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ABsTRACT

This paper consists of two parts. The first part is an extension of the theorem
given in my previous paper! and the main theorem runs as follows: Let

co co
P Q, (2) 4@ 2
Flod)= 30 U0 = 5 0 O (5240 L )
g=0 g=0
be a transcendental integral function of z and 2’ such that
(1) F(z #) is of finite total order A in z and #, and the transcendental integral
function

g .
S (Z')E-‘ > c,z’, where ¢, is the maximum coefficient of L@ p0 (2)s

is of apparent order x (>o),

(2) the canonical products » (2) (g=0,1, 24000000 ) are uniformly increasing functions
(for g=0, 1, 2,0..... ) at most of 9™ order.
Then F(z, 2') will be of apparent order u in 2’ for any finite z except the points of a
punctual set Sy, for which #(g, z) will be of order lower than p.  Moreover, the set
Sz has no limiting point at finiteness and the order of convergency of the points in
Sy is at most equal to 7.

In the second part, I considered the system of transcendental integral functions

@ Q) © Q) L
4 (4} 7\ @0 N\ 9
Fled)=5 e " P 0 = 5 M (2 40 ) =12 30
g=0 g=0 ‘p=0

under an additional condition,
(3) the multiplicity of every zero point of each of PRl (&) (=0, 1, 2s0eeeee ) at
the origin 15 less than a certain finite constant s. :
let £ be the set of the repeated limiting points of the zero points of 1/”(2) (g=o0,

1 These Memoirs, 7, 345 (1924).
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T, 25000000 3 I=T, 240u0nen } first taking Zim /=00 and then Zim g=oco. Also let E' be

the set of the repeated limiting points of the same zero points, fist taking Zim ¢=oo

and then Zim /=occ. Then we have E=ZE’, We have also the following theorems :
X T

. Y V+te V+e
For any positive value &, ({————M ! } éR’<{————M } ) there
elv+e) elv+e)
corresponds a positive integer Z such that any #;/z, 2') (/>Z) is of apparent order u
in ' for any z ([z] <&') except the points, at most M/-41 in number, for which
Fy(z, 2"} is of apparent order lower than .

If there be three positive values G, X (however great) and % (> %) such that

to each ¢,,/¢,;>G) there corresponds a valus of /7,, and we have

(?'n) qm
L, —517, 'Kévm
qu( ln) (7,
log | A

(€M) @,
where ¢, is a limiting point of the zero points z=b;nm of lqu' (2) for Zim gp=oo,

then F(z, #') will be of apparent order lower than g in 2’ for z=g=/im b,

Il =
Some similar theorems may also hold. "
Jule Sire proved the following theorem.!
co
Theorem. If Flu, v)= 3 a,(u)t” be a transcendental inlegral function
7=0

of jintle lolal order A in wand v and if the lranscendenial tnlegral

Suncleon (@)= ] ¢, V", where ¢, 75 the maxomum coeffrcient of a, (v),
n=0

be of apparent order p (>o0), then F (u,v) will be a transcendental
wnlegral function of apparent ovder p tn v for any fiownte vake of u
excepl the potnls of a punctual setf (un ensemble ponctuel) A for which
F (u,v) 25 of order lower than p.

Among the definitions he gave in his papers, the following are
specially important in later discussions. '

Definition 1. Tet £y, (2), Py (@Deveees Lam(@)eoeee , where
()
Prale)= 37 (z—agm,-), be a series of polynomials such that all the zero
=1

points of each polynomial are in a circle Cg,, center the origin and radius
equal to R,, and ¢(g,,)<B ¢,, where B is a constant. Let .5 be the set

t Rendiconti del Circolo Matematico di Palermo, 31, 1—91, (1911).
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of zero points of 7y, (3) (m=1, 2,...... ). We say that z==a is a regular
lmiling pornt of .S when for any prescrived positive value ¢, there
corresponds a positive integer Q(e) such that each Zy,,(2) (¢,,> Q (¢)) has
at least one zero point in the circle |z—a|<e

Definition 2. We say that z=a is a gonl of less tncrease (un point

de moindre croissance) of the series 7y, (2) (=1, 2, 3,-eee.. ), if
lim —log | Ppla) | — >0l
=00 Im log g

Let .S\ be the set of the regular limiting points of .S\ If z=4 be

not a point of the set .S}, we have evidently
lem ~log | P;..(8) |
Gu=00 Im 10 G

Accordingly if .S, be the set of the points of less increase at finite-
ness, we have

L S,<8.

In this paper, under some additional condition, we shall first in-
vestigate the distribution of the points of less increase of a transcendental

integral function F(z,2)= >’ eQ’(z)Af)z’ 2 in the z/-plane and then find
f, q:o

I'4 o
some properties concerning the order of (2, 2")= > >~ P2y A;q) 22
. p:O g=0 :
(d=1, 2, 3,000 ) in 2.

1. Lemma (Lindeli/'s theorem). If 7, #1, #ieenren (P Vet Y )
be the absolute values of the zero pornls of a transcendental inlegml
Junction f(2) whick has no zero pornt at the orign, then ——I—<V—‘M(L)

% r
Jor any r, where M(r) &s the maximum value of | f(2) | for | z | =~

The proof® is given under the assumption that no two #;'s are equal.
But it will be similarly proved with a slight modification when any
number of 7;’s are equal.

Theorem. Lel

F (z, z')E 57 f’q) (Z)Z,qE 57 A;q) qu(z) z’zﬂ =3 qu(z) }l(y) (z) z,q
g=0

P g=o0 =0

be a lranscendental tntegral function of z and 7 such that

1 Circolo Matematico, Joc. cit. p. 33.
2 Circolo Matematico, Joc. cit. p. 3.
3 Borel, Functions méromorphes, p. 105.
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(1) F(z72) satisfies the conditions of J. Stre's theorem above cited,
(2) ke canoncal product /z@)(z) (g=o0, 1, 2,0.u... ) of the primary
factors of the zero pornis of f m(z) are untformly wcreasing functions'
(Jor g=0, 1, 2yeeeees ) al most of V' order.
Then F(z,2) will be of appareni order p in 2 for any fintle z excepl the
pornts of a punctual sel S, for which F(z,2) will be of order lower than .
Moreover, the set .Sy has 1o limiting pont al fintteness and the order of
convergency of the pomis tn S, o5 al mosl équal fo v.

In virtue of the condition (1), the first part of the theorem follows at

once from the theorem of J. Sire. For the second part, put

0=:797C) (g=o0, 1, 2,100

. e @ .
where s, is a positive integer or a zero, and gq () has no zero point at the
origin. By the condition (2), for any prescribed positive value e, there
corresponds a positive value R, independent of ¢, such that

. »+
| e ,ée’ © for |z |=7rxR.

we have therefore

g@(z),é f = for 7>R>1.

7»7

@ . . 4
Supposing that re) ry roann. be the moduli of zero points of {/ﬂ(z),
arranged in order of magnitude, we have by the lemma

I

74y N r’,+67
L <VM“’<r>é )" for rnRe,
7

@
” 7

where M P(#) is the maximum value of g¥@) for |z |=# For any fixed
b 1

s o
4

4 o
value of 7, is minimum when »= (i) . Accordingly
g
4
1
e r+e YP+e
e I
L =4 —) for n>(v+ek,
@ I 7z

7 ( 7 )T_!_E
vte

1 These Momoirs, 6, 253 (1923).
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where .

A= {e(v—i— €) } e

1
vt
7P 5 1 pvte for nx(p+eR (g=0, 1, 2,00e.00).

ie.

Thus we have : ,
II. TZhere exisi al most n—1 zero poinis of eack g@(z) (¢g=o, 1,
I

Tte
2,en00ns ) wn the corcle C,, center the origin and radius equal lo 7 +
, A
(which 7s previously laken o be > R).
Giiven any prescribed positive value 6, let g1, g2, g3, + -+ (< gl gzl enen )

be the values of ¢ which satisfy
log| | 1

Im 108 # :

where ¢, is the maximum coefficient' of / (q"‘)(z). Also let P(q”’)(z) be
the polynomial whose zero points are those of / (q”‘)(z) in the circle C,, and whose
coefficient of the highest degree is 1. Then the number of zero points of
2w (2) is, by II, at most equal to s-,,+72—1. There exist however at most
n distinct zero points of P(q’”)(z). We have therefore at most 7 regular

limiting points and by I at most 7z points of less increase of P )(z)

m=1, 2,...... ). Consider a circle C,, concentric to C, of radius
1

ﬂ1'+e

a4 7 where % is any positive number. J. Sire proved® that the points

£8

in the circle C, in the zplane, at which the order of F{z,2) is less
than g, are the points, and the only points, of less increase of P(g"‘)(z)
(m=1, 2,.c.... ). We may therefore conclude that there can not exist
more than 7 points of .S, in the cirde C,, 7 and 3 being arbitrary, we
may conclude that the set of points .S, has no limiting point at finiteness.

Next, let a;, a a--.... be the points of .5, arranged in order of
magnitude. Since -there exist at most 2 points of .S, in the circde C,
we have

1 Circolo Matematico. Zoc. cit.
2 Circolo Matematico. Joc. cit. pp. 70—83.
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As ¢ and y are arbitrary positive values we may conclude that the order
of convergency of the points of .S, is at most equal to ».

2, M. Edm. Maillet proved the theorem :'

Let G(2) be a canonical product of primary faclors of the order p.
For any prescribed positive walues ¢ and y (9<1), there corresponds a

postlive value Ry suck that | G (2) ]>e—rp-;’or any fintte point z (| z |
>R) n the exterior of all the civcles C,, cenlers the zero ponts a,
(=1, 2, 3y00eess ) and radic equal to 7.

In his proof, he reduced the case p>1 to the one p<1. As G (3
is a transcendental integral function of p’* (p<<1) order, we have by the
lemma in art. 1.

1 VM)
7, 7
An easy calculation leads to the result that
X

Pu>n 7 for n>N(e)

where o-=,o+—§—< 1. For a point z in the exterior of all the circles C,
2

(=1, 2, 3yeeeres ), we have |z—a, |>y. Let s, 2, and the modulus 7
of z be such that

7”1é2¢é¢,,1+x

a

1
1y Lors (r22+1) g

I
where 72, N(e). Then as 7,,4+2>(ny4 1)7 >27>7, we have m,>m.
Put
' GlR)=G\(2) - G4(2) - G3(2),
where

721

Gp)=1T (1 ——Z—),

n=1 a,,
n s, s
Gyz)= IT (1—-—),
41 @y
Gie)= T (I— 2 )
72941 [/

1 Jordan’s Journal de Mathématiques, 8, 339 (1902).
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By a simple calculation, we have

[ G\(2) I>(~;%—)m.

164 1>(- )

|G | > e T

Hence
a’+—€—~ _’p-l—e
| G I'—!GLZIIGZ [-] Gsle) ]>€ 2=
for |z |=r>R,
where

€

Rlz ;zw(log—g—%-log 2+ -2 )
/] 1—0o

We may similarly prove the theorem :

0. For any prescribed positive wvalues e, 7 and R(>R), there
corresponds a posttive value K such that the canonical product Gz) of
the primary faclors of lhe zero ponts of G(2), whose moduli are grealer
than R+, satisfies
pte
| Gie) | e~ K5

Jor any pornt z (| z | £ Ry).
@

As 4
as in art., 1

@) (g=o0, 1, 2,0uuen. } are uniformly increasing, we have similarly

I
r(q)>7z Y for nxN()=p+eR"T (g=0, 1, 2,euuee. ).
Hence, corresponding to the theorem of M. Edm. Maillet, we have
IV. For any assigned values of q and for any prescribed postlive

values ¢ and y (£1), there corresponds a positive value Ry, tndependent
of q, such that ‘

[276) | >e™"

Sor any fintte pornt z (|2 |R) n the exlerzor of all the circles
w (=1, 2, 3,eeeen. ), center the zero poinis a¥ of K () and radis equal
lo 7.
Similarly, corresponding to III, we have
V. For any prescribed positive values e, 7 and R2(>R) there
corresponds a postizve value K such thal the canonical product G () of

rte



168 Ryé¢ Yaswda.

lhe primary factors of lhe zero poinis of h(q)(z), whose moduly are
grealer than Ry+7w, salisfies

v+e
[ GO0 e KR (g=0, 1, 2,e000r.)
Jor any pornt z (| z | <R,).
Suppose that

Py )=z g(y) ()= IT (1 _
n=1

ap /
where p,<p=y for g=o, 1, 2,e0er..
In virtue of II, we may assigh a positive integer A/ such that the number
M; of zero points of §7() (g=0, 1, 2,erres ) in the cirde |z |=R+ 9
is at most equal to A7, By the lemma of art. 1, we have
V+e
Ry <
7@

Hence we have

g 1 z 2 1 z \2 A vt
L ) L G L yhe K
My a2 \aP ) * Py NP —M(e’“-’+...+ie/' ? )
/) >e ? ’
=1
Suppose that g1, gz, ¢ayeeeee- have the same meaning as in art. 1.

Then we may similarly prove as in the treatise of J. Sire' that

G L (&)%)

a’n
17t

Q, () m=1 e,
—log | L gtm* ) @, l
“lom £ Cm G e =0
gm:OO Im IOg Tm
uniformly for |z |<R, But
rte
Lm  —log |G (2) | = lm _—log | P | —o,
In=C gy 10g gm Im=0 g l0g gn
and
Mym ﬁ Im
2 1 2
F_l: ( a(,qm)_!_ ...... +ﬁqm N {l:lqm;) )
lbm  —log |e ’
qm =00 q”1 IOg qm

1 Circolo Matematico. Joc, ¢7t. pp. 76—81.
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VA€ r4-e
R R,
_M(ez+ ...... +—I—ej,2> l
_ dim  —log |e : ? —o.
Jm=00 9w 10g o
Similarly we have
Iim  —log | qu’”)(z) | “o
Goin=— 00 I 10Z G, -
and -
Mg 2 1 2 2 1 2 ﬁ I
}_;: (affm)+7( affm)>+ .... 3 Im <dff’")) >
m —logle >o.
Jn=00 gm 10g g,
We have therefore
Oy,
—log
lim Im R
gm="00 gmloggn  C ,
uniformly for all z (] z |« R,) and from which it follows that
. O (2, .
lim —log |e ? ( | 1 _ km —logle |
g=00 gloggq T p g=o00 g log
‘We shall now prove that
lom —log Iqu (z)l 1
g=00 qlogg p

’ . . . . , (2
If ¢, be the maximum coefficient' in the expansion of ¢ ¢ @) we have

. o R
I‘flélcqié‘%“’"

1, €.
—log %
lim Cq ‘ -0
g=%  glogg '

If M,(r) be the maximum value of | S | for | z | =7, we have, as J.
Sire? treated,

G
. —log
ltm M, (7) .
_ =o.
7= glogg

Q, () .
From |e?  |<M,(7), it follows that

1 Circolo Matematico. Joc, c7t.
2 Circolo Matematico. Joc. cit. pp. 15—17.
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—log | qu @ | —logd, ()
glogg gqlogyg
and hence
m  —log | 609 @ | o &m —loglg I_v___ 1
g=00 glogg ~ g=o00 glogyg Z
‘We have therefore
VI. lom —log ] 609 @ | .
g=09 glogg JZ

ungformly for all z (| z | £Ry), where R, o5 any postlive value.

3. We shall hereafter assume that

(3) s, (g=o0, 1, 2,0ueun. ) are limited andZs.

Suppose that ]z |< R, where R, is the determined value in IV.
Consider a circle C, centre the origin and radius equal to 2/, Then in
virtue of II and (3), there exists a positive integer M such that the zero
points of lz(q)(z) (g=0, 1, 2,00ier. ) in the circle C can not exceed M+s
in number. For any z (| z |<R) in the exterior of all the circles c?
(=1, 2,.0u... ), centers the zero points a@ of lz@(z) and radii equal toy,
we have

2 1 2 \2
. ) f—(z—’(‘;)—"f‘ ...... +Z< [l’('q)) q ,

a® 2R,

for @ in the circle C. The canonical product of the primary factors of
the zero poiats of /z@(z) in the exterior of the circle C is absolutely less

_K.RIH'E (

than ¢ by V). As I did in the preceding article, we have
2 1 z \? 1 z \2
)
Yte P+e
R R
-, (g 1+ ...... —}—%e]) ! )

where the product IT is taken for all ¢ in the circle C. Consequenﬂy
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y+e R rte
M _ 1)+e_ Rl 1 yZ31
IIZ(")(Z)PW (2771) . KR M(e ot )_D>O’

where /) is independent of ¢. Thus we have :

VII. For any assigned value of q and jor any prescribed postlive

value 3, there corresponds a postltve value D, independent of q, such
that

l /z@(z) l > D
Jor any pomnt = (] s | <R\ n the exterior of all the circles C,(f)
(=1, 2, 3,0 ).

VIIL.  For any prescribed positive values y (however small) and R,
(however greal), there exisls a fosttive wnieger I. (sndependent of q)
such thal lo each zero pornl of one of

K0=AP 4+ A e i+ AP
and
A=A+ A7 o e+ AE (D)
whose modulus ©s less than Ry, there corresponds al least one zero pornt
of the other and the drstance between these zero pornls s less than .
Determine a positive integer M as to satisfy

) 4 I

v+e Y+e
(M—1) < R,= Z ,

then each g() (g=o, 1, 2,-v--. ) has at most M—1 zero points of
moduli inferior to A&,. Hence /zm(z) has at most A distinct zero Points

of moduli inferior to R, Tet 7/ be a positive value not greater than

I 1
rte Pte
i and (M+1) M In virtue of IV, there exists a
2(M+1) 2(M+1)A

finite positive value 2, (), independent of g, such that

P4-€
\ b(f)(z) | >e —
)}

for any finite point z (| 2 | >R, (3)) in the exterior of all the circles C,
I

(4M+ 1) v+e
A

(=1, 2,.0u... ). Put =R, If 2R>R (), we have
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I (q) l> 21(3)
for any point z (28> |z |> R, (7)) in the exterior of all the circles C, @
(=1, 2,000u.. ). For |z |<R (7/), we have, by VII, a positive number
D, independent of ¢, such that

I h(q) ‘ > D

for any z (|| <&, () in the exterior of all the circles C,(,?)(nzl, 2,e00al)s

r+te
Tet D' be the smaller of ¢~@% and D. In case of 2Ry =R, (), we
have '=D. Put

BE=hE) + ).
From Ry>R, we have

Yt
470 [2e @B dor | 2] 2R,

Y+e r+e
R, » \# 7 2R,
o) ’ée(Z oy 5 (_]e_s) :2_( I ) 1 (=R
/41 ZR;; 2

and hence

) NV N

EECHPEN NI
a2 2 ]€3

for | 2 | =< Rs. Hence for any prescribed positive value ¢/, there corresponds

a finite positive integer Z such that

|76 [<¢ D (g=o0, 1, 2,m00nc)
and
d(9)7
I 901 g <D (g=o0, 1, 2, 0u... )

for | 2| <R, and / ;L. We may also assign a positive value & such
that

| K70) | <6 (g=0, 1, 2,0m0.2)
and
(@)
}M <G (q:o’ I, 2,00000s )
az
for |z |<Rs, and from which, it follows that
I /Z’(q)(z) lélh(ﬂ(g) l+ | 5”;9)(3) '<G+€’D (g=o0, 1, 2,-eeu.. )
and
ai’e) | _|_dr”e) a2
= ' G+é =0, I, 2,0en.ns
‘ az ! [ az +[ bk I< T+ D (g=o 1,2, )




Some Theorems on the Orders ele. 173

for |z <R,
Now we divide the whole plane into three parts (see figure):
i) D;: a domain composed of all interior points of the circle, center
the origin and radius equal to R,
i) D,: a domain bounded by two concentric circles, centers the
origin and radii equal to &, and R respectively,
iti) D;: a domain composed of all the points which belong to neither

(UL |
—

1 h
—N_
’-

“”T‘DZ—F’N/
D B

W) 1“@ I
’i ’I ~ Ar
I L...k PN

3 L 1

=

 zero point of h(n(z

X zero point of /zfg)(z)

D, nor D, .
. )
We consider the circles C, (n=1, 2,...... ), whose centers are the zero
¢ ¢ .
points @, of /ZQ)() and the radii equal to 7/. As

1 I

o MNP  R-R,
2(M+1)A4 2(M+1)
all the circles C,(f) whose centers a,(f) (=1, 2,0e0ees ) are in D, lie wholly

outside all the circles Cffn whose centers are in /), ; and if any one of the former
intersects with a circle C ff) whose center is either in D, or in D,, and which
intersects with another one and so on, the system of these intersecting circles
lies wholly outside all the circles whose centers are in D, Accordingly if a
system of intersecting circles contains at least one circle whose center lies
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in D,, the system contains at most M+ 1 circles. Let af,q') be any zero
point of 4 2(z) such that | ¢¥ | <R, Now we take a closed curve I’
as follows: If C(,f') lies wholly outside all other circles C ,(,q), let I'be C ?.
If C(:') intersects with another C,(,Q), let I" be the closed curve composed
of the circular arcs of the intersecting circles and containing all the
interior points of at least one of these circles in the interior. Then the
arc length of I” is at most equal to 2(#/+1)my’. On the curve I,

| K°6) | >0/
) | 1°@) | > D —¢' D' =(1~¢)D'
for />~Z. Hence
d }l(q) (Z)

1 j ’ d 2 dz
—_T . &)
2T 1 T ) (z)

and .
i)

I f dz___,,
2V =1 e AR2()

. @ ‘D . .
represent the numbers of zero points of % (2) and %"(z) respectively in
the interior of I'. We have

/Z?)(Z) d(p?)(z) "60@)(3) dh?)(z)

A% dn’) ;
dz __ ds i: dz dz
}1@ (Z) /ZEQ) (Z) /Z(q) (Z) /Z?) (Z)
< 2/ D (G+ED') _ 2 (G+ D)
(1—¢) D" (1—=¢) D
Take & so small that
2 (G+D) . 1
(—&)D' (Mt ’
then we have
d }l(‘]) (Z) d hgg)(z)
— dz dz
V- ( - ) a2
A A 79

1 2 (G+ED)
2m (1—¢) D'

Thus the number of zero points of /z(q)(z) in I" is equal to that of /75”(2)

< s 2o(M A1)y <.
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(!>Z) in I". But any two interior points of I” are at a distance less than
20M+1) 9 <,
. @

and hence, to each zero point af,q)(| aff) | <R, of }(z: (e (g=o0, 1, 2,0eern. ),

. U4 .
there corresponds at least one zero point of % (2) (/= Z) and their
distance is less than 7. Next, we consider the curves I'’s corresponding
to all the zero points of /2@)(2) in D, If there be a zero point z=a of
/zfg)(z) (!>Z) in the exterior of all I"s and in the domain D,, we have

1 (@) =h"a) ¢, (@) =o,
which is absurd, since
1 5%@) | >0
and
| ¢"(@) | <D
We may therefore conclude that to each zero point z=a (| a | <Z) of

B2 (USL; g=o, 1, 2,......), there corresponds at least one zero point
of }z(n(z) and their distance is inferior to 7.

. . . (7) (¢35}

4. Let the set of the limiting points of the zero points {& , &2 ,
...... , bﬁ”} of ;1?)(2) for g=o, 1, 2,......(I: fixed) be £, and let the set
of the limiting points of {b(ly), b;ﬂ, ...... , bﬁg)} for /=1, 2, 3,-eere. (¢: fixed)

be £, Then EY is, by VIII, the set of the zero points of iz(q)(z), and
hence it contains only a finite number of points in any finite part of the
plane, Thus £ “ has no limiting point at finiteness. Express the points
of E by &s and those of EZ” by &™s. let E be the set of the
limiting points of E? (9=0, 1, 2,.00eu. ) in any finite part of the plane,
Also let 7 be the set of the limiting points of Z; ({=1. 2, 3,eeeee. } in
any finite part of the plane such that for any point 8 of £’ there exists
a point z=¢; in E,n and Zm b,”z B, and conversely all the limiting points

of 4 (n=1, 2,...... ; & : limited) are the points of Z'.
Now we shall prove
IX. E=E/’

For let B be a point of Z and let 470 L2 be the points such
that Zme 6(""):[?. For any prescribed positive value 7 there corresponds,

7m=00

by VIII, a positive value Z such that each lzgq")(z) (g=o0, 1, 2, ceeuns ;
I>17) has at least one zero point bfq") and

I bl({ln)_b(fn) , <7_
Taking limit =00, we have
| &~ 1<y Q. E.D.
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Conversely, let §’ be a point of E and let Zm b,”-—:ﬂ'. If # be not

=00

a point of Z, there should be a positive number  such that | 8'—g | >y,
where B is any point of Z  As Zmb =f, there cxists a positive

n—=co

integer V such that

b —p l<i7— for n> N,
7 3

Since 4, is a point of %, there ecxist b/,q;‘ ) (m=1, 2,...... ) and a
positive integer M{72) such that

6(?:"")—51” t<_’;_ for m> M (n).

There exists, by VIII, a positive integer Z such that for /,>7

(D 9y
& —b

”n

<‘v" (q:Oy I, 2,0e000. )-
3

Consequently, we have
I blqn, H)_ﬁ’ !él 5In_ﬂ; |+ | b’;}:,m)_éln ‘+ l b(?::’") _é(‘/n ) I<)7’

which holds for infinitely many B ™5, Hence there would exist at
least one limiting point § of these 8l #)'s such that

[B—R 1<y,
which is against the assumption.

Let B be a point of £ and let 5m) (A< @< g eenen ) bz the points
whose limiting point is 3. Considering a seguence of numbers 7z,

> >p>. ; dimy,=0), let [, be the least integer which corresponds
to 7,. Then we have, by VIII,
I &Z"’)—'b”[”’) |<7;,” (7”:1’ 2, 3yeeenes P R=, P I, ),

X. If there exists a sequence of fintle posilrve inlegers G,
(=1, 2,00cu.. ) such thal

l b;i’”)—bm !_/zvn
Jor GG, then B will be a regular limiting pornt of plm) =1, 2,0 )
Since
| 57— 5 | <, (m=1, 2,0eenn)
we have
| &,—~B | <7,
Consequently,
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| 89— | < | 8% —4 | 4 | 40—, |+ 18, — B | <3
for ¢,,>G,,. Q. E. D.

As a special case of this theorem, we have

XL If ¢, (n=1, 2,en... ) be a regular lLimiting pornt of. éZ"‘)
(=1, 2,.c.... ), then the limitimg pornt B of 6,” (=1, 2,ee.... ) well be
also a regular bimiting pornt of the limiting pornls 8 (m=1, 2,.00... )
of the pornls b;i’”) (n=1, 2,0eecn. ).

XIL. If there be three posilive values G, K (however greal) and
k (however small) such that lo each ¢ (9,>G), there corresponds a
vabue of I, and we have
| o —p, |- Ky,
| b{’qm)_b', Iée—k 9 10g 71
then i i
m  _—log | ) |
gm=00 gmlog q.,
where P(q"‘)(z) 75, as e arl. 1, a polynomial whose cocffictent of the
highest degree ¢s 1 and whose zero pornis are those of /z(q"')(z) . the
crcle C, cenler the origin and radius R (>| B 1).
In virtue of II and (3), the number of zero points of }z("”‘)(z) in the
circle C s not greater than a certain finite positive integer V. Accordingly

| P’q"‘)(ﬁ) | < | 6’7m)_ﬁ | - 2R)¥1
i b/qm)__é(lqm) |+ ] b;%n)_bln | + | b/,,—a@ | MR Y
<(emt | 478, |) &Y

—% gy log Ym(

3

é(f—thgm)-e zR’)A:—l

We have, therefore,

m —log | PG| dm —log 2R (142K},
=00 Gm 10g Gom T gu=00 Zm 10g g
>4

As a special case of this theorem, we have
XIIL.  If there be three positive values, L, G (however greal) and k
(however small) such that '

(Gsm) —% @ 108 91n

‘ o, —b,”‘ée

Jor any ¢ by (Qu>G, L) then
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y _ {gm)
tm  —log | PR,
gm: o gm IOg qm
where qu”’)(z) has the same mearnng as tn XIL.
5. We now consider a system of transcendental integral functions

Fed) =3¢ A+ A5+ e+ AP (=1, 2,000,
g=o0
Since by VI
' ) 0 (2)
lim  —logle? | _ 1
g=00 glogg jZ

for any finite z, F, (2, 2') will be of apparent order g in ¢’ for any finite
2 except the points for which
bm  —log | i)
g=00 glogg
There exist, however, at most / finite points in the z-plane, for which
F; (2, 2) is of apparent order lower than g. For otherwise 7, (z,2') would
be of apparent order lower than g for any finite 2z We may therefore
conclude : ' v
XIV. F,(z2) is of apparent order p mn 2 for any finite s except
the poinls, al most [ tn number, for which F,(s, 2) s of order lower
thar p.
Tet M be any positive integer>1+(AR),v+Ewhere e, Rand A have
the same meaning as on p. 165. Put

| >o.

v+te rte V+e
(M I) =41, M —-—Rz, (M+ I) R&v
A A
. Rg—Rl ¥
and let » be a positive value less than 1 and —3 For these values

of » and A, there corresponds, by VIII, a positive integer Z, (in-
dependent of g) such that to each zero point of one of )
EP0=AP + A4+ oo+ AT+
and
WO =AL+ AP+ e+ ATF (ISL),
whose modulus is less than K&, there corresponds at least one zero point(”
of the other and the distance between these zero points 15 less than 7.
Irom the asmcrned theorem, we may infer that the number N1 of the zero
points of 4’ {2) (/>L,), whose moduli are less than R+ 27, is at most
equal to the number of those points of 4° (z), whose moduli are less than
Ry i
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NP <zs+ M.

We may similarly assngn a positive integer L, (independent of ¢) such
that the zero points of lz, () (/>L,), whose moduli are less than R,+1,
are at most equal to s+ 4/’ in number, where A" is the least positive

Y+e
integer > {A (Ry+1 )} —1. We have evidently

, LT,
Put p
N
BP()=11 (—47)
n=1
and

/zﬁﬂ) ( ) Pl(y)( ) }ll(y)( )’

@
where b,,,, (n=1, 200000t s | éna

/z;g)(z). Then
s+M

() @
| 27(2) lsy’w >y (I=L,)
for | z | =R, We have

|| 4 T ) are the zero points of

V-te r*+te

\ /41
l @, I (Ry+7) ( R, ) TR, & R
R2+77. 7 7

for | z | =R,, and

, 2+
77@(2)‘ 206 | _ Rty " Rty
g = ‘ s+M+1*
2 qu)( ) 7 + 1
Since %, (z) is a polynomial, the maxnmum value of |7z,@(z) | for |z|
<R+7 is not greater than that of |4 (s)| for [2] =R,; and we have
Ve
- R,+
‘ ]z’(f)(z) I<e( 2+ 7) L Rty

stM+1

for | 2| <Ri+7. Since the zero points of k(,q)(z) (/>L,), whose moduli
are less than R;+1, are not greater than s+ 44’ in number,

‘ 721(4)(2) >—'75+M’
for | 2 | <R +75 We have therefore
(R + )‘n+e
s+ M — 3 ) _
7 * = }llm(z) ‘(e S % (I=L,>1)
Y

for | 2 | =Ri+7.
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v+e€
) - (Rs+7)
—log (M) . —log | BV L ~logle " F(RAg)/5 T}
gloggq gloggq gloggq
and
. <@
zzm —log | }ll (Z) I =0 (q:'O: ]’ 27"""; l\ﬁLJ)

g=x glogg
uniformly for |z| <R +7 Hence we have
XV. For any positrve value R' (=R'+7) we may assign a positrve
mteger L such thal
im —log | Zlm(z)
g=  glogg
uniformly for |z| <R,
@ Q3 L@ @ Og2) 5w
S Q=e ok @Q=F @-e -k 2
where le(z) has the meaning as on p. 197. Then we have,
by VI and XV,

I =0 (g:o, I, 2,000e0e ; [_éL)

@) <
7 (2), }h@)(z) | . InD)

Iim —log| e 1
g=00 glog g p
uniformly jor \z| <R.

Since P,@(z) (g=o0, 1, 2,00e-- ; />1) has at most M/+1
distinct roots, we may conclude, as in art. 1, that

1 1
V+te

v,
XVII. For any postirve value R’ (Q%‘L) <R’ <~‘Zi )

XVL

there corresponds a posttrve tnleger L suck that the pornis of less tucrease
of P,(’)(z) (9=o0, 1, 2,000uen s 0y fized > L) whose modult are less than

R, are al most M+1 1 number'.

Thus we may conclude as before
1 I

-v? vte
XVIUI. For any posilrve value R’ (%tl—) <R <% )

there corresponds a positeve nleger L such that any F, {5, 2) ({=L) &
of apparent order p n 2 for any z (|2| <R') excepl the poinls, at most
M1 tn mumber, for whick F,(z, 2) is of apparent ovder lower lhan p.

1 The theorem holds not only for ¢=o, 1, 2,..... , but also for g=g1, g2, g3eeee--
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Since
b _—log|e® - BOE _ x4 gy
g=00 glog ¢ 7 -
uniformly for |z{<R’, we may assign, as in art. 1, the values of ¢, ¢,
Gopeeeees s Gpgoeeens , which correspond to 8 (6 >0) and
Qg () = (om)
—logle ™ A& @] _ 1 28 (InZ)
9 10g 9, 2
uniformly for |z[<R (. e ¢n (=1, 2,-0eu.. ) is independent of z

(|z]<R')). Put

FI (Zr Z’)Eiﬁ

m=1

( mw) F73
L G d) (IS,

Then H(z, 2) is of apparent order at most —_*_/l——— in 2/ for any
1+ 2p

z{(|z2{<R’). Hence as the order of F,(z 2) in 2 is concerned, we have

only to consider

Z, plam) \ gm
X (@) (>1I).
m=1
1
Tet 4, (L=b<h<...... ), 51”@”’) , &, and B have the same meaning as in

art. 4, then corresponding to XII, we have
XIX. If there be three positive values G, K (however greal) and

k (>L-) such that lo eack ¢,.(q.>G), there corresponds a value of
©
L, and we have
3,01, | K5,
—log | fl,,(q”‘)(bf’,,) l
9108 ¢,

>4,

then F (2;2') will be of apparent order lower than p ine fore=p= lim
f,=00
We may assume, without loss of generality, that 6<&———.
7
For otherwise, we take a sub-sequence of {g,}, which corresponds to

P (<k—i\.
7 J

4.

1 iszm" is one of the zeropoints of f,’(‘qm)(z) which are at the shortest distance from the
point & . '
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(gm) (gom)
—log |/, 7 @,) | —log| 2 ") |

910G G Im 10g ¢,

é s,

__log | ngm( /) (? (61) I
Din 109; Do )
) Ym)
__logle p k()| =1 4

m log ¢, ¢
for | 4, | <R, where R'>| B |. Hence we have
{gm)

-1 P, 5.
Ogl Zy (n)lék—<—l—+3)'
Im 10 7. Pz
' ;
. (7 ) M vhe
Since £, "(z) has at most M+s roots (R’ < = ), we have
8 (7.
—tog | 47— 8, "t —log | £",) |
q”l log Qm o Qm IOg 9»: '
We have therefore
( ",
~log | " ~8,,1 A= 0
Im 108 ¢, M+s
or
h— —;— =5
- 9..108 G
| 47 p, |2o  MHs :
and by XIII
1
Iim —log | P(/m)(ﬂ> | k-——#— —~0
Qm: m q"’ Iog q"l - M+S ’
which shows that z=# is a point of less increase of P (2) (m=1, 2,e0e... ).

The same reasoning as on p. 165 leads to the results.
As a special case of XIX, we have

( ’l})
XX, If tim 108 Ifg @ n) | =l

2= g log 9,
ungformly jor Il,(n=1, 2,...... ) and 7f
lim
=k, =k>o,
ly=00 " °

then F(z, 2) will be of apparent order lower than p in 2 for z=p.

The author wishes to express grateful acknowledgment to Prof. Wada
for his kind remarks,



