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It is desirable to extend the idea of the group of substitutions of a
finite number of elements, Consider the sequence of all the natural
numbers in the natural order. If we arrange them in a different order
and write them successively under the integers of the first sequence, then
we may conceive there a substitution of an infinite number of elements.
A system of such substitutions may be conditioned to form a group. But
such a definition is purely logical and would not be fruitful. To avoid it,
I consider a semi-convergent series. - If we rearrange the terms of the series
in a different order, we arrive at the idea of the substitution of an
infinite number of elements. If the series formed by the sum of differ-
ences of the corresponding terms of the given series and the terms of the
newly rearranged series be absolutely convergent, we say that the given series
admits the substitution. In such a case the two series must have equal
value. Here we touch the problem of M. Borel. On the other hand
the substitution of an infinite number of elements leads to extend the
idea of generalised cycles. But we do not give in this paper the full
discussions of the cycles and hastily go to define the group. All the
substitutions admitted by a series are proved to form a group, the group
of the series. The extended symmetric group is a system of all possible
substitutions.  This group characterizes the absolutely convergent series
and the group of the semi-convergent series is a divisor of the symmetric
group. From this we may give the series which have same group.
But the detailed theorems can not be given here.
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The difficulties of our problem lie in the fact that a semi-convergent
series contains absolutely convergent series in it. Here we give the
definition of the coefficients of substitution which serve to detect theore-
tically the absolutely convergent series contained in the semi-convergent
series.

From the coefficients of substitution, we arrive at the idea of the
exponents of substitution which have close relations with the exponent of
absolute convergency of the series.

By aid of the notion of the exponents of substitution, the existence-
theorem of the divisor of the group of the series is proved.

Next we classify all the semi-convergent series whose terms are the
same but in different arrangements. For this we introduce the idea of
equivalence of two series and all the series in a class are equivalent to
one another and they have the same sum, while the series in different
classes are not equivalent. Therefore Borel's problem becomes theoretically
to search two classes, such that a series in one class and a series in the
other shall have equal sum.

At the end by aid of Threlfall's method of proof to change the sum
of semi-convergent series of complex terms, it is proved that under the
mere condition that a series and its transformed series shall have the
same sum, a group can not in general be defined,

1. Being given a semi-convergent series
y,uqz:u1+2¢‘z+"°"'+u7;+ ...... ,
if the series

i’( 2.t ) =( u(-—zasl)#—( Z‘I_”xz)"‘"' +( 24,—2%“)4---'

be absolutely convergent, we say that the given series admits the substi-

tution
I 2 """" 7z ..... 71
‘YI sz ...... S’AL ------ Sll
where s, Sz,...8n,..., M€AN I, 2,......,#,...., but in a different order. The
series 24+ o+ --eee + 2, e is said to be Zransformed into the series
wu, oo o Eak /20 JERELY by the substitution S, and it is clear
1 2

2 k23
that the transformed series > 2 is convergent.

7

The substitution S:(ﬁ) is very different from the permutation of

a finite number of elements. Take an element, say 1, in the upper row
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of the substitution S, If s,=1, the substitution S replaces #; by wus,,
z. e, S contains a cycle (1) of one element. If 51, write 5 to the
right of 1:
I, $.

Tet @ be the integer standing upon the element 1 of the lower row of
S, we write @ to the left of 1:

a, 1, S.
If a=s,, the substitntion S contains the cycle (1 s,), if otherwise let 4=+,
we write s, to the right of s :

@, 1, Si, S
If a=s,, let ¢ be the integer standing above the integer @ in the lower
row of S, and write it to the left of @. Continuing this process, we
obtain a system of integers

CEERTREeS C Q1S S Sgrommeere Yoo e e (1)
where 1==S,, @==S,++er-
s=0, s=d, -

If this system of integers contains an infinite number of integers,
they are different with one another. If we apply S to the series > u,
any term whose suffix is an integer of the system, is replaced by the
term whose suffix is the next one in the system. Hence this system of
integers ( 1) is the generalised cycle. For example

([ 2 3 g 272 271 -I- I e )
3 1 5 Z2sereenns 22— 2 2ﬂ+ 3 .........
:( ------ 27l+2 D2PLaves 6 4 21 3 5 ...... 273_*.. 1 27l+ 3 ...... )'

If there remain some integers not contained in the cycle ( 1), with
those integers we may form another cycles. Suppose that 2 is not
contained in the cycle (1), and let

(crovenen 7@ 2 S 5 Sgreeees ) e e e ((2)
be the cycle containing 2. The cycle (1 )and (2 ) do not have common
integers., For example, if s;=s;, we must have

=1, $=a, 2=

This is absurd, since by the hypothesis 2 is not contained in (1 ).

2. If the series . w, adwmils the substitution S=(ZZ_), we have

o
Su~u, )=0 or Yu=3u,
n=1 n 7"

Since by the hypothesis the series > (2, —s,2) is absolutely convergent,
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it may be summed in any order of the terms. Consider a term (e —us,).
If si=1, (w—us;)=0; in this case consider (s;—us;) instead of (s~ 22s,).
If s;==2, we have only to consider (s—us;) and so on. Hence suppose
si%1, then in the series 37 (24,—us,), there is only a term

(et —ttss) suck that s,=1,
and we have

(2ey—2s;) + (20— 205.) = — 245, + 240
If a=s, the above sum is zero and we consider in the series > (2, — 2s,)
the term next following the term (4, —wus) except the term (2t,—us,). If
a=Fsy, there is only a term

(ety—usy) srch that b=s,,
and we have

—u51+ua+(ub—u5b)=uJ_usb°

Continuing this process, we obtain from the series >7 (#,—wus,), a

partial series

(I)=(ea— )t (ot = rse) + ty—ttsp) +++-++++ .
whose sum is zero. For if this partial series has a finite number of
terms, it is identically zero by its construction; in the other case it is
absolutely convergent. ILet (I,) be the sum of the fiast v terms of the
partial series and (e, —wus) and (#,—#s,.) be the last two consecutive
terms of it, then we have

(Iy) :(ul —le‘l) + (u‘L—ZlS‘) + (le,—usb) + """ + (ul—ml) + (z‘m—usm)
=y Usw  OF < Uspt U,
according as v is odd or even. Since the given series and its transformed
series are convergent, 2, #,, #s, s, tend to zero for v—00; we have
therefore
(I)= Zm (I,)=o0.

[
We remark that the construction of the partial series may easily
bz showa by the cycle. Since 1=s,, §=8,........., S contains the cycle
(reevinnnn@ T 5y Syeeeeeereees ),
From this we construct the partial series
(1) =(etn—vts)) + (20, —vts,) + (ety—stsy) 4 oveveeee .
If all of the terms of > (u,—wus,) are not contained in (1), coasider

the first remaining term. Suppose (uz—w#ss) be that term. Beginning
with (a;—us;) we construct a partial series (II) by the same considera-
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tion as (I) and by the same reasoning we have
(II) =o.

The partial series do not have common terms. For let (II) be
(ID=(ers—2, )+ (sta—2; Y+ (et =24, )+ ... ,
3 o [)

then as we have remarked all th= integers

Therefore (1) and (II) have no common terms.
If all the terms of 37 (s —2,) are not contained in cither (1) or

(IT), we continue the construction of the partial series and we have
Zl(u,,-—u: )=(I)+ A +-eeeeens ,
n= »

each series on the right being equal to zero. Hence we have

o

> (a—u;)=0 or Zz(n=Zusn

=1 7
Q. E. D.
This theorem may be stated as follows :
If the series 37w, and 3 us, are nol egqual, then the series

Siwa—u, ) s not absolutely convergent.

a
3. The inverse of the previous theorem is not true z ¢., when
Slu,= 2, , the series > (., —2, ) is not necessarily absolutely convergent.
2 P

For example let

o A\
I I 1 IR |
P e —F FTTPRIPD +(_I)" R ,
a=i . 2 3 4 72
_ I 2 3 4 ......... Z?Z—I 27Z ---------
2 1 4 Freecerveeres 29 29L——Tresesrres ,

2 2 30 4 30 4
> |ua—u, | =3 4 3 4 7 4T s =00.
-1 n 2 2 12 12

We may conclude easily that #he series with alternate signs do 1ot
admait the substitution,
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wn
Il
N
oo~
-

4 corecees 2P = [ DFleeceessecercran
3 ......... 2912 2P rereseecs .

+ W

M. Borel' found sufficient conditions that a series and its transformed
series shall have the equal suim. (Given a semi-convergent scries

T T Fag, A erereans ,
let s o/ SETRRRRPR L/ SETPRPRPRR
be its transformed serics (without knowing its convergency).
If #,=w,, he put
| m—n| =a,

which is called the drsplacement of the term of the m™ order. The
maximum of a, ay-+--+++++, a, is denoted by 4, and by 7, the maximum
of |2, |, | 2%ue1 |y-eee ... In cither of the following cases > 2, does
not change its sum:

lim 2,9.=o0, lim 4,| 2. |=0 or 1lm a.p.=o.

mrpo M- My

Either of these conditions is very rough. For even when the series
> 2, admits the substitution z e., when the series > (2,—v,) is absolutely
convergent, the condition of Borel may not be satisfied. For example let

3 SR U S SN SIS SN SV S S
2 3 4 5 6 7 8 9 10
XL S SN SN SN SOV SN SRS S
W3 2 4 9 6 5 8 7 10
212:45678910 ......... )
‘Vhere S (32149658710 .........

After the element 4, the corresponding clements of S are given by

3V+I 3v+2 3v+3 3V+4-.....3V+1 3v+1+1
3v-f—I 3V+l SV+3 3v+2 ______ 3\a+1_2 SVH‘*“I

yv=1, 2, 3,........._

The series >~ (nn—us) is absolutely convergent, for

b

deaene +o+ TI—_ VI+1

!+o
42 3t

1
——1

3

> w—u | = ‘I —~—I—’ +o+
n=1 n 3

I. Méthodes et problémes de théoric des fonctions, 68—73. (1922).
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|+0—|— ...... +Il I. — I |0+
! 13V 20tz 3+
1

1
' y+1_ v l+o-+- ......... s
3 3 2

1 I 2

v . T 'l:ZMﬁ77f¥ﬁ TV
32tz P42 v (3420t 2)(30+20)

A
v, ¢

where >, means thz sum of all the terms excepting the terms such as
v, % .

| 1

i - ‘ . This seies is clearly convergent. Tor the remaining
1 V_*_z v+l H
3 3

terms

5"’_. [ S ;. 2(3*—1)

yo1 3V+ 2 3v+1 l v=i (3v+ 2)3v+1

<> 4
V=1 3"

which is a'so convergent. Therefore the series > (2,—u, ). is absolutely
convergent, Now consider that

dpur=3""— 3" —2=2(3"—1) =1,

I
ZI3V+1:F :—‘773v+1.

\ s
PRI S (I— Y
s 3 33

Thus Borel's condition is not satisfiel although we have by the theorem
(=1

of N2, >lu,=>u,.
. 13

4. If the serres 3w, admits lwo substitutions, tt admits lherr
product.

Let two substitutions be

That in general the series >z, admits a substitution, say S, is
nothing but the series 37 (#,—#, ) is absolutely convergent. Thercfore

the effect of the substitution is indefferent of the order of the integers

1
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of the upper row in S, provided the integers standing under them are
the same as the integers of the upper row were in the natural order,

Therefore the effect of the substitution T is not affected when the
integers of the upper row in T are in the order of s, S+ , Syt .
Hence we may write

To determine the integers of the lower row, suppose
S, =,
then in T, under 7, there is the integer 7, ; hence we have
="l

and consequently all the integers 7y, #,:eeeee y Pyereeeee arc determined
uniquely.
By the prodiuct ST, we understand the substitution

Now the theorem stated above can easily be proved. Since the
series > 2, admits the substitution T, the series

Z(Z/n—utn):(ul—utl)—I—(uz——utn)+ ...... +(sta—20, ) + oo

is absolutely convergent; consequently its terms may be rearranged in
any order. We arrange its terms such as the first numbers in the

brackets shall be o, 2, R A , then the second numbers in
i 2 7
the brackets become 2z, , 2, ,-++- ) Uy yrires . Therefore we have
1 2 n

Z(un—utn):(usl—url)+(Zﬁs2—'%r2)+ ...... +(le-—u )+-.
which is absolutely convergenf.
On the other hand we have
27 (eta— ”’n) =3 et~y )+ 2 (”Sn - urn)-

Since the series 37z, admits the substitution S, the series > (#n—2%,) is
n

absolutely convergent, or the series > 2, admits the substitution ST,
Q. E. D.
By this proof, to determine whether the series > 2, admits the
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substitution ST or not, we may proceed as follows: First apply S on
7 2, and obtain the series which we designate by .5, 7. .,

ZZ[N.SE usl -+ usz doeeenee + %S doeereccaes

and suppose the series )7 (2, —2, ) be absolutely convergent (37 2, admits
7n

S). Secondly apply T on the new series > 2,5 and obtain the series
Z”"ST:uf’l—*-”rz—*- ...... d 22 J-eeeeeene

and suppose the series 5. (us —u,) be absolutely convergent (72,5

admits T). Then the series > #, admits the product ST.

s. If the sertes > u, adwuls a substitulion, then it admils the
nverse of the substitulion.

Tet S— ( I 2 reeees 9L eenene
- Sl SZ ------ Sn ------
be the substitution. We denote by S its inverse, then
S—l — ( S Sz e Sp orreee
I 2 ceeree FL everee
such that
SS1=S"1S=1;

1 signifies the identical substitution,

We may rearrange the integers of the upper row in S' in their
natural order without affecting the effect of thz substitution. We write
therefore

such that if s,=m, we have n=2p,, and conversely.
Since the series > 7, admits S, the series

52—, ) = (o1, —uﬂ) + (2, — uyz) e + (otn—at, ) oo
n p .
is absolutely convergent, hence the series
(us1 —u) + (us2 —aty) e + (2 . = ) eenes

is also absolutely convergent. Therefore we may rearrange its terms
such as the first numbers in the brackets shall be z4, 2, ++-- s Upyt et ;
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then the second numbers in the brackets will become Bpy 2yt Uy 4
. 1 2 2

Thus the series
(ey— Z//,I) + (2, — ”/’z) e + (2ta—u },") eeeene

is absolutely convergent, z. ¢., the series »_z, admits the inverse substitu-
tion S, Q. E. D.

A system of all substriutions which are admitled by the series Y u,
Jorms @ group.

For the system coatainsg the identical substitution a:xd if S be any
one of the substtutions of the system, then as we have proved, its
inverse S7! is admitted by the series; hence it is contained i1 the system.
Moreover if S and T be any two substitutions of the system, then as
we have provel in the preceding paragraph, their product ST is admitted
by the series; hence the product is contained in the system., It is clear
that the product of three substitutions obeys the law of association.
Therefore the system of all substitutions admitted by the series forms a
group.

This group is called the group of the serres >, If all the substi-
tutions of a group be admitted by a series, we say that the serses admsts
the group.

We remark that the series ) 2, and all its transformed series by the
substitutions of the group have the same value, (N’ 2)

6. We call the system of all possible substitutions the symzetric
group, Amn absolulely convergent series admuls lhe symmelric group,
for we may rearrange its terms in any order without affecting its property.
Conversely zf a series . a, admuts the symmetric group, lhen it must be
absolulely convergent. (It is clear if all the terms have the same sign.)

For let &, &y y Duyrereee bz the positive terms of the series > @,
and ¢, ¢yt y Cnytorer its negative terms. To construct a new series,
we arrange the terms of thes series > @, as follows :

If @ be positive, take ¢ as the first term of the new series; if &
be negative, instead of ¢, take &, as the first term of the new series.
Suppose for simplicity @, >0 and we wiite ¢=a,. If a, be positive,
take ¢: as the second term cf ths new series; if otherwise 4, the second
term. Suppose for simplicity @;<o and we write s=a,. We proceed
in this way and obtain a new series

by the rearrangement of the terms of the serics > @, where @, and a.)’
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have the different signs. The rearrangements is a substitution and hence
the series

((ll_'dll) + (az-—(lz’) Foeeevon + (ﬂn_[ln,) boesecns

should bz by the hypothesis absolutely convergent. That is impossible in
so far as the given series ) @,'is not absolutely convergent, for by the
construction

lai—a'| + |aa—a) |+ -+ la—a/ |+ =23"|a.].

To conclude these, the necessary and suflicient condition thal a
sertes ts absolutely convergent s that the series admits the symmetric
group, or lhe group of a semi-convergent series ts a divisor of the
Syinmetric group.

Certain series admit the same group. TFor example the series > 2,
and 3 (l,+a,) admit the same group, where 1 is an arbitrary constant
and >7a, is an absolutely convergent series, From this we have the
following theorem: Grven two series Y u, and Yy v, tf we can find a
constanl p such that lhe series 3 (u,~+pv,) be absolutely convergent,
then the sertes >, and Y v, adwut the same group. For in this case
the series >z, and 3 .{ —wn+ (2ta+pv,) } =3 pv, admit the same group,
7. €., >, and > o, admit the same group.

Under the same condition, consider the limit

m %,
Ny vn

If there be a partral sequence l"’, yme=1, 2, ) of the sequence
U
_— (=1, 2, ) such that for any given positive nwmber however
n
small, we have
L:— +pu 'ée
Unm,

then the partwl series Sad., and 3w, of the series T lu, and 3 v,
respectively are absolutely convergent. TFor put

Upt PO =00, T2=1, 2,00000,

then by the hypothesis the series ) a, is absolutely convergent, Hence
writing
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14 S — ’
2, + /17/,” =a,,
we have

’ ’

2, — aw,
e +pu= s

Uin I

and by the assumption, we have

| 2.

>
[ 2,

Since >7a.' is a partial series of 3 g, and any partial series of it must
be absolutely convergent, the partial series > 2, is abso'utely convergent.
Consequently the partial series ».#,’ is also absolutely convergent.

From this it follows that one of the limiting points of the set of

2.
numbers —=2—, (=1, 2,"+--- ) must be —p.

We remark that even when the terms of the series ) 2, and > 7,
satisfy the condition

lim &z —##o,

Ay g

>, + pv, may not be absolutly convergent. For cxample take

1 1 1 1
un:(— I)n s 7/7,:(—1/"—(1 + ), n=2, 3,0 ,
7 7 logz
then
im -y, p=—1.
NH»3 Z’n

But the series

1

Z (Z{n + #Z)") == Z ( —1 ‘)n—IF.__*

nlogn
is not absolutely convergent,
On the contrary let
Zunzl —L-}_I_—L*. ...... s
3 5 7
Z'Z’n_"!_—_l— +_I_~L R



then Sy = — L4 T 1
2 34 356 78

is absolutely convergent, hence the series > 7, and » 7, admit the same
group and we notice that

lim Un =1.

nyo
Un

7. We assume as usual the semi-convergent series
(2]
Zun:ul.*_uz.*_ ...... +u"+ ......
n=1l

admits the substitution

then the series
2 (ot =2, )= (e —u_vl) + (u,l_'usz) KU O R

is absolutely convergent. Now put

u.Y
0,,5(1—— z ), H=T, 2,0
Un

which we call the cogffrcients of substitution S (multiplied into 2,), then
we have

Z(Zln_us )= Zﬂnun

where the series >]| 0.||2.| is convergent. Therefore Zhe inferior limit
of. the coeffictents of substitutron 0, for 1n—00 must be zero. For if
there be a positive number &, such as

lim |6,]=e,

ki 4l

we should have

Xlttn—u; |= e 3|0l
%

which is impossible, for the series 3 |z,| is divergent.
From this it follows that fhere s an nfintte nwmber of pairs (un,
w, ) where u, and wu, have the same sign. Therefore if there be only

n n
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a finite number of pairs (., 2, ) where 2, and 2¢;, have the same sign,
n

n

the series > 2, can not admit the substitution S, Moreover tke partral
sertes formed by some of wu. whose coc¢fficients of substitution 0, 1s
greater than tn absolule value than any positive number however small

75 absohidely convergent. For let 0,, =1, 2, ---) be a partial sequ-
ence of the sequence 0,, (zz=1, 2,'++---) such that
10, |= ¢,

then the partial series 3.0,z of the series > 0., is absolutely conver-
gent where #,’ mean the terms #, which correspond to #,'. DBut since

SO 1’ | = € 3 |2 |,
the partial series > .z, of the series > #, is absolutely convergent.

From this it follws that if there be the terms z, such that #, and
u, have the different signs, the partial series formed by such terms 2z, is

n

absolutely convergent. Tfor in sush a case the corresponding coefficients
are not less than unity, in absolute value.

8. Grven a semi-convergent series y ., we can determne a number
p such thatl for any geven posileve number ¢ however small, the series
So\2 MY 45 comvergens while the series 3 |u, |t 7s drvergemt.  p s
a number postlive or zero, but somelimes 00,

To prove this, rearrange the series >.|z,| in the order of the
magnitude of its terms. Let us denote it by > a@,. For a number x, the
series Y@, ** is convergent or divergent. Suppose it be convergent, then
for any number y greater than %, the series >.@. 'Y is convergent. The
lower limit p of such numbers is the required. Since the series 3 a, is
divergent, p must be positive or zero. If for any number x however
great the series > @, ** bz divergent, then p is infinite. In any case p
is called the exponent of (absolute) convergency.

For the series

S{=1y = p=o,
n

S (—yr L _
>(—1) o P

Z( - I)"" H =00.
log#
. . . (logn)'*®
For the last series, since hm—(—gl*~=o for any numbar x, we
n>eo 7

have for » sufficiently great,
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1 I
7 (logn)'*®
which shows p=o00,
The exponent of convergency is sometimes useful, For if we choose

the pairs of terms (e, 2, ) such that the coefficients of substitution satisfy

the relation, p being finite,
10a] =0 (J2a|"*?),

the series 3> (#n—2_) is absolutely convergent. Therefore the series >ern

wMa&ﬁt&e&bﬁhﬁm1S=(?)

We remark that when x<p, the series $ 2,|#.] is not necessarily
convergent. IFor example consider the convergent series

1 1 I 1 I 1
UELEE SR S SR S
Vi vV vV vV Vi3 V3

From it we construct the series, # and ¢ being different integers,

I 1 1 1 1 I
———trr = — = e e
M1 . @1 V2 2V 2

£ terms q te;ms P terms
I I
——r v
v 2 v 2
¢ terms

which is clearly convergent, But the series
_r 44y oo I + !
(5 1 ) Y YA gy 1 )% (B 2)7*
S PPN SRS S S S S — T

&V 217" (/2" (v 2)"

is not convergent in so far as x<1. Tor its general terms are

1

I 1

— +eeet LHx— ==tz T l+a
(py n)** (2 n) t9v 2 ) (gv/ n )"

z( I _;) o
)

Hence the series is equal to the series
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(= P

which is divergent in so far as <.
9. In the following for simplicity instead of 2.|2.|% we write 2,"*%,
7. €., u,;"*" has the same sign with #, and its absolute value is ]z, |'**
If the exponent of convergency p of the series Y u, be a postlrve
number and the series 3" be convergent, where o<x<p, then the
series S unt® admils the group of the series .

Let S=(f) be any substitution of the group of the series > .#,,

then the series > (#,—u, ) is absolutely convergent. Consider the ratio
n

Zlnl+:a:_us1+1:
fE- ” >O)
Un U
n

(1) If 2, and % have different signs, excepting a finite number
of terms, we have
| < Ly, 1< |
therefore / is less than unity.
(2) If 2, and “ have the same sign, at first consider such co-
efficients of substitution ¢, which satisfy the inequalities
o<e< |0, <y,

where ¢ is less than unity and g greater than unity. By the relation

2, 2,
1——2>=0, or . =1—0,>0,
U, Uy
we have
- ® 1 —(I _Hn)l+z
f=luy|® ——2L .
075

Since 2,— 0, we have

F< 1+(1+g)**

3

z. €., f is less than a number.
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Secondly consider the coefficients such as |6,| <e. Put 1—0.=,
then 7, is positive and we have

—, 12
S= |2
I —Vn

Let # be the positive integer next greater than the integral part of x,
we have

f<I +77"+ ...... Tn
Since 7,<1+e¢, we have
S<i+(1+ep

Z. e., fis less than a number.

Thirdly consider the case where |60,| >g. In this case since g is
greater than unity and 1—46, is positive, the coefficients €, must be
negative ; hence

(/4

—-0.>g, s”=1—0n>1+g, Un o T |
U, 2%, 1+g
Now
(Z/n )1+z
—1
%
f'——lusnl n < 1
y, I
—I I—
“s” 1+g
or
f<_}'ig;’
£

L

§
”

2. ¢., fis less than a number. (If 2,=2,, then 2, "*—u, "**=0 which
n

is trivial.)
Therefore we have in all the cases

!u"uz__usnuz |=0 ( l 24— 24, ])

n

which shows that the series > #,'** admits the substitution S and hence
the group of the series ) u,.

We assumed in the above theorem that the positive number x is
less than the exponent of the series. But the theorem is also true for
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x=p. Tor x>p, the hypothesis upon the series > 2,'** is unnecessary.
In this case since the series » 2s.*" is absolutely convergent, it admits
the symmetric group, (N° 6), @ fortiors the group of the series S7#,.
For x=p, the condition of convergency of the series 3 2,'*" is necessary.

Consider for example the series >z, whose terms are monotone
decreasing in absolute value. Then by Abel's theorem the series
STat,| 1| where x is positive, is also convergent, for the factors |u,|* are
positive and decrease monotonely to zero. Therefore the series > 2.t
admits the group of the series > 2, This result will be applied for the

criterion of convergency. For the seriss >7a '*%, transformed of the
n

7

series Y.z, '* by a substitution Sz(s ) must be convergent if the series

n

> u, admits the substitution S.
10. Consider as usual the semi-convergent series .7, and the

@R\

substitution S=(;l ) We write the coefficients of substitution 8, as

k3

follows :
|0n|E lunlmn, FT= T, 2,0 nceeeeee

and we call w, the exponents of sudstitution. Accordingly we have

SHotn—2ty )= 3 00un=7" Foa, 1 F0n,
n

Since #, tends to zero for 7 —00, of the series y u, be convergent,
n

the naumber of the exponents of substiiution w, whick are nol grealer
than —1 must be fintte, 1. e., the tnferior limit of w, wmusl be greater
or equal fo —1-+o. IFor under the condition z,!+w» must tend to zero
for n—o00,

If the series > u, admits lhe substitulion S, the superior limil of
the exponents of subsirtulion must not be less thm the extonent of
convergency of the sertes Y u, For by the definition of the exponent
of convergency p, the series > 2,'*"® is not absolutely convergent where
¢ is any positive numbzr however small. (N’ 8) Ilence if the superior
limit of the cxponents of substitution w, be less than p, then except
some finite number of terms, we have

>:I”n—us I =Zl un‘1+m" >>:I”n|1+P—-e
n

which is coatrary to the assumption that the series > .z, admits the
substitution S.
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. . n-1 1
For example consider the series > (—1) —— whose exponents of
: , 7

convergency p=o and the substitution

which is admitted by the series. Here

1 _ 1 _( 1 >1+w4n+1
gr+1 4t qn+1

or
— 102(4”+3) —log 5
Wiy —
log(472+1)
In the same way
Wiy = 10g(4” +1 )—— Iog 2

log(472+3)

but since the terms of the even order are not replaced, it may be de-
signated by

Wy, =00,

2

Thus the inferjor limit of the exponents of substitution is unity while
the superior limit is 00 ; both limits being greater than the exponent of
convergency. )

11. Grven a number of subsiitulions, if the mferior limil of the
exponents of cack substitulion be grealer than zwro, then those sub-
slitutions form a group. This group is a devisor of the group of the
series.

(I) Let S= 7 ) be any one of the given substitution. We put
Sn s

U, = M, m=a, 2, (1)

n

Tet T=( ;f ) be another one of the given substitutions, then we may

write (N° 4)

T=< o )
Tn /.
L, =z e, p=a, 2, (2)
n

7

Put @, —u

n
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then the sequence g, (zz=1, 2,--++++) is nothing but the sequence of the
exponents of the substitution T. We have by the hypothesis

lim 4,>o0, lim g,>o0,
nro o

z. ¢, except some finite number, 4., p. are greater than a positive num-

ber, say =.
Let w, (#=1, 2,-+-+--) be the exponents of the product ST, then

we have

Un— 20, = ol Fon, =1, 2,000,

n

Now we want to prove that the inferior limit of w, is also positive
By (1) we have

u, =Uu,TF o1,
n

Hence by ( 2 ) we have
Un—1, = ot g 1tem
n 7.
= o P nct (o, F o+ o (3)
At first consider the exponents such as
x<h<Lg <<k

where g and /4 are any positive number however great. By ( 3 ) we have

lstn—12, | < otn| 1420+ 20| 1H0n(1 + 20| P )1 Ht0m,
n

Hence if 2.< ptn,

I%n—%r l < lunl1+)\"{l + ‘unlpn—)"’(l + Iunl)‘n)l‘*‘l*n}.
n

Since 4, and p, are greater than x>o and #, tends to zero for
2—00, the second factor on thz right lies between 1 and 3. Hence if
we put

lota|Bn=1 + |21, |¥0=20 (1 + | 20, | 2} 1+ im,
we have @, > A+ 0,

where 8, is negative but tends to zero. Therefore e>o being given
(x>¢), for sufficiently great 7, siy >N,

W K= € 700 aeeaiennnnaenenaannanns (4)
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When 4,>p, we obtain the same result interchanging simply 4.
and u, in the above discussion.
Secondly consider the exponents such as

2n>g, X< ln\<\/lh

where we assume g> /4, /4>,
By (3) we have

qu_ur I < l”nl 143, + I”n‘l-"-pw(I + !Z‘n\)\")l_'-p"‘
7%
= |u,,| 1+.P‘lz< lunP‘u—Pw"‘(I + lu,,l)‘")l""!’w} ---( 5 )
Since 4,>g>4>p, and #, tends to zero with 7, |u,|—# tends to

zero with 7z, On the other hand since |u,|*<{2,|#s, we have

1y 14
R e e j:tj"; JRNCEITATOI
1 e Vs
<(I + lunlp'”)l—‘—p""
which tends to unity for 7—00, for g, are finite and positive, z. e., the

second factor on the right of the inequality (5 ) is greater than unity
and tends to it for z—00. Hence we coaclude quite in the same way
that for sufficiently great 7, sy 72>V,

Wy X6 eeiinnren venns eevaneans (6)
Thirdly consider the exponents such as
<, <4 pa>h
where we assume <<%, £<g. The inequality

Vo, — o, | < |og,| 121 + |20, |#n—n(1 + |24, | ) L1t}
”

is also valid. Under the condition of 4,, since |#,|* tends to zero for
72—00,

(1 +p)log(r + |a, | M) < (1 + ) l2g,| ™
Consequently we have
L6, | #n=20{1 + |22, | 1480 | 2g, | n—PnelL 1) L2t [ 2
= (| 24, | €)pn—Pnell+1n)| 225 & — o,

For # sufficiently great
|22, e<1,
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while the exponent of the second factor is
At e, 2= (1= o, ) g

which becomes negative when 7 increases, for |e,|* tends to zero for
n—>00, and pu,>h>g >4, Hence we have

Hm ez, [ a=2s(1 + |2, M)l Htu=0,
nrc

Using the same notation as the first case, we have
{”" >2” + 6’"

where 0, is negative but tends to zero, or for sufficiently great 7, say
72>V,

Fourthly consider the exponents such as
L>g >k
By (3) we have

lun—”r | < iun|l+)‘”+' [”nll—HJ‘”(I + ly/”‘)‘”)l—i-p-,,_
7 R

Here we have
A,

(4 Ly Pt tea e [ (1),

Therefore '
} by
l 2, I 1+P'n([ -} l 7,{")‘1; )1 +P«;;< C(1+p‘n) log [ 2y | A 70, ”(1"""/1).
The exponents on the right is equal to
2
7
(1 +p)log |, '{I + —IL}
log|2,|

If we put

I 2, l W

log | 2.

T

since log|#,| tends to —oo and {#,|* to zero with 7, 9, is positive
and tends to zero with 7. Now the exponent is equal to

(1 +/lu) (I _77n) IOg lun l ’
therefore we have

[71”|1+Pw(1 + |u"‘)‘n>1+!’~,-:< |Z[”l(l+9'n>(l—nﬂ).
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Now the exponent on the right is

(I +'u")(l _7]"):1 +/l/t{l _771:_—77&—).

n

Since p,>/% where % is positive and great, and 7z, tends to zero for
n—»20, for 2 sufficiently great, say 72>V,

1—p,— > L

/1” 2

Consequently for 72>V,

foe,— o, | <o, 14410, EN
n
Therefore we have
Ier U, l <2 l”n | 1+)\”,
7

Yer

or l2g,—ao, | < z2le,| 2
7
hence we have according to the case, for 2>N;, (NV,=N,),

W, >F—e>x—¢,

y/3
or W, >—— —e>x—e¢,
2

(We may assume from the beginning %> 2x.)

Concluding these four cases, let N be the greatest of N, V., N;, &V,
then by (4), (6), (7), (8) for any given positive number & however
small, we have

w,>x—¢, for all n>N;

hence the inferior limit of the exponents of the substitution ST is
greater than zero 7. e., the product of the substitutions S and T belongs
to the same category as S and T,

(1) Again let S=( ”

7

> be any one of the given substitutions
and put

w,—u, =xulth m=1, 2, (g9)

7

Put for simplicity
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where w, are the exponents of the inverse sutstitution S, Now we
want to prove that the inferior limit of w, is also positive,
By (g9) we have

foeg | > 2, ) (1= {26, |2 ceeeeinnecininnn (11)
k3

Since the inferior limit of 4, is positive, we may take
A, >x>0

excepting some finite number of the exponents, Moreover #, tends to
zero for n—00. Therefore we have for sufficiently great #, say 2>,

I l”ﬂl)‘ﬂ >07

A
—_ <I +2,,)10g([ - ‘7/u )‘n)<—lu—n'L'(I +2n)'
= I”ﬂl)'n

The term on the right of the second inequality is clearly finite (even
whan 1,—00). Therefore we can find a positive number A7 such that
for >N,

|2lnl)‘n (I ‘_*‘1,,)<M

1—|eta|®n
Consequently for »>V,
(1= o212 >,
Therefore, since by (g ) and (10) |21+, = lusnll"“"», we have by (11)
gy 140> [, (1001 = g L0
> |usn|1+°’ne""

Hence A, 1——]‘1—— < Wy
log |z |
n
Therefore given a positive number e however small, we can find NV, (V, > N)
such that
w,>x—¢, Jor all n>MN.

Hence the inferior limit of the exponents of the inverse substitution S
is greater than zero z. e., the inverse substitution of the substitution S
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belongs to the same category as S.

Concluding (I) and (II), given a number of substitutions, if the
inferior limit of the exponents of each substi‘ution be greater than zero,
then those substitutions form a group. Since all these substitutions are
contained in the group of the series Y 7,, the group formed by these
substitutions is a divisor of the group of the series.

12. Let P=<;l ) be any substitution, S:( f ) be any owne of
the substitutions of the group 1 of the series 3 at., lhe series }:u],
has the same group 1, provided the series Zup be convergent.

- As we have said above, without changing the cffect, we may write
the substitution S as follows :

where if g,=7m, then #,=s, and conversely. On the other hand, since
by the hypothesis, the series (2, —2, ) is absolutely convergent, we may

rearrange its terms as we please without changing its property. Now
we arrange the terms of the series > (2,—2,) so as the first numbers

n

in the brackets shall be Upy Upyeeet yUp st then we have
V2
S (etn— u&n) = (uf’l_uﬂ) + (o, ufz) +oeene +y —, Y

which is absolutely convergent; moreover we have using the notation of

N 4
Yy S=3u,

provided the series Zup be convergent.
Therefore the series >z, admits the substitution S.
Conversely let S be any substitution admitted by the series Zu‘l, then

clearly the series 3 u, admits the substitution S; hence S is contained in
the group I THence the group of the series }:’up is also I
n

If in the preceding theorem we write

Up =Ty NZT, 25eennenne ,
n
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the group of the series >z, is PI'P™Y,  For if S:( f’ ) be a substi-
h

tution of the group I', as beforc it may bz written as follows

S= f"n >

Pn /.
Now if p,=7m, then #,=s,. Find the integer such as s,=#;. Now
=, =u,. IHence

n (3 i

wy =0y, and by S, ”J’n is replaced by ﬂrn, where 2,

s n

(42
2 n

On the other hand by P, 7 is replaced by #,. By S, p, is replaced by
7, where 7,=s,=p.. Now by P77, % is replaced by /.  Ileace by
PSP, 7 is replaced by /. Therefore the series > #, admits the sub-
stitution PSP, 7, ¢, the group of ths series > oz, is PI'P™.

If a substituion P and any substitution S of 1" are such that

is replaced by u/)/. But u/,l:v, hence by S, z, is replaced by z.

PSP'=T, or PS=TP

where T is a substitution of T', then we say the substitution P and the
group are permulable which is written as follows :

PI'P'=1" or PI'=1"P.
If we write as before

Uy =Ty N1, 2, R
n

and if P and I' be permutable, then the seriss > 7z, and > @, have the
same group I, This case occurs cspzcially when the given substitution

]

is a substitution of the group I itself. Now let S:( ; ) be any one

»

of the substitution of the group I' of the series » #,, then writing

U, =y, 721D, 2,0eieaie. s
n

the series > 9, has the same group I'. If we put
Uy =Vt =T, 2,0, ,

then by the definifion of the substitution S, the scries > @, is absolutely
convergent. This is coincident with a thcorem of N’ 6.

13. If two series 3 2, and 37z, are such that the series >(ze,—2)
is absolutely convergent, then wc say the series » .z, and > 7, are
equrvalent.  We denote it by 3 u,~37v,.
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Two sertes which are equivalent to a series are equivalent to each
other. TFor if Jay~3 0, >ltta~3 w,, then 3 (2,—w,) and > (u,—1w,)
are absolutely convergent ; consequently > (z,—1,) is absolutely convergent
7, DU~ W, .

Let S be auy substitution of the group I' of the series >z, then
any series > .2,S is equivalent to the series .z, Such series form a
class. Iet P be any substitution which is not contained in the group T,
then the series 5 2,P and »2,PS are equivalent, provided the series are
convergent. Such series form another class. The series > #z,, and > 2,P
are not equivalent by the hypothesis. Therefore all the series of the
former class are not equivalent to any series of the latter class.

Therefore all the convergent seres having the same lerms as those
of the series 3w, excepling their order, can le devided tnlo classes,
such that all the series of each class are equivalent to one anolker,
while the series of one class 1s equivalent to none of the other classes.

We remark that all the series of one class have the same value,
(N° 5) Borel's problem now becomes to find ths classes such that the
sum of a series of one of the classes is equal to the sum of a series of
another class, '

14. It is natural to ask whether all the substitutions which do not
change the value of a semi-convergent series form a group. DBut in
general this question is answered negatrvely. To prove this we have
only to give a scries > .z, and two substitution P and Q such that

Sa,=0 1P =3, 0Q,
but > 2,03 2, PO.
Herr Threlfall' gave a simple proof for the possibility of changing
the sum of the semi-convergent series of complex numbsrs., 7To find the

substitutions P, Q we follow his argumeunts.
Consider a series

S=altatatastata - +a& @ At

where @w_i>0 (=1, 2, )} anl @,,.,—o0 such that

<o
Z 2n =00,

n=l

We may take the numbers am(rz=1, 2,------ ) so as the series f is semi-
convergent and its sum is equal to zero. T.et P be the substitution which

1. Bedingt convergente Reihen; Math, Zeit, 24, 212 (1925).
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transforms / into
szlll+ﬂxz'+ﬂz+(ls+llzx+/la+ """ +[l2n—l+ﬂ'22n—l+{l'_‘n+ """ .

It is clear that the series / docs not chang its value by the substitution
P. Hence we have

f=fP=o.
Now consider the scrics of complex numbers

F=fP+if =+ + (@’ +a)+ @+ ra) + -
' + ((Z:n—l + 7.“221;41) + ((l;:zn—l + iﬂ_‘n- 1) + /(l n + Z”".‘n) + """" ]
then the series is semi-convergent and

F=o.

Consider the term (@14 2a%,-1), then since @.,_; >0, and a,,., —2,

lim %:—Fo, or arc (@s,—1+ @ m-1)—> +o,

n-y»co (Z_,n_l
7. e., there is an infinite number of points in the first quadrant approach-
ing, at the limit, the real axis and the sum of the real part of such
terms is ©0 by the condition given above. Now from the first term of
the sequence @pm_1+7a%h.y (=1, 2,.+s-+:), we take /%, terms whose

arguments are less than " so that the sum of their real parts hecomes
4

greater than unity. We denote those terms by a;, a, -, @, , then we
1

have

%)
ST R(a) >1.

Na=]
This is always possible, for in any angle containing the real axis
within it, there is an infinite number of terms @.,.,+7a%,., whose sum
is infinite From the sequsnce @gn-+ 1@%n-1 (2=1, 2,--+-- ) after the term

ay, SO

, take /;—/y terms in order whose arguments are less than
1

4X2
that the sum of their real parts becomes greater than unity. We denote
them by a a veeeney dy , then

hem by ap 41, @ 4oy

/2
> R (o) >1.

n=hr1+1
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We continue this process. Now we have

o tan(arc @) <1,

arc a, —0,
n
VZ\; ol ay,)—00,

Excepting the terms a;, a,

------ we denote the remaining terms of the
series F in order by B, B;-:+:-- and let ¢(») be the number of terms a,
standing before f,, then for #—0o0,

n o(n)
2B+ > ay—o0.
v=1 vl

Next we define the integer ¥(7) such that

*m

> ji)(aV) > I,

2y
V=p@)+1

and it converges to unity for #—c9. This is always possible by the
choice of @, and a,—o.

Next e>o being given, for sufficiently great v,
by the choice of a,,

|a,— R(a,) | <eR(a).

x1(n)
Therefore for 72—00, > a,—1.
v=¢(n)+1
Hence for 7—o00
» xGvy .
_,.‘8\4 + Zav_” ’
V= V=1

and we arrange in order those terms «, before those terms 8, (z=1,

R
-
Thus we obtain a new series by the rearrangements of the

terms of the given series. Let Q bz that substitution. We shall prove
the convergency of the new series,

Suppose that among % terms of the new series, there are 72 terms
of a, and 7 terms of 3, and that
1) K<m<Ly(n+1).
Then the sum of % terms of the seties is equal to
” *m ”,
Zﬁv + >_; av + >,_\ ay

v=1 v=1 V=X n)+1
where we have
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%X(+1) Xin+1)
o)< Dl la]<z X ﬁ){ay).
v=x(m)+1 ve=x(n)+1 Ve=YX(n3+1

But ¥(7) is so defined that

ST Rla)—r1.
V=p(n)+1

On the other hand since the original series is convergent

e(n+l)
Z /Cb)(av) —0,
Vv=p(n)+1

Therefore x(7) is greater than ¢(z+41). Hence by the relations

%(n) elnt1) %(n)

> Ra)= 3 R+ > Rla)-,
v=p@)+1 v=p(n)+1 v=pn+1)+1
x(nt+1) %) x(+1)
2, (av) = >. j?(av) + PN ﬁ’)('lv)-’l ,
v=p(nt+1)+1 v=2(s+1)+1 vy (m)+1

we conclude that

x(n+1)
> (ay)—0.
v=x0+1

Consequently
"

lim| Y a]=o.
nrn y=xmn)+1

Therefore the new series converges to unity. Hence we have by the
substitution Q applied to the imaginary and real paris of £,
SQ=o, fPQO=1,

7. €., by PQ the series / changes its value. Consequently all the sub-
stttuttons which do not change the value of the series f can not construct
a group.



