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ABSTRACT

In this paper, generalize the absolute differential calculus due to M. René Lagrange
and apply it to projective differential geometry of hypersurfaces in the four dimensional
space.

Non-developable surfaces in the three dimensional space can be classified projectively
as follows.

{a) Ruled surfaces.
1 Surfaces of the second degree for which Darboux curves are indeterminate.
2 Ruled surfaces having only one family of generating lmes upon which there is
only one family of Darboux curves.
(b} Curved surfaces upon which there ate three distinct familes Darboux curves.

From a similar point of view I classify hypersurfaces in the four dimensional space

into eleven classes and investigate the properties of lhe hypersurfaces in each class,

CHAPTER |

FUNDAMENTAL QUANTITIES

1 Consider a hypersurface in a 2 +1 dimensional space defined by the
equations

1 Ann. Toulouse. 14, 1 (1922).
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where the x’s are analytic functions of #/s subject to the condition that
the rank of the matrix

0x, ox,
(]
Xy —— .
O, Ou,,
2 ()xﬂ +1 o—xn+ 1
A+l T T ceavssens
Oy 0,
is 722 + 1.
Put
ox, ox, 0x,
X } 1]
0 T T senivases
Oz Oty 022,025
(1) Zi; = | e
dxn+l oxn+l ()-xnﬂ
Kl —22L —_—
Oy Ou, 02015
r

(2> ll - l }Zif l-
Hereafter, we shall denote such a determinant as that on the right
side of (1) by

x Ox ox 0*x
0w, Ou,  Ou;0uy;
Tet XY (=0, 1ueeunn. , #+1) be thz cofactors of ths elements in

the last column in the determinant /%;,;. Then they are the hyperplane
coordinates of the hyperplane tangent to the hypersurface at the point x
and we have

(xX,) = ng:),"*" ............... +xn+l X’,‘+[:O,

0x /> —
( 0u; &) =o

0* ]
<_JE__ X’) = luy

02,02,

and accordingly,

(x 0x’ \) =o,
024,
_(O_x t)X’) _ _ ( ox _031) _ (x *xX’ ):}Zir'-
Ou;  Ou, O,  Ou; 02,021 ’
By ths assumption at least one of X}/, ......... , X',1 does not vanish

identically. Assume X,’ % o. Then we have from the above equations
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= (- I)”on X%

N 0w ||y oxe ox/
Oy Ot Oz, O,

KXu+t O . 0% X’ HOX,"” _________ 0X' it
7 d%[ aun 7 0ul 0un

255

But the function x, does not vanish identically, unless the given

hypersurface is a hyperplane.

Therefore, we know that the necessary and sufficient condition that
the manifoldness of the tangent hyperplanes of the hypersurface may be

72 is that /% = o.

we shall assume that the manifoldness of the tangent hyperplanes of
the given hypersurface is # and that % is different from zero in the domain

of 2/s which we consider.

2 Put
X:.' by
X:'"‘ 1 Hz:f —_ -;
Bt itz
Then
- 2
A= IH]] = il
(0 1) = (2% x)= (2% )=,
Ozt Ou;
0'x ) ( Ox ()X) ( 0x OX) ( °X
Xl=— = — =(x
W (()u,-du,- Ou; Ou, O, Ou; 024,00

-0

In virtue of the equations (3), the ratios of the cofactors of the ele-

ments of the last column in the determinant

X_OX 0X *X
—Oul ......... e vy v
are equal to xy: X, - ..ol : Xppte
But we have
’ 0x, 0x; v 0X,
1 T secinieenens —— X, ——
] aul ()uu ()Z{l
‘ xn 1 ()x”H ......... ()x’Hl Xn+1 ()X"H
O, 014, 02ty
=(—1"""x X, H

...............
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Therefore, the said cofactors are equal to
(_I>”+1x,' 1/F (f=0, Leee...ue. » 241)

respectively, and accordingly

(s) 1 0X 0X 00X
V' H 0, T O,y Ou0u
02X )
—(— ) H —(— ”+1H.' .
(=1) (x 02,0, (=1 i
Put
0x Oox
6) o= —a | x X
€ e=T7 { o o, '
_);;: 7h,, du, d,
ox ox
j= 3 d{ L 492 d }
@) ¢ 2 Vv H ¥ 0wy 20, |
1 ox ox
—_ |y d’x
1/H dul dZ/n ]

_—;,p.§=l K’;,;Lv du)‘ dup. duv’ ([C'ﬂ :[(T/U:Kﬂ'/)

Hereafter, we shall omit the symbol of the summatitn 2 and denote
the indices with respesct to which the summation shall be made from 1 to
2 by greek letters a, 3,7, 4, p, v, 0, 7, p, etc.

TFrom the equations

(dx X)=—(dxr dX)=(xd'X)=¢
we have

(@Px X) + (dx dX)

=—{dx dX) — (dx d*X)

=dx &'X)+ x I’X)=dyg
and accordingly

(dx dX) = ¢ — 1dg,

(dx dX) = — ¢ — L do,

(% d°X) = ¢ + 3 de.

From the last equation we have

3 . 0X 0X .
s V»sz{ LI 2 S 9 px }
(8) 5 v H | 0z, 0u,, |
S S 2 S 0X px
Vv H 0, 2,
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CHAPTER 1l

COVARIANT DERIVATIVES AND CONTRAVARIANT DERIVATIVES,
3 Let
dw;=a, duy+...... +a,du, (i=1,....., 1)

be 7 linearly independent Pfaffian expressions and denote by &} the
cofactor of @} in the determinant |a%| divided by the value of this
determinant, Then we have

(I ) (l: é(: = (Z? b;': 51']', (sz'z' =1, El.j: o, if Z‘:!:]‘)
(2)  do;=0}dw,

If fle,...... , 2, be a function of 2/s, we have

2f =Y, = a"/ B die, .

Ouy, ° o,
If we put
B o= gl
we have
af = 60;; dzy,

of _ 8f o
(4) 0w, O, a

Any Pfaffian expression may be put in the form

A= dw +............ + A, dw,. ;
We shall also denote the coefficient 4; of dw; in this expression by Gf .
Then we have
79 =22 g,
O,

If we put
(5) gij= I, 0,0,
i 7 4
©) kip=K,, 0,8 8,
we have

=28, duy dw,,

p=hyy, dw, duw, dw,,
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&= |gis| = Y,
where
b= 8],
and accordingly
(7) V' e=w'H;

if we choose the sign of 1/ ¢ properly.

4 We have
(0, d) w;=0dw;— dow;
Oai aai
:( 2~ )(1710 O,
O, O,
‘)“i ‘)”i )
= — 2 dw, dw .
( 0”1 ()74, ) G T U)- B
If we put
- d P2 P 7
8) ay; =5 bf ( a;  Oa )
O, Oz
we have

)
@, d)w;=a,,; dw, 0w,

In virtue of (1) and (3), @ may be reduced to the form

L0 08 obl
A =a —_— .
) an ° ( dw,  Ow, )

From (g) we have
(10) azita=o.

Let us put
[i J] :L( ogfk + agik _ 0g1'f
4 2 \ dw; dw,  Ow,

— & YGn T Gn T S aiﬂ)

From, (10) and (11) we have
(12) [zk/]“[j}:] =—&n %

i k) _(j /e]: Og:;

o) [F)-[f)=2

Denote by g7/ the cofactor of g; ; in the determinant
and put

(19 {/}=¢° ["6-’].

Then we have

&iy| divided

by £
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(15) [ij]=ggac {Zaj},
(16) {l /]}_{/ll}: —a;

0logV g _foi
(17) dw; _{ ° }
(18) _agi:-—gio {G k}.—g]o-{c /e}
070, ‘ J Z
5 Now we shall consider the transformation of the Pfaffian expressions
to which we refer.
Tet
dw/=pl dw +...... +4dw, (=1, )

be 7 linearly independent Pfaffian expressions and denote by ¢ the
cofactor of #7 in the determinant |g¢%| divided by the value of this
determinant, Then we have

cor = O o T
dw;= q9; dw/,

oF _ of

Ow;  Ow,

&1/ 95 97,
o
(21) #ii=kg, 7 9. Tpr

and accordingly

af _of g,

(22) E ey Y

(23) £..=85: 17 B
(29) &7=¢" £ 8]

(25) &™=¢"" 97 g}
From the equation

1
5(9} dw' )_> —d (g‘; 0w’ u)
< dg; gt

- 4o ) dw', 0w
’drcr’u o', 7 %y X t

)
@, d)ee; =0,y diw, 0w =ay; g, % duw', 0w,

1

we have
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’ v_ J ok
+ajl’v 7= Cge; I QT-

ogf ogk
6 7 7
(26) o',  Ow/

In virtue of (26), we have

. .. o
iV _for]l 2 5 & r 9%
[k] _[ 0 ] 7o 05 %o+ £op 7 ow,
and accordingly

o 7 ;i i 7 14 y

(27) #«j/ e d=174 4
From (27) we have

(28) 9% {"/"},/ﬁ ﬁ".:{i ]} 2.

ow, i 7770 S D

6 Consider a m-ple system of quantities (functions, Pfaffian expressions
etc.)

We shall call the expressions

X rg O Xrn e
71

070/; 07‘3’/1 r T e Fom1 Tlg 41 P
and
— 00X
ad X;[ , = Pleceens Pog ll’TU)
...... e Orw,
7, A
— 2 ¢ g ).
—d‘X;q ...... Vot { r }Xrl ...... re—1 TVo41rreee Ve d’”)‘
the covariant partial derivative and the differential of X, . respectively.
Next, let us put
aX’zl ------ ;'m__ OX;'l ------ ] + {z;. 2} X;’ ...... 7 l'”0'+l ...... T
= .
0w, 0w,
and call the expressions
d Xrl ...... Y (] d )(“ ...... Y
O, 07v;,
and
- : oX,
0 Xn ...... ro =& Ploeesns Ty d’[ﬁp — Pereens t dmv
dwey, o7,
: TV duw
=dX, ot s ar e @0,
Fleseans ? {¢G} Fleassos 7‘0__1 1r6+[
the contravariant partial derivative and the differential of X, .

respectively.
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Finally, we shall call the expression

erl ...... Pyp Sevess }P:erl ...... Fpg Seevens 5p
7, A ,
o o0,
{ . } Ploernes To 1t Togrrereer Vg Sevsrnns S dL().
z A
-+ { S }X;l ...... P118 Slevsose Sg—1 T Sagyrreee 5p dw)
the mixed differential of X, , .. . 5

Then we have

7‘{.71']': O,
dg =0,

“0{da;) — d (Bre5)=o,

) (d—f )_ 0 ( 0F \_
0w, \ Ow; Ow; \ dw, /
For covariant differentials the following formulas hold: —

[o

— ’e
Zn ...... 4 —Xrl ...... rm+ }7'1 ...... Tu’
then
d‘Zn ...... f,,,: )(7‘1 ...... r,,,+dyrl ...... 7,
2* If
7y g1z Tleceesss Sp = ‘X:‘l ...... Tsn Sleenass 587
then
dZI‘l ...... Y3 51 .J} = KY] ...... J‘}s d‘X;‘l ...... T
Xf'[ ...... " d Yq ..... Sp°
o
3 If
Z;l ...... Papg Sleevees };:X;‘l ...... Psg Cloavens (74 YJ ....... §p Cleeres. Gy’
then
dZ” ...... Pasg Slreenes .!‘}5:1/:\'1 ...... flsc ...... Oy d‘X;I ..... Vapg Gresenn cp
+Xr ...... Pyp Oeevenn Gy d Y:‘ ...... S5 Govnens G

Similar formulas also hold for covariant and mixed differe tials. As a
special case of 3° if

we have
dZ---Yal qul c,ﬁ(-‘FX,,1 d7Y:
If, by the transformation of Pfaffian expressions to which we refer,

a m-uple system of quantities X, . is transformed to X' " - which
oo P ,
is connected to the original system by
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— 71 Vi
Xrl ...... rm—"Xcl. ..... [ 3" 9oy """70,,,

. . . 7 1saeenr? .
we call it covariant and if a system X! " is transformed to

X,f‘[ ...... Vm:Xd'l ...... Gy 471 j’"m

CINN 73

we call it contravariant.

The system of covariant partial derivatives of elements of a m-uple
covariant system is a (724 1)-uple covariant one and that of covariant
differentials is a covariant m-uple one., The same thing can be said for
contravariant partial derivatives and differentials of elements of con-
travariant system.

7 Now we shall introduce Rismann’s symbol of four indices.

From the equatinns

R > 7 A .-
(I"Ar[ ...... 7 ({“7‘1 ...... [ { ]T j\ Fdeveens Tt (/“')
7 2 7
{ T } \71 ...... Pu—l T ({‘f)’
~ 3 - 7. A v -
0 d‘\m ...... 7',,,:0 (dArl ...... Tt { GT }"\u ...... Pa—1T Todgqeeee r,,,d‘(}.)
ENTAV I
1 (:3 J d“(;‘[ ...... ) Todexr e P O‘cp,
71/ A A+
+ { ‘ﬁ/}omu( {‘@T } Xty i,
A
7o A
+{ T } ‘Yfz ------ Tl % ({‘('7)
7',,, L} o 7 A .
+ { ‘g/}oﬂ"y_({ lT } XH"J """ Pt B d{f')‘
A v
+ {ﬁz- } Ar, ...... o1 (17(')_)
we have
(33) (9, d) X', ...... 7‘”,:(6’ d) )‘yrl ...... P
_{rc 7, 2/":‘ ‘le ...... Too1T Todpeeee Py dm} Bmp.'

where
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. 0 5 0 3 7 . /
(34) {eh imy= afe',,,‘{zk }— 0w, {Z lcm} * {Z() } {le} - {7 pm} {P/c }

tTa {Z./j}'

Similarly we have
(35) 0, @ Xy . ;=0 d) X

The symbol {7 %, / 7} may be written
. ERNIOY @ m
6 £ R mnp= ;
(36) {7 }0‘0’{k} {k}
where @) denotes that the absolute derivation is not effected with respect
to the index 7.
In virtue of (15), (29) and the third formula for the covariant
differential, we have

PReAR) il : z1
o7 [j J— Oz, (gjg { o }) O, {

m

Ow,

Therefore, if we put

(37) (@ i m=g; {7 o, L m},
we have

(38) (/7 m):_L[@ Z]__ 0 [@ 'm].

w, & J ()‘;'(’, J
From (37) we have
{7 k0 m}:gka (z &, L)
From (38) we have

m

e ([’ ”’] [" ZH]' T Do)
T g T a 7
In virtue of (13) and (39), we have
(1) @ s im) kG b=t (i) O (s )y, Ot

0w, \ €, 0w, \ 7o dre,
=o.

"t

From (38) we have

(av) @/ Loy +(dj, m )=
Supposing that 72> 2, denote by d, ¢ and 4 the differentiations along
three different parameter curves, Then we have
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(4, 0) dw,= 0, d) dw,=(d, 4)0w,=o,

and accordingly
(A_‘éjla’tv'z\/l k, p v} dw, dw, dw,
@, &) dwy={v k, A p} du, ow, dw,
(@, ) dwy=1 {p by v A} dwy 0 w0, duw,

But we have

(4, 0) dw,+ (9, ) dy+(d, )6 wj
=4 [0 (dro;) —d Pro] + 8 (d(de}) = Hdey)
+d (d(0w;) =3 (dreg) =o.
Therefore, we have
{7k, Ly {mbk, jl}y+{lk, my}=
and accordingly
(42) (@7, Loy + (@, 7O+ (L mj)=o.
From (40), (31) and {42) we have
43) Um, i)=(07, Im).

CHAPTER Il

FUNDAMENTAL FQUATIONS.
DEFINITION OF DARBOUX CURVES.
8 Tet A be a point on the hypersurface and A, ......... , A, A, be
the points —_
()A : 0/1 I go': ()Ao'_

.........

- ’ ’
ow Ow, n O,

respectively.! Then we have

(2) | A A ......... A, Ay | =V

The equation (2) shows that the points A, ......... , .11 are linearly
independent. Therefore, we may write

dAd=dw, A +.ecvviiiiin. + dw, A,
7[41- =dwn A+ dwy A+ ......... +diwiy A, + 205000 Ayt

(3) l =t )
dz;’”““:dw11+1?(3A+d‘-Un+l’1 A+ ------ +d7f'n+lm 14n+a’,ﬂ'n+lm+l An+l:

1 We shall denote by capital letters A, B, C,...... not only the points but their coordinates,
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where dw;; are Pfaffian expressions,

From (1) and (3) we have
(4) dd; = dwn d +(dwy + {{\"}dw,) Ay +dwipis Ay,
( 5) dwi,a=g dw,.

From the equation

dVg = Vgdog Ve = Vg {’}du,

we have
dwi+..oonenet + AW+ AWy14e1=0
On the other hand, we have

0
— G 6r ) 1
e e (A A
7ldA,,+1= ............ .4‘/1’”+1 (dw +du7”+1 ”+1),
where terms not written are linearly dependent on A4,...... , A,

Therefore, we have
dwn+1, n+1—0O

From the equation

54. . 0w
04, _ 0% A+ ~ 0. Ay gy A

Oow,; OJw; Wy
we have
ow
y]
Fadd (36 =0, (#=0, Iju.. , #)
w‘!

9 The necessary and sufficient condition that the system of total
differential equations (3) may bz completely integrable is that the equations
@, d)d=o,
©@, d)A;+ (7 7, 2 p) dw, 0w, A,=o,
(F=T,eeeeee , 1)
@, d)A,n=0
liold as the consequence of (3).
This condition is equivalent to
(8) dw, dw,,—0w, dw, =0, (F=0sucnsy #)
(9) duw;

o 8o 6wp— 0w o, dwy,=o0,
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(10) 0 (dw;, )——7(570{ )+ dwo 0w, — 0wy dw,
+ ll,wi)‘ BZU)_/_ 67(}1')‘ dﬂ’/)j
F &1 01 ;= 011 01 j+ {27, A p} dey B, =o,

(11) 8 (devn) — d (Beow) + dawy, Outy g — O,y divy,
+ dWin11 OWss1 v = 0%y y01 ATWys1 0 =0,
(=1Iuuen. , 1)

(12) iwn+w Loy, izf”_aw”'*‘ 16 &0, @y =0,
(13) 0 (dwWy17)— @ (OtWy11i) + AWy 11 o 020, — 0%y 11 o 70y

+ &%,y 415, 010y~ 01 et 13 B8 =0,
(14) 0 (@1 0)—dOwyir o) +dw, 1y 0%y — 0%, o 15, datyy=0.

From (8) we have

(15) %—%20. (=0, 1,...... s 1)

dw , ow;
Irom (g) we have
oz, Oz
16) __° —___'c.g =0. (b fr =Lyeuiariy 2
( dwj e 74 aZ(,'l -7} ( 7 )

From (12) we have

dw Ow

nt+1o ni10 o
(I 7) &6l ggj'—o'
Ow ow,

From (3} we have
d*A=ddw, 4,)
=d (dw;) A, +dw, d A,
=dw, dw,, A+(d(d wy) +dw, dwy) Ayt ¢ Ay,

@) A=, + (iawdw)_ datr, £, a’wv)A,,“,
2

where terms not written are linearly dependent on A,...... y L.
From (@) we have
(b) ¢= _dw). dw).c &ov dwv
= kyy dwy, dw, duw,
From (15), (16) and (&) we have

O
8) kij= ——Lon
(18) iy ora,
(I ) ()wim — _/ijc go‘m

0 w0 g
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From (7) and (19) we have
(20) g°° kﬂ;:O, ( =Tyuern. . )
and accordingly

okc-ci

(21) &7 =0, {H f=Teeiy 1)
ow, '

10 From (10) and (19) we have

-Fki o1 ak'
To;z— aw: +&° kiot Rjem— Liom % jzg)
aw,() 6wi0 i
d o, & sn ()'ZU,,, g s
) Jw .
i T”Jlgajga —éi;';,l—cgcj gim+ (0 7, Em)=o0,

nt

and accordingly

(C) 2 ( aki‘fm - 0kiﬂ) + 070{0 £ Jm + 0ZUJO g 27 au’iﬂ &1 _%g il

dwz 070,,, (hUe o au’m 7 d'wm
aLU,‘ ()ZU +1
6'20”4_1 c aZt’}7¢+I G
J— . O’I.” —_——— 'y = O’
Ow, $ojdim Oy £o &m
(“’> 2 go"r ('éz'cl '{)jwz _kiam /‘_/-:1) (Z]’ l ”Z)
. 0700 o, — Oow; ()d/,o - Owy, 2
()ZU,, St aZU[ ine ddl O'ZUm 7
0z, ow
+10 7t1o
+ o g ey
awm go-_/ & ()ZU,,, &oi 87
ow,, Ow
+1o n416 —
im +— e O
0711 go‘_/ g 67):'1 go' g]ﬁ
From (¢) we have
Ok "ok
(22) g)rg;m( hpm ol )___ 0, (Fs/xm)
Ow, ow,,,
Ow - 0k Ok
(23) 60 go‘s‘_ 00,415 — zgug‘”( e el ), (s 2 m)
dwm dﬂ”m dwl du’”‘
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(2 4) ()wo'o om__ ()wco ac/_ ()w,m 7 ()7/1',,“ /
k - S5 -
dw,, o7, Ow,, Oy
A um 0é‘).y.w 0k 2l
=28 & —_— . ({Fm)
dw/ az(’}m

From (&) we have

. % 2 y
(25) r4 g g(“ gm (/f).c/ kp.-cm —’é).owz /”)p.'c/) +2g 4 g!” (l M / 7”):0'

(rsdi3zw)

Ow, Oz W

(26) ()wco gcs+ :;};H £ =287 g% gﬂ ('%‘)‘cm ’ép-:'_/”’).c/kp.-:m)
+28" g% A, m 1),
(sklFkm)

dwco e 0w60 o 0#0 aw
2 + + Cntl + n+ll
(2) Ow, o ow,, £ ow,, ow,

W
=28 gpm gGT (/“).o-m }""p:: —'é).c']ep.wz)

+267 g*" (2 nomil). (Em)
11 TFor a point 47 on the hypersurface in the vicinity of 4, we have

M=A+dA+d*A+ %—d*A-i— ......
2
‘—ZA[I -I—%dwl Ayt e ]
p—
+4, [d w, + —;d (@ wg) +dw, dw,, +...... ]
+A,,+1[i¢+ L do—g+t...... ]
2 4
let &,...... , §,.1 be projective coordinates referred to the coordinate
frame of reference whose vertices and unit point are
A, A,...... s Ayir, A+A+...... + Ay
respectively and put
2= %' (=1 s sal)e
1}
Then, we have for then point M
(z,— = dw;+ -~ d(dw;) + La’w} day;+......
2 2

(f=Ts0erees » 1)

(28)

(Z,M = L¢+Ld¢—-l—¢+ ......
2 4 6



Absohdie Differentral Calerndus ele. 269

In virtue of (28), 2,41 can be expanded in a power series of z,...... ,
2, which is convergent as long as the absolute values of z,...... , 2, are
sufficiently small and of which the terms to the third degree inclusive
are

I I
.,Z,gm 2, 2.+ 4'75019 %5 B¢ Zpe

Therefore, the hypersurface of the second degree  which has the
contact of the second order with the given hypersurface at 4 is of the
form

S S o 2
Zuel = —"“go-«: Zo- ST Ly Zo- Zn+1+c Zpal e
2
Tor a point on Q in the vicinity of .4, we have
_ I I
Zarl = 8 G Gt G 8o %5 % By T
2 2

The projection from .A4,.; on the tangent hyperplane at .4 of the

variety at which Q intersects the given hypersurface is of the form
(Focg —Cp 8ox) 25 2 7 oenn, =o.

Therefore, the hypersurface of the second degree which has the
contact of the second order with the given hypersurface at A4 and
intersects the given hypersurface at the variety such that the cone of its
tangents at . is apolar' to the cone of the asymptotic tangents at A4 is

of the form

_ ! 2
Spt1 — ":*60‘51 Zg 21+5 Znils
2

We shall call this hypersurface of the second degree the sewu-
canonzcal osculaling quadric at A of the given hypersurface. '

The cone of the tangents of the variety at which the given
hypersurface intersects the semi-canonical osculating quadric is

kmp 2y Zg 2,=O

We shall call these tangents Darboux langenls and the curve whose
tangent at any point on it is ¢ Darboux tangent, a Darboux curve
12 Up to here, we have considered only point coordinates in this chapter.

But the same can be said for hyperplane coordinates.

Denote by @, not only the tangent hyperplane at' 4, but its’

coordinates, and by a,...... s @,, @1 the hyperplanes
Oa Oa (—I)”H 6T aac
S ) g
w, Oz, n 0w,
respectively.

1 Grace and Youug, Algebra of invariants. p. 303.
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Then, if we write
da=dw, a1+ .coevvinn. +dw, a,,
;Z;‘_Z'z:dgzﬂa'Fd'Qzl al+ ------ +d'gin an_{—d‘gz'rhkl Qpily

(=1Iyeuens , 72)
Aoy =d2y10 at...... + @Dyt an+dgn+l,n+l Qpils
we have, in virtue of (5) and (8) in 1, chap. I,

(30)

la a...... @y @unl=1 g,

dgn+l, 1= 0,

dQ; yr=(—1)""" g, duw,,
m_ gom=—

(31)
02 g 0%;,,,
ow , o 0w,

\ (6 frm=1,...... ) )

Irom (3) and (30) we have
(dA; a)=g;; dwy (A a),
(A da)y=(—17"" g;5 dwy (A a,.0).
On the other hand, we have from (4) in 1, chap. I
(dA; a)=—(4; a))=— (4, a;)=(4 da;)=g, dw,.
Thenefore, we have
(32) (Apsr @)=(—17""" (4 a,u)=1.
From (6), (31) and (32) we have
(33) (dA a,)=(da A,.;)=o.
13 Referring to the coordinate frame of reference whose vertices and
unit point are
A, A,...... y Aprr, A+ A+ ..., +.A, 0

respectively, the equation of the semi-canonical osculating quadric Q is
I )
& E-nﬂ:ngf 50- E.:‘i‘ ¢y

and accordingly, the polar of the point (4, 4,...... , 4, o) with respect to
Q is
b En=g, A€,
This hyperplane may be expressed
hath eyt oty a,
for the necessary and sufficient condition that the point
& A+E A+...... +&,.1 Ay
may lie on the hyperplane .
Ao ati a+...... +4 a,
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is that
& En-l-l:za ET Lo

We shall speak of the point 4; A, and the hyperplane 4; @, as the
reciprocals of each other.

Two tangents at a point .4 on the hypersurface are said to be
conjugate to each other, if they are conjugate with respect to the cone
of the asymptotic tangents at A, letZand ¢’ be two tangents at .4 and
denote by

AWeeennnnnnn. ey AW,
and

the values of the referred Pfaffian expressions along Z and £’ respectively.
Then the necessary and sufficient condition that / and #’ may be con-
jugate to each other is that
Lo dwg 0w =o0.
Therefore, we know that the locus of the tangents conjugate to 7 is
the (z—1)-flat at which the hyperplanes a and da intersect. We shall
say this (z—1)-flat is conjugate to the tangent Z

CHAPTER V.

CLASSIFICATION OF HYPERSURFACES,

14 Non-developable surfaces in the three dimensional space are classified
projectively in two classes: 1° ruled surfaces, 2° curved surfaces. It is
well known that for surfaces of the second degree which are ruled surfaces
having two families of generating lines, Darboux curves are indeterminate,
i. e, all £;;,, = 0; in ruled surfaces having only one family of generating
lines, Darboux curves always coincide with the generating lines and upon
a curved surface there are three distinct families of Darboux curves.
If all %2;; = o for a hypersurface in a space of any dimension, it is
a quadric.' Excluding this case, the following nine cases can occur for
hypersurfaces in the four dimensional space.
I. The case where a cone of Darboux tangents (D) at any point on
the hypersurface degenerates into three coincident planes.
II. The case where (D) degenerates into two coincident planes and
another plane.
III. The case where (D) degenerates into three distinct coaxial planes.

1 I Kanitani. These memoirs, 8, 378. (1925).
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TV. The case where (D) degenerates into three distinet non-coaxial
planes.
V. The case where (D) degenerates into a proper cone of the second
degree /{ and a plane Z tangent to X .
VI. The case where (D) degenerates into a proper cone of the second
degree / and a plane Z which intersects A at two distinct lines.
VII. The case where (D) is cuspidal.
VIII. The case where (D) is nodal.
IX. The case where (D) is anautotomic,

The cone (D) and that of the asymptotic tangents (H) at any point
on the hypersurface intersects at six tangents. Choose the fundamental
Pfaffian expressions so that the plane dw,=o is a tangent plane of (H)
along one of the said six tangents, the plane dw,=o is another  tangent
planeof (H) and the plane dws;=o0 passes through the lines of contact of-
these tangent planes. Then ¢ may be reduced to the form

2 dw, dw,+ dw}
and we have
, k=0,
ny ]
2kt him=o. (=1, 2, 3).

On (H) the ratios of the fundamental Pfaffian cxpressions may be

expressed by a parameter 4 in the form
dewy 2 dw,: dw,—= — 2211 1 — 24

In virtue of (1), the values of 1 for the said six tangeats are the

roots of the equation’
8k A+ 24kuy X 30k A+ 20ksyy B — 15k £+ 6kud =0,
the root A=o0 corresponding to the tangent /.

By examining the order of the multiplicity of the root 4=o0, we can
easily prove the following theorems.

Theorem 1. Zf (D) kas the contact of ihe fifth order with (H), (D)
degenerales nlo ihree corncident planes.

Theorem II. 2/ (D) kas the contacé of the fourlh ovder with (1),
(D) degenerales nto lwo corncedeni planes and a plane which passes
through the line of contact.

Theorem III.  If (D) kas the contact of the third order wilh (H),
(D) degenerates tnlo a profer cone of the second degree K and a plane
which louches K along the line of conlact.

Theorem IV. If (D) has the conlact of the second order with (H),
(D) zs nodal and along the nodal generating line one of lhe fangent
planes of (D) cotncedes with thal of (H).
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J

We shall call the case where (D) is nodal and the nodal generating
line is an asymptotic tangent, case VIII, and the case where the nodal
generating line is not asymptotic, case VIIIL,

Theorem V. If (D) las the contact of the second order with (H)
along two tangents, (D) degenerales inlo a plane through the lines of
contact and a proper cone of the second degree which fouches (H) aiong
lhe lrnes of conlact.

The theorems reciprocal to these also hold.

Theorem VI. 7In case I, the three cotncident planes touch (H).

In fact, in this case, ¢ may be reduced to the form

r 3
1%111 dtﬂl

so that we have the equation

1
g =0,

which shows that the plane Zw,=o is tangent to (H).
In a similar way, we can prove the following theorems:—
Theorem VII. 7z case 11, (H) fouches the two cotnecident planes
along the line of tnlerscclion of the planes lo which (D) degenerales.
Theorem VI, 7z case V, of [ be lhe langent along which the
plane 1. louches the cone K, then (B) louches K and 1. along 1.
Theorem IX. 7z case VI, along the double generaling Ilne, one
of the tangent planes of (D) corncides with that of (H).
Theorem X. [z case VI, lel ¢, and 1, be two langents along which
1. mtersects K. Then (H) louches K along I, and 1,
15 Now consider case 1.
Refer to the non-homogeneous coordinates () defined by

X

V= (i=1, 2, 3, 4).

X

Then, since (1, 0, 0, 0, 0) is a system of the solutions of the system

of the total differential equations (3) in 8 chap. III, we have
(2) dwp=o0, (=1,2 3 4)

Next choose the fundamental Pfaffian expressions so that dai=o
represents the three coincident planes to which (D) degenerates, the plane
dw,=o a tangent plane of (H) and the plane dw,=o passes through the
lines of contact of dw,=o0 and dw,=o with (H). Then ¢ and ¢ may be
reduced to the forms

¢ =dw,
=2 dw, dw,+du;

and we have
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7/\?ul . 1/
(3) = {1
Fffnm . m [
(4) Tl’l——{ . }, (m=1)
(5) a—klli-:O (two of 7, 7, m=¥F1)
ow,

From (2), (3), {4), (5) and the equation

owco os 00,41 ¥4 F/»;) - F/é) ;
g —— :2g‘tp'f< o b )JZ‘F/:’Fm
07("" 67(",” ¢ ()'('Uz ()'Z'Um ( )
[(23) in 10, chap. I11]
we have

But, in virtue of the equation

dw Ow

"1 g e FLE o =0, [(17) in 9, chap. TIT]
00 ; Oz,

we have
()'wrz _ ()Z(7)43
0w,  Owm,

Therefore, we have
1 1 1 1 1 Ol
= a}(oa'l — Va3 )+a} ( das _ dai )+a§ ( Oa, _ Oaz )]zo
Ou;  Ou, 0w,  Owu, Owy, Oy
i.e. dw,=o0 is completely integrable. In other words, the locus of Darboux
curves is a surface contained in the hypersurface.

Upon this surface, there is only one family of asymptotic curves
defined by

{a’wl =o,

dwy=o,

or
du, _ du, _ du,
& &

where 7 is an auxiliary variable.
Along the curves of this family, #,, #,, 2, are the functions of 7 and

we have

=d,
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dA _ oA
—;’l——: OJw, =4z
4 _ o4,
ds? 0w,
Therefore, we have
A _ 22} aAd
dr? 20

and accordingly, the said family of asymptotic curves is that of straight
lines.

Any point P on a line of this family may be expressed in the form
and we can easily see that the differential 42 along any curve on the
surface of Darboux curves through this line is linearly dependent only on
A, .Az and A‘;.

Therefore, we have the theorem.

Theorem XI. /n case 1, the locus of Darboux curves is a famzly
of developable surfaces conlamned tn the hypersurface. '

16 From the theorems in 14 we can conclude that, if the order of
contact of (D) with (H) is less than the s=cond, at most the five cases
101, IV, VII, VIII, and IX can occur.

First, consider case IIT. 1In this case, (H) can 7ol pass ithrough the
axts of the coaxtal planes 1o which (D) degenerates.

In fact, if we choose the fundamental Pfaffian expressions so that

=0, dw,=o0 represent two of the coaxial planes, ¢ is of the form
= 3dw, dw, (e oy + by dw,)
and we have
(6) { M b+ 28" bin=o0
28 bun+ g% k=0
Since Ays, A1z and g are different from zero, we can see from (6)
that g%, ¢ and g* are different from zero and
(7) £'g"—ale=o
If (H) passes through the axis
dwlzor
dw,=o
we must have the equation
gu=glg" ¥~ ("} =0
which is inconsistent with (7).
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Now choose the fundamental Pfaffian expressions so that w,=o,
dw,—o are the tangent planes of (H) passing through the said axis and
dw,=0 passes through the lines of contact of these planes.

Then ¢ and ¢ can be reduced to the forms

=2 dw, dw,+ duws,
(8) {;ﬁ:km A} + Foysy e,

Therefore, (D) intersects (F1) along six distinct tangents in this case.

Next, consider case IV,

Choose the fundamental Pfaffian expressions so that &w,=o, dw,=o,
dw,=o represent the three planes to which (D) degenerates. Then ¢ and
¢ can be reduced to the forms

(o) {gp:dw‘f+dw§+dw§

9 $=06 kg dw, dw, dro,

Therefore, we know that in this case (D) znlersects (H) along six
distinct langenls and the triangular pyramid lo which (D) degenerales
15 self conjugale with respect fo (H).

Next, consider case VII. In this case (D) has only one inflectional
generating line. Choose the fundamental Pfaffian expressions so that the
plane dw,=o is the cuspidal tangent plane of (D), dw,=o is the
inflectional tangent plane of (D) and dw;=o0 passes through the cuspidal
and the inflectional generating lines of (D). Then ¢ is of the form

3 R s dry+ by dith

and we have

£u=o,
f13=0,
& fun—(gn)'=0
g=—(gn) gu=+o

Accordingly, by the transformation of the form
dTUI,:]/gTdTUI,
dw) =1/ g, div,

- O
d?il_;’:}/gm dw; + b/—“s diity,

vV &
¢ and ¢ are reduced to the form

¢ =2 dw, dw,+ dw?,
(10) {gb:/em A+ sy A+ 3 ks 703 d0s,
In (10) Ay and /.y are different from zero and if Am,=o0, diwy=o0 is
the inflectional tangent plane.
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Therefore, we know that in this case Zke fangent planes of (H)
passtng  through the cuspidal generaling line of (D) are the cusprdal
langent planes of (D) and the plane passing lhrough the cuspidal and
the nflectional generaling lines and the line of condact of the former
lies on the nflectional langent plane of (D). The plane conjugate to the
cuspidal generating line intersects (D) at three distinct tangents, unless the
inflectional generating line of (D) is an asymptotic tangent.

In case VIIL, choose the fundamental Pfaffian expressions so that the
planes dw,=o0 and dw,=o are the tangent planes of (H) passing through
the nodal generating line of (D) and dw,=o0 is conjugate to it.

Then ¢ and ¢ may be reduced to the forms

¢ = 2dw, dw,+ dws,
. v {¢=km dwt+ sy dw’+ 3kus dwi dws+ 3eas dw;, dw,
In (11) not both of /%y, and A are zero and if one of them; e.g.,

222

kuy is zero, dws=o is an inflectional tangent plane and the tangent

dw,=o
{a’w =0
is an inflectional generating line.
17 If 7 be a non-asymptotic tangent such that its polar planes' with
respect to (D) and (H) coincide, by choosing the fundamental Pfaffian
expressions so that the planes dw,=o and dw,=o0 are the tangent planes
of (H) passing through 7 and dw,=o0 is conjugate to 7, ¢ and ¢ can be
reduced to the forms
o= 2dw, dw,+ dw;,
= leyy @R+ fegy ity - 3(kons @} -+ 28103 A0y Aoyt By d20) dioy+ b di,
Now we shall examine if such a tangent exists,
Suppose that ¢ is reduced to the form
2dw, dw,+ dw.
The tangents whose polar planes with respect to (D) and (H) coincide,
are defined by the equations
(12) Fyge Aoy dev, _ g At dw, _ kg divg dze,
i drw, adw, dv,

Evidently, singular generating lines of (D) satisfy (12). Any tangent

1 All points on a tangent at a point A on the hypersurface, except A itself, have the same
polar plane with respect to an algebraic cone in the tangent hyperplane at A whose
vertex is A, We shall call this plane the plor plane of the tangent with respect to
the cone,
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which satisfies (12) and is not a singular generating line of (D) has the said
property. If it is an asymptotic tangent, (D) and (H) touch along it
Now we shall prove that if any two of the said tangents coincide, they
can not be asymptotic in the case where the order of the contact of (D)

with (H) is not higher than the first.
Let /, be an asymptotic tangent which has the said property and
choose the fundamental Pfaffian expressions so that

dw =o,
{a’w3=o
represent the tangent 7. Then, since dwy=o is the common tangent
plane of (H) and (D), we have
k=0, km=o
and by assumption
2k133= —RysEoO
The said tangents are the lines of the intersection of the cubic cones
(B @i+ 2ky3 dw, divy+ ke df) dooy
+ (Brse Aev} — gy d03) divy— Foray vy dii=0
and
(o @0} + 2ky3 divy devy+ Bigy d2el) dw,
— (s B0} + 3153 devy A3+ 2/35; dul) dio,
+ (5kys drvs— 2/, die,) dwi=o0
The tangent 7 is one of the intersections and the tangent planes
along 7, of these cones are
Fas Ay — 0,
8kogtn Ay — 2k3: dwy=o0
which do not coincide, for Ay,#=o. Therefore, two of the intersections
can not coincide with 7, and accordingly, at least six of the intersections
can not be asymptotic, for (H) and (D) can not touch along more than
three tangents. In case 1X, all the tangents which satisfy (12) have
the said property and accordingly, there are nine such tangents among
which at least six are not asymptotic,

CHAPTER V.

DARBOUX LINES AND SEGRE CONICS,

18 Consider the family of curves on the hypersurface defined by
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dw, __ dw, _ dw,

A A A

and let C be the curve of this family passing through A.

Any point P on the tangent of C at A, except the point A, may

be expressed in the form
P=pA+ 2A42A+ 1A,

When the point A4 moves along a curve on the hypersurface, AP
generates a ruled surface. In particular, if .4 moves along the curve C,
AP generates a developable surface. Now we shall find another such
curve. .

Tet €’ be such a curve and 2 be the point of contact of .AZ with
the edge of the regression of the developable surface corresponding to (.
Then we have

( B i"v@?{‘i‘ + {GI':} 67/0.,) + p 0w, + 04
A

Ay (57"02 + {6;} 6701) + gt 8wyt 62,

(1) A

ks (57”63 + {631} BwT) + p O, + O,
A

3

\ Lo A 0. =0

0 denoting the differentiation along (.
Eliminating 67,, 0w, and 0w, from (1), we have

o]

lo‘go‘l chcz Xago'g = 0,
1 7”1]_+ M 7212 723

o

A oy mptp g
A wey M3y Wzt p

where

70 . .
sy = 02; ra, ( Orelg; + {ci]})
w; 0w,

Since the equation (2) is of the second degree with respect to p,
there are two curves of the said property besides C and accordingly, two
points of contact of A2 with the edges of the regression corresponding
to them.

The harmonic conjugate of «1 with respect to these two points is
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(5) —L [ Ao Aok i {pcc} 10 og 2 ] A4a A,
Loe A he 2 dwp Gorhohe

We shall call this point the ray point of 4 with respect to the given
family of curves.
19 When the point .4 moves along a curve on the hypersurface, the
plane I. conjugate to AP generates a hypersurface, In particular, if A
moves along the curve C, I. generates a developable hypersurface which
is the envelope of the tangent hyperplanes of the given hypersurface along
C. Now we shall find another such curve,

Any hyperplane passing through 1., except the hyperplane @, may
be expressed in the form

p=va + Ao+ Aa+ A

For the envelope of p along a curve C' to be the locus of I. along
C’, it is necessary and sufficient that thz intersection of p and 4p is 1.
I'rom this reason, by a similar method to that employed in the preceding
article, we can prove that there are two curves having the said property
besides C and accordingly, two tangent hyperplanes through 1. of the
developable surfaces corresponding to them. The harmonic conjugate of
the hyperplane a with respsct to these hyperplanes is

2 AR 2
L[ g oL 2 1oo*P~>]a+ A,

2 gml A P ls 2 ()m‘7 ” Gohoh
and the point reciprocal to it is
AA Ak 22
(4) “’[_—% e (00~ 9 Jog— v)]AH A,
2 N Lo h, o’ O, g hh

we shall call them respectively the axis hyperplane and the axis point
of A with respect to the given family of curves. :
From (3) and (4) we know that for Darboux curves the axis point
and the ray point coincide,
20 Suppose that ¢ and ¢ are reduced to the forms
¢ = 2 dwdw,+ dus,
O = fng @i+ kadiel + 3 (brsdier + 2k, 53@0,d0,+ kypdis) droy
“‘}'L’;ggd‘l('g.
In this case, Darboux curves whose tangents are in the plane ko,
=o are defihed by the equation

{ k[u ([1(1 + K_‘_ (I’Tf') - 0,

dw, = o,
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Darboux tangents on the plane dw;= o. 1If one of £, and £, is equal
to zero, dw,= © is a cuspidal tangent plane of (D).

Assume that both 4y, and /4,y are different from zero. Then, in virtue
of (3) the three ray points of A with respect to Darboux curves whose
tangents are in the plane dwy= o are

l;/E B—t 1‘3 B By (=11, 3),

If both &, and /£y, are different from zero, there are three distinct

where
) Fan;
B=" (L 9 —““Z)A+A,
l 2 ({ o } 6 07&’/1 g kul l
_ 1 (206 __r ¥,dj, o km) .
Bz_ 2 \{ 6} 6 070-_3 IOD kzgg A+-‘12

and 6 is an imaginary cubic root of 1.

Therfore, we have the theorem:,

Theorem XII Lel P be a plane which is a folar plane of a non.—
asymplolic langend at a porn! A on the hypersurface with respect lo (D)
as well as with respect lo (H). If P @5 not langeni to (D), theie are
lhree distencl Darboux curves whose langends are 12 P and the lhree
ray pornts of A with respect lo them lie on a strazghtl line,

We seall call this line ke Darboux Iline of A.

D cases 111, VIL and VIIL,, the same thing holds wilh regard fo
lhe plane conpugale lo the simgular generatling lme of (D).

We shall call the curve which is conjugate to a Darboux curve a
Segre curve, Sczgre curves whose tangents are in the plane dw;= o and
conjugate to one of the Darboux tangents in it are defined by the equa-
tion

b duwht — kg, dwl = o.

The three ray points and the three axis points of .1 with respect to
these curves are

- (0i VM)Z A4 T BTV o By
and ) |
_;_(0!' ﬁ/;grl/e—)lA AV B+ ¥ By (i=1,23)
respectively,

Thes= six points lie on a conic whose equation referred to the coor-
dinate frame of reference in the plane dw,= o whose vertices and unit
point are respactively
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/1, Z))l, _Bz, A + -Bl+ .Bz

4 Eé = Fy R 3 Ez-

Therefore, we have the theorem,

Theorm XIIT Zel P be a plane which s a polar plane of a non-
asymplotic langent al a porni A on the hypersurface with respect o (D)
as well as with respect to (H), If P s nol langeni to (D), there are
three distinct Segre curves whosc langenis are on P and conjugale lo one
of the Darboux langenis on P and the lhree ray poinds and ithe three
axes poinls of A wrlth respecl lo them lie on a conze which fouckes lhe
asympiolic langents at A at the pornls where the Darboux line of A
tnlersects the asymplolic tangents.

‘We shall call this conic the Segre comc of A.

Iz cases 111, VII, VIIL,. the same thing holds wilh regard lo the
plane conjugale lo the singular generaling lme of (D).

21 Consider case IV. In this case ¢ and ¢ can be reduced to
¢ = dwi + dwi + duw}
¢ = 6 kin dw, dw, dw,
The ray points of A with respect to three Darboux curves
{dwzz o, {dwg= o, {a’wl= 0,

dws= o, dw = o, dw,= o,
are
By= ! {IGG} A+ ./11,
1;22_1,{26“} A+ Ay,
2
By=-1-0° 44 4,
3 p { s } e 3
respectively.

The tangents whose polar planes with respzct to (D) and (H)
coincide are
dw=0c dw,=o dws (o,0,=-+10r —1)
and their polar planes are
(5) dw+odw,+ao dw,=o0.
The Darboux curves whose tangents lic on one of the planes (5) are
{ dw,= o, { dw,;=o0, { dw,=o,

odw, = —o dw,  |oy dw,= —dw, dw,= — o divs.
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Corresponding to each of the planes (5), there are three Segre curves
whose tangenis are on it and conjugate to one of the Darboux tangents
on it. They are defined by the equations

dw
2L =g dw,=a, dws,
—2
o dw.
dw,= : =g dw,
—2
o, AW,
dwl =g dﬂ}z = #,
—2

The ray points of .4 with respect to these Darboux curves are
O'Bz—a'l B;;, a) B;;_Bl, BI_O-BZ-

The ray points and the axis points of A4 with respect to these
Segre curves are

+2ky A—28+0 B+ a0 By,

2k A+ B — 20 By+ o, B,

Fokpn A+ B+ o By— 20, By,
where in each expression, the plus sign in the coefficient of . corresponds
to the ray point and the minus sign corresponds to the axis point. These
points lie on the conicoid whose equation, referred to the coordinate frame
of reference whose vertices and unit point are respectively

A, By, By By, A+ DL+ B,+ B,
is

2(few)? ST+ 63+ &) = 350

Therefore, we have the theorem.

Theorem XIII. /nz case IV, all the Darboux lines of a porni A on
the hypersurface lre on the plane which ts delevmined by the ray pornts
of A with respect lo Darboux curves whose langents are the edges of
the (riangular pyramid lo which (D) degenerates, and all the Segre
contes lie on the contcord which touches the cone of the asymplotic
langenls af A along the curve al which the cone of the asymplolic
tangents s cul by the plane on which the Darboux lines of A le.

The author wishes to express his sincere thanks to Professor T.
Nishiuchi for his guidance and helpful encouragement.




