) <sub>2</sub> Cl <sub>2</sub> | K <sub>2</sub> Cl <sub>2</sub> | H <sub>2</sub> O |
| 1   | 28.55             | 1.94      | 3.14                           | 66·38            | 78.06           | 2.57                                            | 6·23                           | 13.14            |
| 2   | 29.98             | 2.57      | 3.01                           | 64.44            | 79.54           | 3.04                                            | 5.48                           | 11.94            |
| 3   | 30.83             | 2.87      | 2.83                           | 63.47            | 80.44           | 3.38                                            | 4.39                           | 11.79            |

Table 10.

|     | Lio,  | quid soluti                           | on.           | Solid solution. |         |      |       |  |  |  |
|-----|-------|---------------------------------------|---------------|-----------------|---------|------|-------|--|--|--|
| No. |       | · · · · · · · · · · · · · · · · · · · |               |                 | Impure. |      |       |  |  |  |
|     | X     | Y                                     | m             | X               | Y       | m    | Y     |  |  |  |
| 1   | 72.90 | 12.56                                 | 25.54         | 81.38           | 6.80    | 2.06 | 5.6   |  |  |  |
| 2   | 71.40 | 15.53                                 | 23.13         | 81.80           | 7.94    | 1.85 | 6.5   |  |  |  |
| 3   | 71.25 | 16.82                                 | <b>22</b> ·24 | 83·01           | 8.74    | 1.83 | 7.3 🦷 |  |  |  |

6. The solid phases :-  $4 \text{HgCl}_2.x(\text{NH}_4)_2\text{Cl}_2.(1-x)\text{K}_2\text{Cl}_2.4\text{H}_2\text{O}$  (I) and  $3 \text{HgCl}_2.y(\text{NH}_4)_2\text{Cl}_2.(1-y)\text{K}_2\text{Cl}_2.\text{H}_2\text{O}$ , (II).

In this case, the two kinds of solid phases were found impossible to separate from each other and the residues were analysed only to ascertain their nature. The results are given in Tables 11 and 12 and in Fig. 4.

| No. | -                 | Liquid so | olution.                       |                  | Solid solutions (mixed). |                                                 |                                |                  |
|-----|-------------------|-----------|--------------------------------|------------------|--------------------------|-------------------------------------------------|--------------------------------|------------------|
| 10. | HgCl <sub>2</sub> | (NH4)2Cl2 | K <sub>2</sub> Cl <sub>2</sub> | H <sub>2</sub> O | HgCl <sub>2</sub>        | (NH <sub>4</sub> ) <sub>2</sub> Cl <sub>2</sub> | K <sub>2</sub> Cl <sub>2</sub> | H <sub>2</sub> O |
| 1   | 31.74             | 3.07      | 3.14                           | 62·05            | 76.99                    | 3.55                                            | 6·31                           | 13.15            |
| 2   | 29.96             | 2.52      | 3.60                           | 63 92            | 80.63                    | <b>3</b> ·76                                    | <b>9</b> ∙17                   | 6·44             |
| 3   | 28.24             | 1.81      | 4.42                           | 65·53            | 74·71                    | 2.53                                            | 9.41                           | 13.35            |
| 4   | 27.36             | 1.21      | 5.20                           | 66·23            | 74.47                    | 1.74                                            | 9 <b>·9</b> 9                  | 13• <b>8</b> 0   |

Table 11.

| Tal | ble | 12. |
|-----|-----|-----|
|-----|-----|-----|

| No  | Lie           | q <b>uid solu</b> tic | on.            | Solid solutions (mixed). |      |      |  |
|-----|---------------|-----------------------|----------------|--------------------------|------|------|--|
| No. |               |                       | т              | X                        | Y    | m    |  |
| 1   | 70.15         | 17.20                 | 20.67          | 78.97                    | 9·25 | 2.03 |  |
| 2   | <b>6</b> 9.82 | 14.89                 | 2 <b>2</b> ·45 | 75.46                    | 8·92 | 0-91 |  |
| 3   | 69·07         | 11.25                 | 24.16          | 76·93                    | 6.55 | 2.05 |  |
| 4   | <b>68</b> .58 | <b>7</b> .69          | <b>25</b> .02  | 76.70                    | 4.55 | 2.14 |  |

The solid phase (I) is represented by a portion of the line LJ and the solid phase (II) by a portion of the line MN. The potassium salt corresponding to  $3HgCl_2.(NH_4)_2Cl_2.H_2O$  does not exist, but we find it in solid solutions with the ammonium salt. The terminal point N of the solid solutions on the side of the potassium salt could not be determined, exactly. The curve PS represents the liquid solutions, and at P and S it has another solid phase,  $9HgCl_2.(NH_4)_2Cl_2$  or  $2HgCl_2.(NH_4, K)_2Cl_2.2H.O$ , respectively.

7. The solid phases :--  $3HgCl_2x(NH_4)_2Cl_2.(1-x)K_2Cl_2.H_2O$  (I) and  $2HgCl_2.y(NH_4)_2Cl_2.(1-y)K_2Cl_2.2H_2O$  (II).

In this case also the two kinds of solid phases could not be separated from each other. The results are given in Tables 13 and 14 and in Fig. 4.

90

| IgCl <sub>2</sub> |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Solid solution (mixed).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                   | $(NH_4)_2Cl_2$                                                                                                    | K <sub>2</sub> Cl <sub>2</sub>                                                                                                                                                                                                                                                                                                   | H₂O                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HgCl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (NH4)2Cl2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K <sub>2</sub> Cl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 53·06             | 13.00                                                                                                             | 0.00                                                                                                                                                                                                                                                                                                                             | 33·94                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 79.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 53-84             | 12.96                                                                                                             | 0.52                                                                                                                                                                                                                                                                                                                             | 32.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 82.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 51.88             | 12.47                                                                                                             | 0.56                                                                                                                                                                                                                                                                                                                             | 35.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 83.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 47 <i>·</i> 96    | 11.00                                                                                                             | 1.72                                                                                                                                                                                                                                                                                                                             | <b>39</b> · <b>3</b> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5·9 <b>3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 42 <b>·</b> 92    | 9.09                                                                                                              | 2.63                                                                                                                                                                                                                                                                                                                             | <b>4</b> 5·36                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>80</b> ∙70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 36.17             | 6.48                                                                                                              | 3.75                                                                                                                                                                                                                                                                                                                             | 53.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10· <b>37</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 33-95             | 5.51                                                                                                              | 4.13                                                                                                                                                                                                                                                                                                                             | 56-41                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 32.63             | 4.87                                                                                                              | 4.47                                                                                                                                                                                                                                                                                                                             | 58 <b>·0</b> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70·20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11-63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 30.94             | 4.05                                                                                                              | 4.66                                                                                                                                                                                                                                                                                                                             | 60.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>77</b> .88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| <b>28</b> ·23     | 2.52                                                                                                              | 5.31                                                                                                                                                                                                                                                                                                                             | 63.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>78</b> ·40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 26.60             | 1.27                                                                                                              | 5.85                                                                                                                                                                                                                                                                                                                             | 66·28                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 72.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 26.57             | 0.90                                                                                                              | 5·96                                                                                                                                                                                                                                                                                                                             | 66.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 26.48             | 0.67                                                                                                              | 6.02                                                                                                                                                                                                                                                                                                                             | 66-83                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76-31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                   | 53.06<br>53.84<br>51.88<br>47.96<br>42.92<br>36.17<br>33.95<br>32.63<br>30.94<br>28.23<br>26.60<br>26.57<br>26.48 | 53.06       13.00         53.84       12.96         51.88       12.47         47.96       11.00         42.92       9.09         36.17       6.48         33.95       5.51         32.63       4.87         30.94       4.05         28.23       2.52         26.60       1.27         26.57       0.90         26.48       0.67 | 53.06       13.00       0.00         53.84       12.96       0.52         51.88       12.47       0.56         47.96       11.00       1.72         42.92       9.09       2.63         36-17       6.48       3.75         33.95       5.51       4.13         32.63       4.87       4.47         30.94       4.05       4.66         28.23       2.52       5.31         26.60       1.27       5.85         26.57       0.90       5.96         26.48       0.67       6.02 | 53.06         13.00         0.00         33.94           53.84         12.96         0.52         32.68           51.88         12.47         0.56         35.09           47.96         11.00         1.72         39.32           42.92         9.09         2.63         45.36           33.95         5.51         4.13         56.41           32.63         4.87         4.47         58.03           30.94         4.05         4.66         60.35           28.23         2.52         5.31         63.94           26.60         1.27         5.85         66.28           26.57         0.90         5.96         66.57           26.48         0.67         6.02         66.83 | 53.06         13.00         0.00         33.94         79.16           53.84         12.96         0.52         32.68         82.43           51.88         12.47         0.56         35.09         83.17           47.96         11.00         1.72         39.32         77.51           42.92         9.09         2.63         45.36         80.70           36.17         6.48         3.75         53.60         74.41           33.95         5.51         4.13         56.41         76.08           32.63         4.87         4.47         58.03         70.20           30.94         4.05         4.66         60.35         77.88           28.23         2.52         5.31         63.94         78.40           26.60         1.27         5.85         66.28         72.07           26.57         0.90         5.96         66.57         74.86           26.48         0.67         6.02         66.83         76.31 | 53.06         13.00         0.00         33.94         79.16         12.84           53.84         12.96         0.52         32.68         82.43         11.67           51.88         12.47         0.56         35.09         83.17         10.26           47.96         11.00         1.72         39.32         77.51         9.82           42.92         9.09         2.63         45.36         80.70         7.27           36.17         6.48         3.75         53.60         74.41         5.49           33.95         5.51         4.13         56.41         76.08         4.83           32.63         4.87         4.47         58.03         70.20         5.29           30.94         4.05         4.66         60.35         77.88         4.06           28.23         2.52         5.31         63.94         78.40         2.92           26.60         1.27         5.85         66.28         72.07         1.50           26.57         0.90         5.96         66.57         74.86         1.47           26.48         0.67         6.02         66.83         76.31         1.11 | 53.06 $13.00$ $0.00$ $33.94$ $79.16$ $12.84$ $0.00$ $53.84$ $12.96$ $0.52$ $32.68$ $82.43$ $11.67$ $0.69$ $51.88$ $12.47$ $0.56$ $35.09$ $83.17$ $10.26$ $2.51$ $47.96$ $11.00$ $1.72$ $39.32$ $77.51$ $9.82$ $6.74$ $42.92$ $9.09$ $2.63$ $45.36$ $80.70$ $7.27$ $7.37$ $36.17$ $6.48$ $3.75$ $53.60$ $74.41$ $5.49$ $9.73$ $33.95$ $5.51$ $4.13$ $56.41$ $76.08$ $4.83$ $10.19$ $32.63$ $4.87$ $4.47$ $58.03$ $70.20$ $5.29$ $11.63$ $30.94$ $4.05$ $4.66$ $60.35$ $77.88$ $4.06$ $9.71$ $28.23$ $2.52$ $5.31$ $63.94$ $78.40$ $2.92$ $11.97$ $26.60$ $1.27$ $5.85$ $66.28$ $72.07$ $1.50$ $14.34$ $26.57$ $0.90$ $5.96$ $66.57$ $74.86$ $1.47$ $12.62$ $26.48$ $0.67$ $6.02$ $66.83$ $76.31$ $1.11$ $13.58$ |  |

Table 13.

Table 14.

| No.  | Liq            | uid solutio     | ns.           | Solid solutions (mixed).  |                |              |  |
|------|----------------|-----------------|---------------|---------------------------|----------------|--------------|--|
| INO. | X              | Y               | m             | X                         | Y              | m            |  |
| . 1  | 61.65          | <b>38</b> ∙35   | 5.94          | {75·00<br>{66· <b>6</b> 7 | 25.00<br>33.33 | 0·25<br>0·67 |  |
| 2    | 61.40          | <b>37</b> .52   | 5.62          | 72.76                     | <b>26</b> ·13  | 0.69         |  |
| 3    | 61.35          | 37.44           | 6.26          | 73·11                     | 22.88          | 0.54         |  |
| 4    | 60·70          | 35.33           | 7.50          | 67.58                     | 21.72          | 0.78         |  |
| 5    | 60.64          | 32.59           | <b>9</b> .66  | 71.69                     | 16.39          | 0.62         |  |
| 6    | 60.87          | 27.54           | 13.59         | 70.17                     | 13-13          | 1.47         |  |
| 7.   | 61 • 21        | 25 · <b>2</b> 2 | 15-33         | 71.17                     | 11.48          | 1.25         |  |
| 8    | 61.44          | 2 <b>3</b> ·24  | <b>16</b> ·47 | 67.00                     | 12.80          | 1.85         |  |
| 9    | 61.82          | 20.53           | 18.32         | 73.57                     | 9.73           | 1.19         |  |
| 10   | 63·72          | 14.45           | 21.75         | 72.86                     | 6.88           | 0.94         |  |
| 11   | 65 <i>·</i> 90 | 7.71            | 24.75         | 70.67                     | 3.72           | 1.79         |  |
| 12   | 66.95          | 5.73            | 25.33         | 73.70                     | 3.69           | 1.64         |  |
| 13   | 67 <i>·</i> 64 | 4.35            | 25.72         | 73.48                     | 2.70           | 1.31         |  |

The double salt,  $3HgCl_2.(NH_4)_2Cl_2.H_2O$ , dissolves the corresponding potassium salt only very slightly and the double salt,  $3HgCl_2$ .  $K_2Cl_2.H_2O$ , does not exist at all. The solid solutions of the two double salts are, however, formed to a wide extent in the middle part of the

diagram. The gap on the side of the ammonium salt is estimated to be about 0.8-10 in molar percentages. The point Q (No. 2) which lies apparently on the curve RS is an intersection of the two solublity curves, RQ and SQ, and is in equilibrium with the two mutually saturated solid solutions of the type (I) besides the solid solution (II).

The solubility curve SQ meets the curve PS at S. The solution at S (No. 13) is also in equilibrium with another solid solution,  $4HgCl_2.z(NH_4)_2Cl_2(1-z)K_2Cl_2.4H_2O$ .

## 8. The solid solutions :- $4 \text{HgCl}_2.x(\text{NH}_4)_2\text{Cl}_2.(1-x)\text{K}_2\text{Cl}_2.4\text{H}_2\text{O}$ and $2 \text{HgCl}_2.y(\text{NH}_4)_2\text{Cl}_2.(1-y)\text{K}_2\text{Cl}_2.2\text{H}_2\text{O}.$

In this case also the two kinds of solid solutions could not be separated from each other. The results are given in Tables 15 and 16 and in Fig. 4.

Table 15.

| No. |                   | Liquid s       | olution.                       |                  | Solid solutions (mixed). |                                                 |               |                  |
|-----|-------------------|----------------|--------------------------------|------------------|--------------------------|-------------------------------------------------|---------------|------------------|
|     | HgCl <sub>2</sub> | $(NH_4)_2Cl_2$ | K <sub>2</sub> Cl <sub>2</sub> | H <sub>2</sub> O | HgCl <sub>2</sub>        | (NH <sub>4</sub> ) <sub>2</sub> Cl <sub>2</sub> | $K_2Cl_2$     | H <sub>2</sub> O |
| 1   | 25.38             | 0.00           | 6.67                           | <b>6</b> 7.95    | 69·50                    | 0.00                                            | 15.46         | 15.04            |
| 2   | <b>26·0</b> 9     | 0.37           | 6.22                           | 67·32            | 72.27                    | 0.49                                            | 12 <b>·07</b> | 15.17            |

Table 16.

| No. | Lic   | luid solutio | n. (  | Solid solutions (mixed). |      |      |  |
|-----|-------|--------------|-------|--------------------------|------|------|--|
|     | X     | Y            | m     | X                        | Y    | m    |  |
| 1   | 67·64 | 0.00         | 27.29 | 71.17                    | 0.00 | 2.32 |  |
| 2   | 68·08 | 2.42         | 26.44 | 75.68                    | 1.31 | 2.37 |  |

The solubility curve TS meets the other two curves, PS and QS, at their point of intersection S, and the solution denoted by S is in equilibrium with the three solid solutions.

9. The solid phases :  $9HgCl_2.(NH_4)_2Cl_2$ and  $3HgCl_2.x(NH_4)_2Cl_2.(1-x)K_2Cl_2.H_2O.$ 

In this case, one of the solid phases is a definite compound and the composition of the solid solutions could be determined. The results are given in Tables 17 and 18 and in Fig. 4.

|          |                   | Liquid sol                                      | ution.                          |                  | Solid solution.   |           |                                |                  |  |
|----------|-------------------|-------------------------------------------------|---------------------------------|------------------|-------------------|-----------|--------------------------------|------------------|--|
| No.      | HgCl <sub>2</sub> | (NH <sub>4</sub> ) <sub>2</sub> Cl <sub>2</sub> | $\mathrm{KC}_{2}\mathrm{l}_{2}$ | H <sub>2</sub> O | HgCl <sub>2</sub> | (NH4)2Cl2 | K <sub>2</sub> Cl <sub>2</sub> | H <sub>2</sub> O |  |
| 1        | 47.31             | 8.53                                            | 0.00                            | 44.16            |                   |           |                                |                  |  |
| <b>2</b> | 47.17             | 8.17                                            | 0.38                            | 44·28            | 84-81             | 9.64      | <b>2</b> ·01                   | 3.54             |  |
| 3        | 4 <b>7</b> .57    | 8.14                                            | 0.37                            | 43·92            | 84.63             | 9.56      | 0.41                           | 5.40             |  |
| 4        | 44.09             | 7.26                                            | 0.95                            | 47.70            | 88.30             | 6·01      | 2.25                           | 3.44             |  |
| 5        | 41.77             | 6.55                                            | 1.22                            | <b>50</b> ·46    | 89·20             | 5.20      | 1.20                           | 4.40             |  |
| 6        | 35.13             | 4.53                                            | 1.98                            | 58·36            | 84·07             | 5.19      | 4· <b>2</b> 9                  | 6.45             |  |
| 7        | 33-49             | 3.88                                            | 2.51                            | 60·1 <b>0</b>    | 84.00             | 4.27      | 3.46                           | 8.27             |  |
| 8        | 32.51             | 3.40                                            | 2.81                            | 61.28            | 84.28             | 3.90      | 3.81                           | 8.01             |  |

Table 17.

Table 18.

|     | Lie           | quid solutio   | n.    | Solid solution. |               |              |       |  |  |
|-----|---------------|----------------|-------|-----------------|---------------|--------------|-------|--|--|
| No. |               |                |       |                 | Impure.       |              |       |  |  |
|     | X             | Y              | m     | X               | Y             | m            | Y     |  |  |
| 1   | 68-60         | 31.40          | 9.65  |                 |               |              | 25.00 |  |  |
| 2   | 68·7 <b>7</b> | 30.21          | 9.73  | 75.10           | 21.65         | 0.47         | 21.50 |  |  |
| 3   | 69·03         | 29.99          | 9.61  | 77·18           | <b>2</b> 2·12 | 0.74         | 24.00 |  |  |
| 4   | 68·72         | 28.57          | 11.21 | 82.03           | 14.16         | <b>0</b> ·48 | 17.50 |  |  |
| 5   | 68·90         | 27.43          | 12.55 | 85-31           | 12 61         | 0.63         | 17.00 |  |  |
| 6   | 69·93         | 22.90          | 17.52 | 80.03           | 12.54         | 0.93         | 13.00 |  |  |
| 7   | <b>6</b> 9.90 | 20.54          | 18.91 | 83.06           | 10.71         | 1.23         | 10.50 |  |  |
| 8   | 70·26         | 1 <b>8</b> .66 | 19.96 | 81.78           | 10.11         | 1.00         |       |  |  |
| ļ   | , I           |                |       | H I             |               | l            | [     |  |  |

As to the solid solutions,  $3HgCl_2.(NH_4,K)_2Cl_2.H_2O$ , we have already described them. The curves, WZ and ZP, represent the liquid solutions. The point Z (No. 2) represents the liquid solution which has as the residues the compound  $9HgCl_2.(NH_4)_2Cl_2$  and the two mutually saturated solid solutions,  $3HgCl_2.(NH_4,K)_2Cl_2.H_2O$ , on the ammonium salt side. The solution represented by the point P (No. 8) is the end of the solubility curve and has  $4HgCl_2.(NH_4,K)_2Cl_2.4H_2O$  as one of the solid phases,



## SUMMARY.

The equilibria in the system consisting of mercuric chloride, ammonium chloride, potassium chloride and water have been studied at 25.0°C.

The existence of the double salts between mercuric chloride and one of the alkali chlorides described in literature has been confirmed.

The solubility of the double salts and their solid solutions has been determined and the equilibrium relations have been represented graphically.

A graphical method has been described to find the composition of the solid solutions when two kinds of solid solutions are present mixed, and are somewhat incompletely separable from each other and from the mother liquor.

## Equilibria in the System : Mercuric Chloride, etc.

.

The donble salts and solid solutions, confirmed or found, are tabulated as follows :

| HgCl <sub>2</sub> .KCl.H <sub>2</sub> O   | HgCl <sub>2</sub> .NH <sub>4</sub> Cl.H <sub>2</sub> O   | HgCl <sub>2</sub> .(K,NH <sub>4</sub> )Cl.H <sub>2</sub> O   | (complete) |
|-------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|------------|
| HgCl <sub>2</sub> .2KCl.2H <sub>2</sub> O | HgCl <sub>2</sub> .2NH <sub>4</sub> Cl.H <sub>2</sub> O  | HgCl <sub>2</sub> .2(K,NH <sub>4</sub> )Cl.H <sub>2</sub> O  | (complete) |
| 2HgCl <sub>2</sub> .KCl.2H <sub>2</sub> O |                                                          | 2HgCl <sub>2</sub> .(K,NH <sub>4</sub> )Cl.2H <sub>2</sub> O | (a gap)    |
|                                           | 3HgCl <sub>2</sub> .2NH <sub>4</sub> Cl.H <sub>2</sub> O | 3HgCl <sub>2</sub> .2(K,NH <sub>4</sub> )Cl.H <sub>2</sub> O | (gaps)     |
| <u></u>                                   | 9HgCl <sub>2</sub> .2NH <sub>4</sub> Cl                  |                                                              |            |
|                                           | <del></del>                                              | (K,NH4)Cł                                                    | (a gap)    |