<table>
<thead>
<tr>
<th>Title</th>
<th>On the Abhyankar's question for affine plane curves with one place at infinity (Feasibility of Theoretical Arguments of Mathematical Analysis on Computer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Fujimoto, Mitsushi; Suzuki, Masakazu; Yokoyama, Kazuhiro</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2004), 1381: 42-50</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/25675</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On the Abhyankar’s question for affine plane curves with one place at infinity

MITSUSHI FUJIMOTO
Department of Information Education
Fukuoka University of Education
fujimoto@fukuoka-edu.ac.jp

MASAKAZU SUZUKI and KAZUHIRO YOKOYAMA
Faculty of Mathematics
Kyushu University
{suzuki,yokoyama}@math.kyushu-u.ac.jp

1 Introduction

Let C be an irreducible algebraic curve in complex affine plane \mathbb{C}^2. We say that C has one place at infinity, if the closure of C intersects with the ∞-line in \mathbb{P}^2 at only one point P and C is locally irreducible at that point P.

The problem of finding the canonical models of curves with one place at infinity under the polynomial transformations of the coordinates of \mathbb{C}^2 has been studied by many mathematicians since Suzuki [10] and Abhyankar–Moh [2] proved independently that the canonical model of C is a line when C is non-singular and simply connected.

Sathaye [8] introduce the Abhyankar’s question for curves with one place at infinity and Sathaye–Stenerson [9] suggested a candidate of counter example for this question. However, they could not give the answer to the question since the root computation for a huge polynomial system was required.

We found a counter example for the Abhyankar’s question using computer algebra system. In this report, we give the details.
2 Preliminaries

Let C be a curve with one place at infinity defined by a polynomial equation $f(x, y) = 0$ in the complex affine plane \mathbb{C}^2. Assume that $\deg_x f = m$, $\deg_y f = n$ and $d = \gcd(m, n)$. The dual graph corresponding to the minimal resolution of the singularity of C at infinity is the following [11]:

![Dual Graph](image)

DEFINITION 1 (δ-sequence) Let f be the defining polynomial of a curve C with one place at infinity. Let δ_k ($0 \leq k \leq h$) be the order of the pole of f on E_{j_k} in the above dual graph. We shall call the sequence $\{\delta_0, \delta_1, \ldots, \delta_h\}$ the δ-sequence of C (or of f).

We have the following fact since $\deg_x f = m$ and $\deg_y f = n$.

Fact 1 $\delta_0 = n$, $\delta_1 = m$

We set L_k for each k ($1 \leq k \leq h$) like the following figure:

![Diagram with L_k](image)

DEFINITION 2 ((p, q)-sequence) Now, we assume that the weights of L_k is of the following form:
We define the natural numbers \(p_k, a_k, q_k, b_k \) satisfying

\[
(p_k, a_k) = 1, \ (q_k, b_k) = 1, \ 0 < a_k < p_k, \ 0 < b_k < q_k,
\]

\[
\frac{p_k}{a_k} = m_1 - \frac{1}{m_2} - \frac{1}{m_3} - \ldots - \frac{1}{m_r} \quad \text{and} \quad \frac{q_k}{b_k} = n_1 - \frac{1}{n_2} - \frac{1}{n_3} - \ldots - \frac{1}{n_s}.
\]

We shall call the sequence \(\{(p_1, q_1), (p_2, q_2), \ldots, (p_h, q_h)\} \) the \((p, q)\)-sequence of \(C \) (or of \(f \)).

There are the following Abhyankar–Moh’s semigroup theorem and its converse theorem by Sathaye–Stenerson as results for \(\delta \)-sequence. We set \(\mathbb{N} = \{ n \in \mathbb{Z} \mid n \geq 0 \} \) and \(\mathbb{C}^* = \mathbb{C} \setminus \{0\} \).

Theorem 1 (Abhyankar-Moh [1, 3, 4]) Let \(C \) be an affine plane curve with one place at infinity. Let \(\{\delta_0, \delta_1, \ldots, \delta_h\} \) be the \(\delta \)-sequence of \(C \) and \(\{(p_1, q_1), \ldots, (p_h, q_h)\} \) be the \((p, q)\)-sequence of \(C \). We set \(d_k = \gcd\{\delta_0, \delta_1, \ldots, \delta_{k-1}\} \) \((1 \leq k \leq h+1)\). We have then,

(i) \(q_k = d_k/d_{k+1}, \) \(d_{h+1} = 1 \) \((1 \leq k \leq h)\),

(ii) \(d_{k+1}p_k = \begin{cases} \delta_1 & (k = 1) \\ q_{k-1}\delta_{k-1} - \delta_k & (2 \leq k \leq h) \end{cases} \)

(iii) \(q_kd_k \in \mathbb{N}\delta_0 + \mathbb{N}\delta_1 + \cdots + \mathbb{N}\delta_{k-1} \) \((1 \leq k \leq h)\).

Theorem 2 (Sathaye–Stenerson [9]) Let \(\{\delta_0, \delta_1, \ldots, \delta_h\} \) \((h \geq 1)\) be the sequence of \(h+1 \) natural numbers. We set \(d_k = \gcd\{\delta_0, \delta_1, \ldots, \delta_{k-1}\} \) \((1 \leq k \leq h+1)\) and \(q_k = d_k/d_{k+1} \) \((1 \leq k \leq h)\). Furthermore, suppose that the following conditions are satisfied:
(1) \(\delta_0 < \delta_1 \),
(2) \(q_k \geq 2 \) \((1 \leq k \leq h)\),
(3) \(d_{h+1} = 1 \),
(4) \(\delta_k < q_{k-1} \delta_{k-1} \) \((2 \leq k \leq h)\),
(5) \(q_k \delta_k \in \mathbb{N} \delta_0 + \mathbb{N} \delta_1 + \cdots + \mathbb{N} \delta_{k-1} \) \((1 \leq k \leq h)\).

Then, there exists a curve with one place at infinity of the \(\delta \)-sequence \(\{\delta_0, \delta_1, \ldots, \delta_h\} \).

Suzuki [11] gave an algebraic-geometric proof of the above two theorems by the consideration of the resolution graph at infinity. Further, Suzuki gave an algorithm for mutual conversion of a dual graph and a \(\delta \)-sequence.

3 Construction of defining polynomials of curves

We shall assume that \(f(x, y) \) is monic in \(y \). We define approximate roots by Abhyankar’s definition.

DEFINITION 3 (approximate roots) Let \(f(x, y) \) be the defining polynomial, monic in \(y \), of a curve with one place at infinity. Let \(\{\delta_0, \delta_1, \ldots, \delta_h\} \) be the \(\delta \)-sequence of \(f \). We set \(n = \deg_y f \), \(d_k = \gcd\{\delta_0, \delta_1, \ldots, \delta_{k-1}\} \) and \(n_k = n/d_k \) \((1 \leq k \leq h+1)\). Then, for each \(k \) \((1 \leq k \leq h+1)\), a pair of polynomials \((g_k(x, y), \psi_k(x, y))\) satisfying the following conditions is uniquely determined:

- (i) \(g_k \) is monic in \(y \) and \(\deg_y g_k = n_k \),
- (ii) \(\deg_y \psi_k < n - n_k \),
- (iii) \(f = g_k^{d_k} + \psi_k \).

We call this \(g_k \) the \(k \)-th approximate root of \(f \).

We can easily get the following fact from the definition of approximate roots.

Fact 2 We have

\[
\begin{align*}
 g_1 &= y + \sum_{j=0}^{\lfloor p/q \rfloor} c_k x^k, \\
 g_{h+1} &= f
\end{align*}
\]

where \(c_k \in \mathbb{C} \), \(p = \deg_x f/d \), \(q = \deg_y f/d \), \(d = \gcd\{\deg_x f, \deg_y f\} \) and \(\lfloor p/q \rfloor \) is the maximal integer \(\ell \) such that \(\ell \leq p/q \).
DEFINITION 4 (Abhyankar-Moh’s condition) We shall call the conditions (1) – (5) concerning \(\{\delta_0, \delta_1, \ldots, \delta_h\} \) in Theorem 2 Abhyankar-Moh’s condition.

The following theorem gives normal forms of defining polynomials of curves with one place at infinity and the method of construction of their defining polynomials.

Theorem 3 ([5]) Let \(\{\delta_0, \delta_1, \ldots, \delta_h\} (h \geq 1) \) be a sequence of natural numbers satisfying Abhyankar-Moh’s condition (see **DEFINITION 4**). Set \(d_k = \gcd \{\delta_0, \delta_1, \ldots, \delta_{k-1}\} (1 \leq k \leq h + 1) \) and \(q_k = d_k/d_{k+1} (1 \leq k \leq h) \).

1. We define \(g_k (0 \leq k \leq h + 1) \) as follows:

\[
\begin{align*}
g_0 &= x, \\
g_1 &= y + \sum_{j=0}^{\lfloor p/q \rfloor} c_j x^j, \quad c_j \in \mathbb{C}, \; p = \delta_1/d_2, \; q = \delta_0/d_2, \\
g_{i+1} &= g_i^q + a_{\alpha_0\alpha_1\cdots\alpha_{i-1}} g_0^{\alpha_0} g_1^{\alpha_1} \cdots g_{i-1}^{\alpha_{i-1}} \\
&\quad + \sum_{(a_0, a_1, \ldots, a_i) \in \Lambda_i} c_{a_0a_1\cdots a_i} g_0^{a_0} g_1^{a_1} \cdots g_i^{a_i},
\end{align*}
\]

where \((\bar{\alpha}_0, \bar{\alpha}_1, \ldots, \bar{\alpha}_{i-1})\) is the sequence of \(i \) non-negative integers satisfying

\[
\sum_{j=0}^{i-1} \bar{\alpha}_j \delta_j = q_i \delta_i, \quad \bar{\alpha}_j < q_j (0 < j < i)
\]

and

\[
\Lambda_i = \left\{ (\alpha_0, \alpha_1, \ldots, \alpha_i) \in \mathbb{N}^{i+1} \mid \alpha_j < q_j (0 < j < i), \alpha_i < q_i - 1, \sum_{j=0}^{i} \alpha_j \delta_j < q_i \delta_i \right\}.
\]

Then, \(g_0, g_1, \ldots, g_h \) are approximate roots of \(f(=g_{h+1}) \), and \(f \) is the defining polynomial, monic in \(y \), of a curve with one place at infinity of the \(\delta \)-sequence \(\{\delta_0, \delta_1, \ldots, \delta_h\} \).

2. The defining polynomial \(f \), monic in \(y \), of a curve with one place at infinity of the \(\delta \)-sequence \(\{\delta_0, \delta_1, \ldots, \delta_h\} \) is obtained by the procedure of (1), and the values of parameters \(\{a_{\bar{\alpha}_0\bar{\alpha}_1\cdots\bar{\alpha}_{i-1}}\}_{1 \leq i \leq h} \) and \(\{c_{a_0a_1\cdots a_i}\}_{0 \leq i \leq h} \) are uniquely determined for \(f \).
4 Abhyankar's Question

DEFINITION 5 (planar semigroup) Let \(\{\delta_0, \delta_1, \ldots, \delta_h\} (h \geq 1) \) be a sequence of natural numbers satisfying Abhyankar-Moh's condition. A semigroup generated by \(\{\delta_0, \delta_1, \ldots, \delta_h\} \) is said to be a planar semigroup.

DEFINITION 6 (polynomial curve) Let \(C \) be an algebraic curve defined by \(f(x, y) = 0 \), where \(f(x, y) \) is an irreducible polynomial in \(\mathbb{C}[x, y] \). We call \(C \) a polynomial curve, if \(C \) has a parametrisation \(x = x(t), y = y(t) \), where \(x(t) \) and \(y(t) \) are polynomials in \(\mathbb{C}[t] \).

Abhyankar's Question: Let \(\Omega \) be a planar semigroup. Is there a polynomial curve with \(\delta \)-sequence generating \(\Omega \) ?

Moh [6] showed that there is no polynomial curve with \(\delta \)-sequence \(\{6, 8, 3\} \). But there is a polynomial curve \((x, y) = (t^3, t^8)\) with \(\delta \)-sequence \(\{3, 8\} \) which generates the same semigroup as above. Sathaye–Stenerson [9] proved that the semigroup generated by \(\{6, 22, 17\} \) has no other \(\delta \)-sequence generating the same semigroup, and proposed the following conjecture for this question.

Sathaye–Stenerson's Conjecture: There is no polynomial curve having the \(\delta \)-sequence \(\{6, 22, 17\} \).

By Theorem 3, the defining polynomial of the curve with one place at infinity of the \(\delta \)-sequence \(\{6, 22, 17\} \) as follows:
\[
f = (g_2^2 + a_{2,1}x^2g_1) + c_{5,0,0}x^5 + c_{4,0,0}x^4 + c_{3,0,0}x^3 + c_{2,0,0}x^2 \\
+ c_{1,1,0}xg_1 + c_{1,0,0}x + c_{0,1,0}g_1 + c_{0,0,0}
\]
where
\[
g_1 = y + c_3x^3 + c_2x^2 + c_1x + c_0, \\
g_2 = (g_1^3 + a_{11}x^{11}) + c_{10,0}x^{10} + c_{9,0}x^9 + c_{8,0}x^8 + (c_{7,1}g_1 + c_{7,0})x^7 \\
+ (c_{6,1}g_1 + c_{6,0})x^6 + (c_{5,1}g_1 + c_{5,0})x^5 + (c_{4,1}g_1 + c_{4,0})x^4 \\
+ (c_{3,1}g_1 + c_{3,0})x^3 + (c_{2,1}g_1 + c_{2,0})x^2 + (c_{1,1}g_1 + c_{1,0})x + c_{0,1}g_1 + c_{0,0}.
\]

Since \(C \) has one place at infinity and genus zero if and only if \(C \) has polynomial parametrization (Abhyankar), \(\{6, 22, 17\} \) is a counter example if it can be shown that the above type curve does not include a polynomial curve.
5 Approach by using a computer algebra system

We assume that \(C \) is a polynomial curve and has the \(\delta \)-sequence \(\{6, 22, 17\} \). Therefore \(C \) has the following polynomial parametrization:

\[
\begin{align*}
 x &= t^6 + a_1 t^5 + a_2 t^4 + a_3 t^3 + a_4 t^2 + a_5 t + a_6 \\
 y &= t^{22} + b_1 t^{21} + b_2 t^{20} + b_3 t^{19} + \cdots + b_{21} t + b_{22}
\end{align*}
\]

It follows that \(\deg g_2(x(t), y(t)) = 17 \) from the form of \(f \) and \(g_2 \) in the previous section. We can get the polynomial system \(I \) with 11 variables and 17 polynomials after eliminating variables from the coefficients of all terms of \(t \)-degree more than 18 in \(g_2(x(t), y(t)) \).

\(\{6, 22, 17\} \) is a counter example of Abhyankar’s question if \(I \) does not have a root. For such a huge polynomial system it is suitable to compute the Gröbner basis of the ideal. However, it was impossible to compute the Gröbner basis of \(I \) even if using a computer with 8GB memory.

We classified \(\delta \)-sequences with genus \(\leq 50 \) into groups which generate the same semigroup. Furthermore, we listed \(\delta \)-sequences with the following three properties: (i) There is no other \(\delta \)-sequence which generates the same semigroup. (ii) The number of generators is 3. (iii) \(k \)-number \(\geq -1 \). Then, we obtained \(\{6, 15, 4\}, \{4, 14, 9\}, \{6, 15, 7\}, \{6, 21, 4\}, \cdots \). The Gröbner basis computations for the polynomial systems corresponding to these \(\delta \)-sequences showed that \(\{6, 21, 4\} \) was a counter example of Abhyankar’s question.

The defining polynomial of the curve with one place at infinity of the \(\delta \)-sequence \(\{6, 21, 4\} \) as follows:

\[
f = g_2^3 + a_{2,0}x^2 + c_{1,0,1}xg_2 + c_{1,0,0}x + c_{0,0,1}g_2 + c_{0,0,0}
\]

where

\[
\begin{align*}
 g_2 &= g_1^2 + a_7 x^7 + c_{6,0} x^6 + c_{5,0} x^5 + c_{4,0} x^4 + c_{3,0} x^3 \\
 &\quad + c_{2,0} x^2 + c_{1,0} x + c_{0,0} \\
 g_1 &= y + c_3 x^3 + c_2 x^2 + c_1 x + c_0
\end{align*}
\]

Let the following be the polynomial parametrization of the polynomial curve with \(\delta \)-sequence \(\{6, 21, 4\} \):

\[
\begin{align*}
 x &= t^6 + a_1 t^5 + a_2 t^4 + a_3 t^3 + a_4 t^2 + a_5 t + a_6 \\
 y &= t^{21} + b_1 t^{20} + b_2 t^{19} + b_3 t^{18} + \cdots + b_{20} t + b_{21}
\end{align*}
\]
By the same operation as the case of \{6, 22, 17\} we can get the polynomial system J with 7 variables $\{a_2, a_3, a_4, a_5, a_6, b_{12}, b_{18}\}$ and 13 polynomials from $\deg_t g_2(x(t), y(t)) = 4$.

We used the total degree reverse lexicographic ordering (DRL) with $a_2 > a_3 > a_4 > a_5 > a_6 > b_{12} > b_{18}$ to the Gröbner basis computation. CPU time for the computation is 3 hours 40 minutes and the required memory is 850MB. The computer is a PC AthlonMP 2200+ with 4GB memory. The computer algebra system is Risa/Asir [7] on FreeBSD 4.7.

The obtained Gröbner basis G of J was not \{1\}. However, the normal form of the coefficient p of the term with t-degree $= 4$ in $g_2(x(t), y(t))$ with respect to G is 0. This shows that $p \in J$. Thus, we get $\deg_t g_2(x(t), y(t)) < 4$. Since this is contradictory for $\deg_t g_2(x(t), y(t)) = 4$, there is no polynomial curve with δ-sequence \{6, 21, 4\}.

References

