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ABSTRACT 

In this paper, generalize the absolute differential calculus due to M. Rene Lagrange 
and apply it to projective differential geometry of hypcrsurfaces in the four dimensional 
space. 

Non-developable surfaces in the three dimensional space can be classified projectively 
as follows. 

(a) Ruled surfaces. 

1 Surfaces of the second degree for which Darboux curves are indeterminate. 
2 Ruled surfaces having only one family of generating Imes upon which there is 

only one family of Darboux curves. 
(b) Curved surfaces upon which there are three distinct familes Darboux curves. 

From a similar point of view I classify hypersurfaces in the four dimensional space 
into eleven classes and investigate the properties of lhe hypersurfaces in each class. 

CHAPTER 

FUNDAMENTAL QUANTITIES 

1 Consider a hypersurface in a n + 1 dimensional space defined by the 
equations 

Xi == Xi (u1, U-1,, ......... , Un), 

(i = o, 1, ......... , n + 1), 

I Ann. Toulouse. 14, I (1922). 
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where the x's are analytic functions of u's subject to tht.: conditioi1 thci.t 
the rank of the matrix 

is 

ax., axo 
Xo ~ · ........ a:;;:-

Xn+l 

1l + I. 

Put 

Xo 

(r) ltu = 

(2) lz = I h;; 1. 

ax,,+1 
au1 

ax" 
au1 

ax11 

auu au,-au; 

02
X,,+r 

--·-~ 

Hereafter, we shall denote such a determinant as that on the right 
side of (r) by 

ax ax iJ
2

x I X OU1 • • • • • • • • • au,. au,-au j . 

Let X;.' (i=o, 1, ............ , n+1) be the cofactors of the elements in 
the last column in the determinant lt,-1. Then they are the hyperplane 
coordinates of the hyperplane tangent to the hypersurface at the point x 
and we h'.lve 

(xX') = XnX./ + ............... + X,,+1 X',,+1 = o, 

(~x')=o, 
au,-

( a2x x') = h;; 
au,-au; 

and accordingly, 

( ax'' x--)=o, 
OU; 

( ax ax') = _ (~ ax')= (x a2x 1 )=h,-,·. 
- du,. <1u1 aul au,- au,-du1 · 

By the assumption at least one of X,/, ......... , _;f',,+ 1 does not vanish 
identically. Assume ..:~/ =\= o. Then we have from the above equations 
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= (- 1)"+1x 0 Xo'h 

VI 
At 

;;v1 

X I UA n+l 
1t+l ;; 

UU1 

ax1
,.+1 

ou,. 
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But the function x 0 does not vanish identically, unless the given 
hypersurface is a hyperplane. 

Therefore, we know that the necessary and sufficient condition that 
the manifoldness of the tangent hyperplanes of the hypersurface may be 
n is that h =\= o. 

we shall assume that . the manifoldness of the tangent hyperplanes of 
the given hypersurface is n and that h is different from zero in the domain 
of u's which we consider. 
2 Put 

Then 
2 

H= I H;/ / = h"+2
, 

(xX) = (_!!3:_x)=(x ax)=o, 
Ou,- Ou; 

( a2x x)- (·ax ax)- (ax ax)-( a2x)-R 
ou,-oui - - Ou; oui - - oul Ou; - x Ou;Oul - if• 

In virtue of the equations (3), the ratios of the cofactors of the ele­
ments of the last column in the determinant 

i 
ax ax a2x 

X -ou
1 

......... ou,. ou,-oul 

arc equal to x0 : x1 : ••••••••• : x,.1-1, 
But we have 

OX; 

ouu 

ox,..u 
ou,, 
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Therefore, the s::i.id cofactors are equal to 

(- 1)"+1X; 1/ H (i=o, 1, ......... , 11+1) 

respectively, and accordingly 

I I - ax ax a2x I 
(s) 1/ Ii X ou

1 
......... ou,. Ou;oui 

= (- i)'it-i(x o2X )= (- it+1 Hu, 
Ou,oul 

Put 

( 6) cp = 11 H I x :: ......... :~ d
2
x I 

n 

= I: H,..,_ du). du..,_, 
).,µ=I 

(7) ¢ = i d { / I I X ax ......... ax d2x I} 
2 1 H ou1 ou,, 

" = L K;_..,_1 du). du..,_ du1 , 

).,µ,v=I 

Hereafter, we shall omit the symbol of the summatitn 2' and denote 
the indices with respect to which the summation shall be made from 1 to 
n by greek letters a, fl, r, A,µ, v, u, ,, p, etc. 

From the equations 

(d 2x X)= -(dx dX)=(x d 2X)=cp 
we have 

(d:3x X) + (d 2x d X) 
= -(d 2x dX) - (dx d 2X) 
= (dx d 2X) + (x d 1X) = d <p 

and accordingly 
(d 2x dX) = ¢ - ½ d<p, 
(dx d 2X) = - ¢ - ½ d <p, 
( X d·1X) = If + J d 'P· 

From the last equation we havc 

(s) 3 d { 1 
1 
x ax ax d2 r- 1} 

2 1/ H - ou
1 

......... ou,, ~ 

- 1/ ~ / x :: ......... :~ d:ix / 

= (- 1)"¢. 
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CHAPTER II 

COVARIANT DERIVATIVES AND CONTRAVARIANT DERIVATIVES, 

3 Let 

dw,-=af du1 + ...... +a~dun (i=I, ...... , n) 
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be n linearly independent Pfaffian expressions and denote by b j- the 
cofactor of a~- in the determinant j a~ j divided by the value of this 
determinant. Then we have 

( 1) a! b;· = a; b1= s;;, (s;; = r, s;1= o, if i-:t=/) 

(2) du;=b1dwa. 

If ./(u1, ...... , un) be a function of u's, we have 

iV i)I ) 
d.f =-.1-dua =-✓-h; d7r) .. 

oua Olla 

we have 

Any Pfaffian expression may be put in the form 

d Q = Ai d Wi + ............ +And W,,. 

We shall also denote the coefficient A; of dw; in this expression by i)Q . 
OW; 

Then we have 

If we put 

(5) ff;;= H,,,,b!b(, 
_ i j I 

(6) k;;z-Ka"pbab" bp, 

we have 

cp= ffJµ d 71',. d71'tL' 

¢=k,p.·, d7e,_ du•..,. d,e•,, 
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where 

b= j b~·), 
and accordingly 

(7) 1/g =b1/ H, 

if we choose the sign of 1/? properly. 
4 We have 

(i3, d) W;=i3dw,.-di3w; 

= ( oa! - oa! )du au 
du~ oua a ~ 

If we put 

(8) b1 l ll/J.z" = a 't' 

we have 

In virtue of (1) and (3), a/1.i may be reduced to the form 

. al ob' 
(9) ai,;.;=a:(oz~- - aw:). 

From (g) we have 

(10) ai.fi+a,,,,= o. 

Let us put 

[ ij]=-1-(0ffik+ og,-k_ Offii_o-.) a·,.)-{{' a·k)-gf..,) a-,-.) k .:, .:, .:, 6 I. ;~. • JI, I , , ZJI, 
2 uw; uwi uwk 

From: (10) and (II) we hwe 

Denote by gif the cofactor of f(;J in the determinant I /;,"f I diYided by ff 

and put 

(14) {i/}=g·c; [\iJ 
Then we have 
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[i j]- {i j} 
k -[[ka a , 

{i j} {i i}_ I - . l - -Oijz, 

Offi.f = _[[ia {a _k}_ffja{a·k}. 
dw1., J z 

5 Now we shall consider the transformatio:1 of the Pfaffian expressions 

to which we refer. 
Let 

dw/=Pf dw1 + ...... +P~ dw,, ( =I, ...... , 11) 

be n linearly independent Pfaffian expressions and denote by q~- the 

cofactor of p~ in the determinant / q~ / divided by the value of this 

determinant. Then we have 

d~c, ·= qa. dw ' 
' J I a' 

a.1 a.1 . --=--qt 
iJ•w;- 0,/'a cr• 

' - i I ff;J-ffa, qa q,, 

( ) kl -k i i l 
21 i.l - mp qa q, qp, 

and accordingly 

a.1 = a.1 l, 
OW;· cw' I ). 

( 2 4) 'i/- Gt j;i ,1, j 
{[ -[[ "). Fµ' 

(25) [[/"'=[['at q; q}• 

From the equation 

(o, d)w,-=aa,i dw(J OU\ =aa,i q~ IJ~ dw\ ow'µ 

= ,1(q; dw\)-d(qf ow'11-) 
a ). a µ 

( 
/Ji IJ; y I ) d I ~ I = -"-----+qia) ., ·w). ow,, a-1,' a~,,' 11- •· ' µ ,~ ). 

we h:lVe 
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i) . k 

(26) qf - iJq; + 1 • ~- • j k 
i) , i) , aJk• q,-a,:m qa q. 

W.i, Wf 't 
In virtue of (26), we have 

and accordingly 

(27) uqf + {a 't} i ; - {': h' ). 
8 ' l qa q-r - ). J q,. 
wf 

From (27) we have 

(28) :! . +t/}' p~ P}={ /} p~. 
J 

6 Consider a 111-ple system of quantities (functions, Pfaffian expressions 
etc.) 

X r1 ...... r,n. (r1, ...... , r,,,,= I ...... n) 

vV e shall call the expressions 

JX r1 ...... r,n 

and 

dX 
d X = ri ...... r,,, dw). 

r1 ...... r,11 i) 
w). 

=dX - {ra ;.}X dw). 
r, ...... ,·,,, , 1'1······ra-1 't ra+1······r,,. 

the covariant partial derivative and the differential of X,., ...... •·m respectively. 
Next, let us put 

and call the expressions 

and 

dX· · r1 ...... r,,, 

UWi, 

/N (} X,:l••····;m 
{l'lf!j, 

- Tx• ax a Xr1 ...... r,,, =ff).µ r, ...... r,,, dw = r ...... r"' d,1 1
1 

{J,f'j_ p. aw. 

=dX,1 ...... rm + {'/lX,·1 ...... r -r r + ...... r,,, dw, 
a a-I a I 

the contravariant 
respectively. 

partial derivative and the differenti:11 of X,. 1 •••• ..,-,,, 
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Finally, we shall call the expression 

d xri ...... rm ; ...... ;P=d xrJ ...... r,n s ...... sp 

-{~A}x ~'). , r1 ...... ra-I~ ra+i····--rm s ...... s;1 

+ {-r A}X 
SO' 1'[ ...... r1/I S[ ...... s0'-1 ~ Sa+ I •••••. s,. du·). 

the mixed differential of xr1 ...... rm S[···•--p • 

Then we have 

d g,-j=O, 

dgif=o, 

J(dwi) - d (Jw;·) = o, 

a:v
1 

( ::. )- a!,,. ( :~. ~=o. 

For covariant differenfr1ls the follo,ving formulas hold : -
I

O If 
Z =X +Y -lri ...... r r1 ...... rn, r1 ...... rn,' 

then 

z,. , ,, = X,. ,. Y, s , 
l·•••••11t ·l•••••··,1,- l•••••• nt l·••••• p 

then 

dZ,. ,. , s = Ys s dX,. ,. J ...... m ·I•----•) l·•••••p J •••••• m 

30 If 
+ xri ...... ,,, d Y,1 ...... s1· 

Z,.l••····r,,. s1 ...... 1 = X,'J ...... r,n o-1 ...... o-q Ys ....... ,,. o-1 ...... o-,' 

then 

d Z,.J ...... r,,, s1 ...... s p = r:;.J ...... sp a ...... o-q d X,.I••··· rm a ...... a p 

+X d Y .. r ...... rm o ...... o-1 s •••.•. s;t, a ...... ap 

Similar formulas also hold for covariant and mixed differe tials. As a 
special case of 3 ° if 

Z=X Y O'J••···•O'q O'j ...... O-q' 

we have 

dZ=Y dX +X dY· · O'J ...... o-'1 O'J ...... O'q 0-1 ...... 0-,, O'[ •••••• O'q 

If, by the transformation of Pfaffian expressions to which we refer, 

a 111-uple sys':em of quantities Xr ...... ,·,,, is transformed to X'r1 ...... r,,, which 
is co;1nected to the original system by 
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we call it covariant and if a system xri,, .... r,,, 1s transformed to 

x,ri ...... rm=_x-o-1 ...... 0",n ,1,1'! ,;,1',n 
I'o1 · · · · · •J'a,11 

we call it contravariant. 
The system of covariant partial derivatives of elements of a m-uple 

covariant system is a (m + 1 )-uple covariant one and that of covariant 
differentials is a covariant 111-uple one. The same thing can be said for 
contravariant partial derivatives and differentials of elements of con­
travafrmt system. 

7 Now we shall introduce Riemann's symbol of four indices. 

From the equatirms 

dX. . =d..-Y. . - Jl'i ).f XT. . da•). 
11 ...... 1,,, '1·····•',,, l T J J'J, .••••• 1m 

_ /1'1/l ).} V de • 
,.L\ • • '(f ' l r 11 ...... 1,,,_ 1 , ). 

-) -d. V - ~ (d ,:., - { J'O" ). } ,~ 
( , ..L\, , _(J .L\.,. ,r L·\. , 

1 1·•··•• 1 m 7 1·•···· 111 r ' 1•••••• 1 a-1't 

..L 
I •••••••••••• 

+ {""; ;.} X~,.
2 
.... ,.., __ 1 , d,c').) 

+ ........... . 
+ {r,,, fl} 0,11 ( {r' ;.} X . d,1 1 /1 (L < TYJ .. , ... 1 111 -! ~ ). 

+ .......... .. 

+ {'9 r ).} xr1 .. , ... 1' -IT d,C')) 
we have 

( a, d) X. . =(o, d) )(. . 
\ 1 1•••••• 1 111 1 l••••••' 111 

- {r~ r,). /'1,1 
.. Y,. ,. _ 

V ) .... ., ()"-(' 

. . d,c,-i 0--o 
7 a+1······'m ,. , 11·' 

\\'here 
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Similarly we have 

(35) (d, 7 x. . =(o, d) x. _ r1 ...... r,,, '2······1m 

+ { T r a• A µ} X,, ,, •. r ozc,,,. 
l••···· a-1~ 'a+1······ m r 

The symbol {z" k, l m} may be written 

{ i· k' l 1ll} = d { ~ l} - , d { 0. m} 
aw,,, k aw, k 

where 0 denotes th1t the absolute derivation is not effected with respect 
to the index 1: 

In virtue of (15), (29) and the third formula for the covariant 
differenthl, we have 

Therefore, if we put 

(37) (z· ;: l m)=tja {z· a-, l m}, 

we hcive 

(38) (z";; l 111)= d [0. 1]- -~ -[(!) .m]. 
dw111 J dw1 J 

From (37) we have 

{ .kl} fo(. l) l , 171 =,![ l O", 111 

From (38) we have 

(39) (ij l m) = _<~_ [i /]- _d_[z· 1nJ 
' dw,,, j 8w1 j 

- g(J~ (r· ;n J [z~/J-2·,1] [z" ;n ]) + a,11 (J e/ J. 
In virtue of (1 3) and (39), we have 

(z· j, l m) + (/ i: l m)=-d-( :g if)- _d_( ag;f) + a1111a ag;_,. 
dwm cw1 dw1 <h11,,, d,1,a 

=o. 
From (38) ,ve have 

(41) (z";: lm)+(ij; m l)=o. 
Supposing that n > 2, denote by d, o and L1 the differentiations along 

three different parameter curves. Then we lnve 
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(.:J, o) dw1,=(o, d) Llwk=(d, .:J) OW1,:=o, 

and accordingly 

(-;f o).dw,~=P k, µ v} dw). owµ Llw,, 

(o, d) .:.l,t1i,= {v k, A µ} dw). owµ .::1,o,, 

(d, Ll)owi,= {µ k, v A} dii\ oze•µ Llw,. 

But we hwe 

(.::1,"a-f dw,.+(o, d) .:.lze•i.:+(i," .:J) owi 

=.:.l[o (dwi.)-d(ow,;]+o·(d(.::Jw,:)- .:J(dwi.)) 

+7(.:J(Jw.J-o (.:JwiJ=o. 
Therefore, we have 

{jk, lm}+{mk,jl}+{lk, mj}=o 

a!1d accordi•1gly 

(42) (i°J; lm)+(z'm, jl)+(t"!, mj)=o. 

From (40), (p) and (iz) \W h:ffe 

(43) (lm, 1j)=(z";; lm). 

CHAPTER Ill 

FUNDAMENTAL FQUATIONS. 

DEFINITJON OF DARBOUX CURVES. 

8 Let A be a poi'.l.t 0:1 the hypersurface and Ai, ......... , Am An.,., be 
the points 

aA aA 
OW1 ' ......... , awn' 

respectively.1 Then we hwe 

( I) ~ j A Ai ........ . A,. dA,- ! 
1/ g dw1 

( 2) I A Ai ........ . An An+l I 
The equation (2) shows that the points A, ......... , A,,+1 are linearly 

independent. Therefore, we may write 

(
dA = dw1 A1 + ............... + dw,.A,,, 

dA;=dW;o A+dw;1 Ai+ ......... +d,1•in A,,+ dw,-,.+1 A,.+1, 

l (i=J, ...... , n) 

dL1n+1=dw,,+1,1?A+dwn+l,t A+······ +d,1 1,,+1,,, /:1,.+d,e•,.+l,n+l An+!, 

1 \Ve shall denote hy capital letters A, B, C, ...... not only the roints but their coonlinates. 
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where dw; i are Pfaffian expres,;ions, 

From ( 1) and (3) \Ye have 

( 4) dA; = dw,-o A + (dw.). + {' /}dwo-) A>. +dw,-,.+1 An+i. 

( 5) dw,-n+i=go-dwo-. 

From the equation 

we have 

di/g- 1/gdlog 1/g = 1/gt/}dwo­

d I A Ai • • • • • • • • • An An+l I 
1/g(dw~~ + r /} dwo- + dw,.+1,n+1) 

dwu + ......... +dw,.,.+dw,,+1,n+1=0 

On the other hand, we have 
i) 

n An i = -- ( o-t A ) + A o-). >. t} + iJw g o- o-g '\. ~ 
' 

nd A,.+1 = ............ + .,4,,+l (dwo-o- + dwn+ I n+l), 

where terms not written are linearly dependent on A, ...... , An. 
Therefore, we have 

dw,.+I,n+l=o 

From the equation 

iJA,- = OW;o A+ OW;) A + . ·A 
i) i) i) 

). ff,.; n+l 
Wi Wf Wf 

we have 

owo-k 
go-t -

0
--=o, (k=o, 1, ...... , n) 
wt 

9 The neces,;ary and sufficient condition that the system of total 
differenthl equations (3) may b::! co:11pletely integrable is that the equations 

(i3, d)A=o, 

(o, d)A,-+(i T, .A. µ)dw). owf'-A\=o, 
(i=I, ...... , 1.) 

(i3, d)An+1=0 

hold as the consequence of (3). 
This condition is equivalent to 

( 8) dwo- i3wo-k-iJw, du\ =o, (k=o, ...... , 11) 

( 9) dw;o-ffo-11-ow11--i3wo-lfo-). dw).=o, 
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(10) Y(dw;/ )-d(ow;/) +d,t';o OW1-0W;o dwj 

+dw-) ow) --ow,.., dw). 
l ' ,j z,. J 

+dw;,,+1OW,.+11-0W;,.+1 OWn+1J+ {,j; ,< p} dw). owl'-=o, 

( 11) Y(dw;o)-d (OW;o) + dwi). aw).o -owi), dw)o 

+dw;,,+1 ow,.+l 0-0W;,.+1 d,o,.+10=0, 
( =I, ...... , 1) 

( I 2) dw,1+1a l!a1L o,1•11- -ow,,+ Ia gr;)_ dw).=o, 

(r 3) a'(dw,.+u:)-d(i3w,.+d) +dw,.+1 o i3w1,-i3w,.u o dw;, 

+ dw11+1 ). ow).k-own+ I). dwu=o, 

( 14) 0 (dw..+I o)-d(i3wt<+I o) + dwn+1 ). ow).o-OWn+r ). dw).o=o. 

From (8) we have 

(15) iJw;k - awik = o. (k=o, 1, ...... , I) 
iJw.i iJw; 

From (g) we have 

dW ir; iJw G 

(16) -i)--/!r;/--
0
-ffa;=o, (i,j, =I, ...... , n) 

W.i Wz 

From (12) we have 

awn+r r; 
(17) i) gr;I-

W.i 

From (3) \Ve have 

d 2.A=d(dw). A)) 

=d (dw:;) A). +du). d A). 

=du')_ dw).o A +(d (dw(,) +dw). dw)I'-) A,.+'f' ~l,.+1, 

(a) d 3A= ............ + ( ~-d'f'+dw)_dw).l'-t"l'-vdwv)A,.+1t 

where terms not written arc linearly 
From (a) we have 

(b) ¢= -dw). dw).a !!av dwv 

= k,.iJ-v dw), dwl'- dwv. 

dependent on A, ...... , A,.. 

From (15), (16) and (b) we have 

( I 8) 

(1 9) 
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From (7) and (rg) we have 

(20) gGt kGti= o, ( = I, ...... , , ) 

and accordingly 

iJkGti 

iJwi 
=o. (i,j=I, ...... , 1) 

10 From (ro) and (rg) we have 

iJkum iJku1 + Gt (k k k k ) -
0
-~-- - -

0
-- g 1r;1 jtin - ,r;m j,1 

Wt W,n 

and accordingly 

(c) 2(1k•"im 
aw, 

+ OW;o ow Jo dw;o iJw Jo 
i} ff Jm i} ff,,,, i} ff;l iJ ff,t 

W, Wt W,,, Wm 

From (c) we have 

).r µr( dk),11m iJk)µl ) g g -~r _____ =o, 
ow, dw,,, 

(r=\= s=\= I=\= 111) 

ow o··v )t ( dk) ao as l 11 +Is_ . µr .µm --g ---- 2g g ---
dwm iJw"' iJw1 
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From ( d) we hwe 

( ) ).r µr as (k k k 1 ) ).r µs · l ) 25 g g g 1.0"i µsm - ,.am '"µsl + 2g g {Aµ, JJl = o, 
(1·:\= s:;\:: I=\= u,) 

) awO'O O'S awn+! s - ).I µr O'S (k k k k ) 
(26 -a--g + a - 2g g g ,.am µs .- ').a/ µsm 

W,,, Wm 

, )./ µs (, l). ,2g g 11µ, m , 

(s :\= l :\= m) 

awO'O O'' awO'O GIil awn+! m + aw,,+I l 
--g +--g +---

awl awm aw111 aw, 

- ,.tµmas(k k k ) - 2g g g ),()'/JI µs - ),()'. kfl,tlll 

+ 2g'.l gµm (2 µ, m l). (l:\=m). 

11 For a point 11:l on the hypersurface in the vicinity of A, we have 

]l,.f =A+ d A+ - 1-d2A + _!_d'1A + . , .... 
2 6 

=/{I + ~d ZI',. d w,.o + . " ... ] 

+Aµ [dwµ+~d(dw1,.)+dw,_dw,
1
L+ ...... ] 

+A,,+{ ~rp+ -; drp-¢+ ...... ]. 

Let fo, ...... , fn+ 1 be projective coordinates referred to the coo::-din1k 
frame of refere:i.ce whose vertices and unit point are 

A, ,4.1, ...... , An+I, A+A1+ ...... +A,.+1 

respectively and put 

f1 --. z,-= ( =J, ...... , n+l)• 

Then, we hwe for then point .l/,:[ 

r 
I - I 

z,. = dw,.+-d(dw;)+-dw,_dw,.i+ ..... . 
2 2 

(28) . (i=J, ...... , fl) 

[
Z,.+1 = _r_rp+-J-drp--I-¢+ ...... 

2 4 6 
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In virtue of (28), z,.+1 can be expanded in a power se1ies of z1, ••• ••• , 

z,. which is convergent as long as the absolute values of Zi, •.•.•. , Zn are 
sufficiently small and of which the terms to the third · degree inclusive 
are 

I I 
~![at za z" + ~katp za z" zp. 
2 3 

Therefore, the hypersurface of the second degree Q which has the 
contact of the second order with the given hypersurface at A is of the 
form 

Z"+l = -1
-g"r,t Za Zt -f- Ca Za Zn+l + C Zn!1 • 

2 

For a point on Q in the vicinity of A, we have 
I I 

Zn+t = --g,n Za 1\ + ~ cp ![at za z-r zp + ...... 
2 2 

The projection from A,.+1 on the tangent hyperplane at ..:4. of the 
variety at which Q intersects the given hypersurface is of the form 

(ka-rp - cp lfa1) za ::\. zp + ...... = o. 

Therefore, the hypersurface of the second degree which has the 
contact of the second order with the given hypersurface at A and 
intersects the given hypersurface at the variety such that the cone of its 
tangents at A 1s apolari to the cone of the asymptotic tangents at A is 
of the form 

I 2 
Z,,+! = ~---![,n Za ::\+CZn+l• 

2 

We shall call this hypersurfacc of the second degree the som­
canonzcal osculati"ng quadrtc at A of the given hypersurfacc. 

The cone of the tangents of the variety at which the given 
hypersurface intersects the semi-canonical osculating quadric is 

katp za z-r zp=o 

We shall call these tangents Darboux tangents and the curve whose 
tangent at any point on it is a Darboux tangent, a Darboux curve 
12 Up to here, we have considered only point coordinates in this chapter. 

But the same can be said for hyperplane coordinates. 
Denote by a, not only the tangent hyperplane at· A, but its· 

coordinates, and by ai, .... .. , a,., a,.+ 1 the hyperplanes 

iJa iJa ( - I ),,+1 {[a, cJaa 
n aw't 

respectively. 

I Grace and Youug, Algebra of iuvariants. p. 303. 
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Then, if we write 

{

da=dw1 a1+ ............ +dw,, a,,, 

(30) da;=d!J,-r11,+d!J;1 a1 + ...... +dSJ;,. an+dSJ;,,+1 an+I, 
( =I, ...... , n) 

da,,+l =d!Jn+I O a+ ...... + dSJ,,+l n a,.+dSJn+l, n+l an+l, 

we have, in virtue of (5) and (8) in 1, chap. I, 

/a a1 ...... a,, a,,+1!=1/ g, 

d JJ,.+1, n+l = O, 

d J2; n+l = ( - 1 t+l ffia dwr;, 

i)Qim k .. gam= _ OW;.,, 
iJwi i;a iJwi 

(i,j, m= 1, ...... , n) 

From (3) and (30) we have 

(dA; a)=giadwa(A,,+1 a), 

(A da;)=(-1)"+1 ffia dwa(A a,,+1), 

On the other hand, we have from (4) in 1, chap. I 

(dA; a)=-(A; a1)=-(Ai a;)=(A da;)=ga dwa. 

Thenefore, we have 

(32) (A,.+1 a)=(-r)"+ 1 (A a,,+ 1)=r. 

From (6), (31) and (32) we have 

(33) (dA a,.+i)=(da A,,+1)=0. 

13 Referring to the coordinate frame of reference whose vertices and 
unit point are 

A, Ai, ...... , An+I, A+Ai+ ...... +A,.+1 
respectively, the equation of the semi-canonical osculating quadric Q is 

~o ~n+l = - 1
-ffat ~a ~t + C ~!+1 

2 

and accordingly, the polar of the point (..l0, ..li, ... ... , ..l,,, o) with respect to 
Q is 

..lo ~n+l = ffat ,la ~t 

This hyperplane may be expressed 

Ao a+ ..li a1 + ...... + ..l,, a,,, 
for the necessary and sufficient condition that the point 

~o A+~i Ad· ...... +~n+I An+I 
may lie on the hyperplane 

..lo a+ ..l1 a1 + ...... + ,l,, a,. 
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is that 

Ao i;:n+l = Aa ,;:t gat• 

We shall speak of the point Aa Aa and the hyperplane Aa aa as the 
reciprocals of each other. 

Two tangents at a point A on the hypersurface are said to be 
conjugate to each other, if they are conjugate with respect to the cone 
of the asymptotic tangents at A. Lett and t' be two tangents at A and 
denote by 

dwi, ............ , dwn 
and 

OWi, ............ , own 

the values of the referred Pfaffian expressions along t and t' respectively. 
Then the necessary and sufficient condition that t and t' may be con­
jugate to each other is that 

gat dwa owt=o. 

Therefore, we know that the locus of the tangents conjugate to t is 
the (n- 1)-flat at which the hyperplanes a and da intersect. \Ve shall 
say this (n - 1 )-flat is conjugate to the tangent t. 

CHAPTER IV. 

CLASSIFICATION OF HYPERSURFACES. 

14 Non-developable surfaces in the three dimensional space arc classified 
projectively in two classes : 1 ° ruled surfaces, 2 ° curved surfaces. It is 
well known that for surfaces of the second degree which are ruled surfaces 
having two families of generating lines, Darboux curves are indeterminate, 
i. e., all k;f, = o; in ruled surfaces having only one family of generating 
lines, Darboux curves always coincide with the generating lines and upon 
a curved surface there are three distinct families of Darboux curves. 

If all k;f, = o for a hypersurface in a space of any dimension, it is 
a quadric.1 Excluding this case, the following nine cases can occur for 
hypersurfaces in the four dimensional space. 

I. The case where a cone of Darboux tangents (D) at any point on 
the hypersurface degenerates into three coincident planes. 

II. The case where (D) degenerates into hvo coincident planes and 
another plane. 

III. The case where (D) degenerates into three distinct coaxial planes. 

I J. Kanitani. These memoirs, 8, 378. (1925). 
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IV. The case where (D) degenerates into three distinct non-coaxial 

planes. 
V. The case where (D) degenerates into a proper cone of the second 

degree I< and a plane L tangent to IC 
VI. The case where (D) degenerates into a proper cone of tl1e second 

degree I< and a plane L which intersects I< at two distinct lines. 

VII. The case where (D) is cuspidal. 
VIII. The case where (D) is nodal. 

IX. The case ·where (D) is anautotomic. 
The cone (D) and that of the asymptotic tangents (H) at any point 

on the hypersurface intersects at six tangents. Choose the fundamental 

Pfaffian expressions so th:1t the plane d w1 = o is a tangent plane of (I-I) 
alo:1g one of the s:iid six tang-ents, the plane dwJ=o is another tangent 

planeof ( H) and the plane dw3 = o passes through the lines of contact of 

these tangent pl;mes. Then 'P may be reduced to the form 

2 dw1 dw. + dw1 
and we have 

( I ) { kJ22=0, 

zkn2 + k;33 = o. (z·= 1, 2, 3). 

On (H) the ratios of the fundamental Pfaffia:1 expressions may be 

expressed by a parameter A in the form 
d«1i: dw.: dw3= -2A2

: 1 :-2A. 

In virtue of (I), the values of A for the s:iid six tange:1ts arc the 

roots of the equation· 

8ku1 A5 + 2 4km A°'+ 3ok331 A1 + 2ok333 i- I 5k233 A2 + 6krnA = o, 

the root A= o corresponding to the tangent t. 
By examining the order of the multiplicity of the root A=o, we can 

easily prove the following theorems. 
Theorem I. ff (D) has tlze contact of the .fifth order with (H), (D) 

degenerates z1zto three cohzcz"dent p!aJZes. 
Theorem II. If (D) has the co!ltad o.f the .fourth order wdh (H), 

(D) degenerates zizto two cozizcz"dent planes and a plane whzi:h passes 
through the lzize of contact. 

Theorem III. Jj" (D) has the contact of the thz"rd order wt"th (H), 

(D) degenerates zizto a proj;er cone ef the second degree K and a plane 

w!zzi:h touches K along the line of contact. 
Theorem IV. Jj" (D) has the contact o.f the second order wt"tlz (H), 

(D) zs nodal and along the nodal generatzizg l;ize 011e ef the tangent 
planes o.f (D) cotilCli:les wz"tlz that ef (H). 
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We shall call the case where (D) is nodal and the nodal generating 
line is an asymptotic tangent, case VIII1 and the case where the nodal 
generating line is not asymptotic, case VIII2 

Theorem V. ff (D) has the contact of the second order with (H) 
along- two tangents, (D) degenerates zizto a plane through the lines of 
contact and a proper cone of the second degree which touches (H) along 
the lzizes of contact. 

The theorems reciprocal to these also hold. 
Theorem VI. hi case I, the three cozizcident planes touch (H). 
In fact, in this case, ¢ may be reduced to the form 

k111 dw; 

so that we have the equation 

gll=O, 

which shows that the plane dwi = o is tangent to (H). 
In a similar way, we can prove the following theorems:-
Theorem VII. .ln case II, (H) touches the two coincident planes 

along the lz'ne of ziderscction ef the planes to which (D) degenerates. 
Theorem VIII. In case V, if t be the tangent along· whr'ch the 

plane L touches the cone K, thm (H) touches K and L along t. 
Theorem IX. .ln case VIII,, along the double generatt'ng kne, 011e 

of the tangent planes of (D) cozizczdes with that of (H). 
Theorem X. In case VI, let ti and t 2 be two tangents along- ,e•htdt 

L 11zterseds K. Thm (H) touches K alon/: ti and t 2• 

15 Now consider case I. 
Refer to the non-homogeneous coordinates (y) defined by 

X· _v;=~'-, (i=I, 2, 3, 4), 
Xo 

Then, since (1, o, o, o, o) is a system of the solutions of the system 
of the total differential equations (3) in 8 chap. III, we have 

( 2) dw;n=o, (i=I, 2, 3, 4). 

Next choose the fundamental Pfaffian expressions so that dvl'i = o 
represents the three coincident planes to ,vhich (D) degenerates, the plane 
d,fJ.1.=o a tangent plane of (H) and the plane dw3=o passes through the 
lines of contact of dwi = o and dw.!. = o with (H). Then cp and ¢ may be 
reduced to the forms 

,j;=dw;, 

cp=2 dwl dw2 +dwI 

and we hwe 
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ilk111 = _ 3 {I/}, 
ow, 

_ {17/I l}, (m::\=I) 

(.5) (two of i, j, m::\= I) 

From (2), (3), (4), (s) and the equation 

OW,,+1 s 

071',,, 

)/ 
( 

iJk) iJk),11.l ) 
- 2ff · gfL' ~--~r- (s ::\= l::\= 111) ow, ow,,. 

[(23) in 10, chap. III] 
we have 

But, in virtue of the equation 

awn+1 a ilwn+1 a 
---ffa·----ga.f=o, [(17) in 9, chap. III] 

ilwi ow1 

we have 

<IW42 = <IW4~ 
iJw,l <IW1 

Therefore, we have 

-{ 1 ( da~ ila1 ) + 1 ( ila1 ila} ) + 1 ( ila; ila1 )J-a2a - al ----- a., ----- a3 ----- -O 
<IU3 <IUz - ilu1 au!, du2 d2t1 

i.e. dw1 = o is completely integrable. In other words, the locus of Darboux 
curves is a surface contained in the hypersurface. 

Upon this surface, there is only one family of asymptotic curves 
defined by 

or 

du1 _ du, _ du,1 _ dt 
T-T-- b~ - ' 

where t is an auxiliary variable. 

Along the curves of this family, u 1, 111, u 3, are the functions of t and 
we have 



Absolute D1jjerential Calculus etc. 

dA = JA =A,, 
dt OW2 -

d 2A = 0A2 

dt 2 
OW2 

Therefore, we have 

d
2
A = {22} dA 

dt 2 2 dt 

2 75 

and accordingly, the said family of asymptotic curves is that of straight 

lines. 
Any point P on a line of this family may be expressed in the form 

P=J.A+µA2 

and we can easily see that the differential dP along any curve on the 
surface of Darboux curves through this line is linearly dependent only on 

A, A 2 and A3. 
Therefore, we have the theorem. 
Theorem XI. In case I, the locus o.f Darboux curves is a ./amt{Y 

o.f developable suifaces contazized 111 the hypersur./ace. 
16 From the theorems in 14 we can conclude that, if the order of 
contact of (D) with (H) is less than the second, at most the five cases 
III, IV, VII, VIII2 and IX can occur. 

First, consider case III. In this case, (H) can not pass through the 
axis o.f the coaxial :Planes to which (D) degenerates. 

In fact, if we choose the fundamental Pfaffian expressions so that 
drn1 = o, dw2 = o represent two of the coaxial planes, ¢ is of the form 

¢= 3dwi dw2 (km dwi +ki22 dwJ 

and we have 

( 6) { g
11 

kl2l +2g
12 

k122=0 

2g12 k121 + g 22 km= o 

Since km, k122 and g are different from zero, we can see from ( 6) 
that gll, gl2 and g 22 are different from zero and 

( 7 ) gllg22_ 4 (g12)2=0 

If (H) passes through the axis 

{
dw1=0, 

dw2=0 

,ve must have the equation 

ff33 =g{g11 g22_(gl2)2}=o 

which is inconsistent with ( 7 ). 
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Now choose the fundcimental Pfaffian expressions so that dw1 =o, 
dw:!.=o arc the tangent planes of (H) passing through the said axis and 
dw3 =o passes through the lines of contact of these planes. 

Then <p and cf can be reduced to the forms 

( 
8

) {<p= 2 dw1 dw2+dwt 

¢=km dwi+k:!.12 dw;. 

Therefore, (D) intersects (H) along six distinct tangents in this case. 
Next, consider case IV. 
Choose the fundamental Pfaffian expressions so that dw1=0, dw2=0, 

dw3=o represent the three planes to which (D) degenerates. Then <p and 
cf can be reduced to the forms 

( 
9

) {<p=dw!+dw~+dwj 
cf= 6 k12:1 dw1 dw2 dw3 

Therefore, we know that in this case (D) z1ztersects (H) alo1lff six 
distinct taneents and the tna11eular pyramid to wlziclz (D) deeenerates 
1s self conjueatc wz'tlz respect to (H). 

Next, consider case VII. In this case (D) has only one inflectional 
generating line. Choose the fundamental Pfaffi.an expressions so that the 
plane dw1=0 is the cuspidal tangent plane of (D), dw2=o is thc 
inflectional tangent plane of (D) and dw3=o passes through the cuspidal 
and the inflectional generating lines of (D). Then cf is of the form 

3 k:!.23 dw~ dw,i + km d1ei; 
and we have 

/;1:i=o, 

/; = -(i-12)2 /[33:::/=-0 

Accordingly, by the transformation of the form 

dw/ = 1/ ff 12 dwi, 

dw/ = 1/ g-12 dw2, 

d: I ~ J. o·,.l d: 
.W3 = 1/ /;:13 UW3 + : "· .,fl:, 

Y l[:n 
<p and cf are reduced to the form 

(io) {<pcc-=2 dw, dw2 +dw~, 

cf=k111 dw! +k222 dw;+ 3 k:!.23 dw~ dwi, 

In ( ro) km and k223 are different from zero and if k222 = o, dwi = o is 

the inflectional tangent plane. 
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Therefore, we know that in this case tlze tan{[ent p!a11es o.f (H) 
passtJl{[ throu{[h the cuspidal {[e11emtz'.n1: lz1ze o.f (D) are the cuspidal 
tan{[eJzt planes o.f (D) and t/ze pla11e passz11{[ through the cuspidal and 
the z11/lectzonal {[eneratz"n{[ lines and the ZZ:ne o.f contact o.f the .former 
lz"es on the inflectional tangent plane o.f (D). The plane conjugate to the 
cuspidal generating line intersects (D) at three distinct tangents, unless the 
inflectional generating line of (D) is an asymptotic tangent. 

In case VIII2, choose the fundamental Pfaffian expressions so that the 
planes dw1 = o and dw2 = o are the tangent planes of (H) passing through 
the nodal generating line of (D) and dw3 =o is conjugate to it. 

Then <p and ¢ may be reduced to the forms 

{
cp=2dw1 dw2+dwt 

(II) 
¢=klll dw1+k2:i2 dwl+ 3k113 dwf dw3+ 3k223 dw; dw:i 

In ( r r) not both of k11 1 and k222 are zero and if one of them, e.g., 
k111 1s zero, dw3 =o is an inflectional tangent plane and the tangent 

{
dw2=0 

dzl13=0 

is an inflectional generating line. 
17 If t be a non-asymptotic tangent such that its polar planes1 with 
respect to (D) and (H) coincide, by choosing the fundamental Pfaffian 
expressions so that the planes dw1 = o and dw!, = o are the tangent planes 
of (H) passing through t and dwi=o is conjugate to t, <p ahd ¢ can be 
reduced to the forms 

cp=2dw1 dw2 +dw;, 

¢=kn1 dwt +k222 d,e?::, + 3(k113 dwi+ 2k123 dz11i di112+km dw~) dw1+ k:1:i3 dw3. 
"Now we shall examine if such a tangent exists. 
Suppose that <p is reduced to the form 

2dw1 dm2+dwt 

The tangents whose polar planes with respect to (D) and (H) coincide, 
are defined by the equations 

k 1,n dw0 d71\ 

dw2 

k2at dwadw, 

dw1 

k3at dwa du,t 

dw3 

Evidently, singular generating lines of (D) satisfy (r 2). Any tangent 

1 All po,nts on a tangent at a point A on the hyper,urface, except A itself, have the same 
polar plane with respect to an algebraic cone in the tangent hyperplane at A whose 
vertex is A. We shall call this plane the plor plane of the tangent with respect to 
the cone, 
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which satisfies (12) and is not a singular generating line of (D) has the said 
property. If it is an asymptotic tangent, (D) and (H) touch along it. 
Now we shall prove that if any two of the said tangents coincide, they 
can not be asymptotic in the case where the order of the contact of (D) 
with (H) is not higher than the first. 

Let t1 be an asymptotic tangent which has the said property and 
choose the fundamental Pfaffian expressions so that 

{
dw1=0, 

dw3=0 

represent the tangent t1• Then, since dw1 =o is the common tangent 
plane of (H) and (D), we have 

and by assumption 

2k122= -k2:i3=!:=o 

The said tangents are the lines of the intersection of the cubic cones 

(km dw~+ 2ku3 dw1 dw3+ ki:13 dwD dw1 

+ (km dw;-k2.13 dw'!i) dw2 - k122 dw1 dwE= o 

and 

(km dw1 + 2k113 dw1 dw3 + km dwi) dw3 

- (k113 dw; + 3k133 dw1 dw3 + 2k,m dw;) dw2 

+ (sk212 dw3 - 2k3,2 dw1) dw1 = o 

The tangent /1 is one of the intersections and the tangent planes 

along t1 of these cones are 

k,mdw1-o, 

5k212 dw3-2k3e dw1=0 

which do not coincide, for k212 =!:=o. Therefore, two of the intersections 
can not coincide with /1 and accordingly, at least six of the intersections 
can not be asymptotic, for (H) and (D) can not touch along more than 
three tangents. In case IX, all the tangents which satisfy ( 12) have 
the said property and accordingly, there are nine such tangents among 
which at least six are not asymptotic. 

CHAPTER V. 

DARBOUX LINF.S AND SEGRE CONICS. 

18 Consider the family of curves on the hypersurface defined by 
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dwi = dw2 = dw3 

Ai ).J ).3 

and let C be the curve of this family passing through A. 
Any point P on the tangent of C at A, except the point A, may 

be expressed in the form 

P= fl A+ A1A1--l-AiA2+A3A3 

When the point A moves along a curve on the hypersurface, AP 
generates a rnled surface. In particular, if A moves along the curve C, 
AP generates a developable surface. Now we shall find another such 
curve. 

I ,et C' be such a curve and P be the point of contact of AP with 
the edge of the regression of the developable surface corresponding to C'. 
Then we have 

).G ( owGI + t/} ow't) + fl OW1 + 0).1 
--------

).! 

,'3 denoting the differentiation along C'. 
Eliminating OW1, ow:i and ow3 from (I), we have 

0 Aaffar Aaff a2 Aaffa3 = o, 

Ai 11111 --j- /1 11112 1n13 

).J 11721 11Z22+ fl 1n23 

A;l 111:ll 1n32 11133+ fl 

where 

. _ i)).i + ) ( OWGi + {G j}) 117,-J - -- "a --- ; 
owj owj 

Since the equation (2) is of the second degree with respect to /1, 

there are two curves of the said property besides C and accordingly, two 
points of contact of AP with the edges of the regression corresponding 
to them. 

The harmonic conjugate of A with respect to these two points is 
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We shall call this point the ray point of A with respect to the given 
family of curves. 

19 When the point A moves along a curve on the hypersurface, the 
plane L conjugate to AP generates a hypersurface, In particular, if A 
moves along the curve C, L generates a developable hypersurface which 
is the envelope of the tangent hyperplanes of the given hypersurface along 
C. Now we shall find another such curve. 

Any hyperplane passing through L, except the hyperplane a, may 
be expressed in the form 

P = Jia + J..a1 + J..ai+ J.3aJ. 

For the envelope of p along a curve C' to be the locus of L along 
C', it is necessary and sufficient th1t th:: intersection of p and d.p is L 
From this reason, by a similar method to that employed in the preceding· 
article, ,ve can prove that there are t\vo curves having the said property 
besides C and accordingly, two tangent hyperplanes through L of the 
developable surfaces corresponding to them. The h1rmonic conjugate of 
the hyperplane a with respect to these hyperplanes is 

_1_[_J._a_.l~lasp_+,lp( {Pa} __ I __ !!__ log-~,li~-)Ja+ ).aar;. 
2 ff;c,la,l~ a- 2 d711p C l:ac).r;).c 

and the point reciprocal to it is 

_I_[ ,la,ls,ll,np +,lp( {'°u}-~i)d Iog-_3;~)]A+J.aAa 
2 ffac ).a)." a- 711p g"ac ,la)." 

we shall call them respectively the axis hyperplane and the axis point 
of A with respect to the given family of curves. 

From (3) and (4) we know that for Darboux curves the axis point 
and the ray point coincide. 
20 Suppose tfrit <p and ¢ are reduced to the forms 

<p = 2 dw1dw2 + da:•t 

¢1 = kw dw~ + k22dwl + 3 (k113dw~ + 2k123dw1dw2+ k223dw~) dw3 
+k"33dwt 

In this case, Darboux curws whose tangents arc i:1 the plane d.o.1 

= o are defihed by the equatio 1 

{ 
km dwi + kJJ2 d,1•1 = o, 

d,u3 = o, 
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If both k111 and k222 are different from zero, there are three distinct 
Darboux tangents on the plane dw3= o. If one of km and k2~2 is equal 
to zero, dw,1= o is a cuspidal tangent plane of (D). 

Assume that both km and k222 are different from zero. Then, in virtue 
of (3) the three ray points of A with respect to Darboux curves whose 
tangents are in the plane dw3= o are 

where 

B - I ( {I a} I a 1 km ) A+ 1 ,--- a -- -- og-- .:'11, 

2 6 awl km 

B.,=-1_( {2 a} _ _I_ --~- loo-~) A+.A., 
• 2 \ a 6 aw;J h k222 . • 

and O is an imaginary cubic root of r. 

Therfore, we have the theorem. 
Theorem XII Ld P be a pla11e ,dudt ts a polar plane o./ a nou. -

asymptotic ta11gc11t at a fot'-n! A on t/zc hypcrszt1:/ace z1;it/z respect to (D) 
as wdl as wz't/z respect to (l-1). .l.f P is not tangent to (D), tlzcte arc 
t/zrcc dzstzizct Darboux curves wlzose tangmts arc zit P and tlzc t/zrce 
ray pozizts o./ A wilh respect to them lte on a straight ltitc, 

We seall c:i.11 this line the Darboux lt'ne o.f A. 
In cases III, VII and VIII2, the same thing holds with rt:gard to 

t!te plane con;ugatc to tlze stitgular generatz"ng lt'ne o.f (D). 
We shall call the curve which is conjugate to a Darboux curw a 

.')·cgre curve. Segre curves whose tangents are in the plane dw3 = o and 
conjugate to one of the Darboux tangents in it are defined by the cqua­
tio:1 

km dwl - k222 dwi = o. 

The three ray points and the three axis points of .. d with respect to 
these curves are 

- : ( tf iY kui k222 / A + iY k2:i:i Bi+ fJi {:/ k111 B2 

and 

respectively. 
These six point-; lie 0:1 a conic whose equation referred to the coor­

dinate frame of reference in the plane dw3= o whose vertices and unit 
point are respectively 



is 

4- ~g = ku, k222 ~1 ~2-

Therefore, we have the theorem, 
Theorm XIII Let P be a plane wht'ch is a polar plane o.f a 11on­

asymptotic tangent at a point A on the hypersuiface wz'th respect to (D) 
as well as with respect to (H). I/ P zs not tangent to (D), there are 
three distinct Segre curves whose tangents are on P and confugate to one 
o.f the Darboux tangents on P and the three ray points and the three 
axis jJozizts o.f A wz'th respect to them !t'e on a come wht'ch touches the 
asymptotic tangents at A at the points where the Darboux kne of A 
t'ntersects the asymptotic tangents. 

We shall call this conic the Segre co1Uc of A. 
In cases III, VII, VIII2• the same thzizg holds witlz regard to the 

plane confugate to the singular gcneratzizg knc of (D). 

21 Consider case IV. In this case cp and ¢ can be reduced to 

cp = dwf + dw~ + dw~ 

¢ = 6 k,2:i dwr dw2 dw3 

The ray points of A with respect to three Darboux curves 

are 

r~spectively. 
The tangents whose polar planes with respect to (D) and (H) 

coincide are 
dw1=<rdw2=<r1dw3 (<r,<rr=+ror-1) 

and their polar planes are 

( 5 ) dw1 + <r dw2 + <r1 dw3 = o. 

The Darboux curves whose tangents lie on one of the planes (5) are 
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Corresponding to each of the planes (5), there are three Segre curves 
whose tangents are on it and conjugate to one of the Darboux tangents 
on it. They are defined by the equations 

dw 
--

1 = u dw2 = <T1 dw3 , 
-2 

The ray points of A with respect to these Darboux curves are 

uB2-u1B3, u1B3-B1, B1-uB2• 

The ray points and the axis points of A with respect to these 
Sebrre curves are 

±2ku3A-2B1+u B 2 +<J'1 B3, 

± 2k123 A+ Bi - 2u B2 + cr1 B3, 

±2k123 A+Bi +u B:!.-2<1'1 B3, 

where in each expression, the plus sign in the coefficient of A corresponds 
to the ray point and the minus sign con;esp.:mds to the axis point. These 
points lie on the conicoid whose equation, referred to the coordinate frame 
of reference whose vertices and unit point are respectively 

A, Bi, B2, B3, A+B1+BJ+B3 
is 

(k )., (t"+ t:• t:') t·' 2 123 • .. i c.2+c.;; =3 .. ti, 

Therefore, we have the theorem. 
Theorem XIII. In case IV, all the Darboux lz'.nes o.f a point A 011 

the hypersuiface lt"e on the plane w!uch is determined by the ray points 
of A with respect to Darboux curves whose tangents are the edges o./ 
the trtangular pytaJJuii to whtch (D) degenerates, and all the Segre 
comes !te Oil the comcoid whtclt touches the cone o.f the asymptotic 
tangents at A along the curve at whz''ch the cone o.f the asymptotic 
tangents is cut by the plane on which the Darboux lt'nes o.f A lte. 
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