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It is desirable to extend the idea of the group of substitutions of a 
finite number of elements. Consider the sequence of all the natural 
numbers in the natural order. If we arrange them in a different order 
and write them successively under the integers of the first sequence, then 
we may conceive there a substitution of an infinite number of elements. 
A system of such substitutions may be conditioned to form a group. But 
such a definition is purely logical and would not be frnitful. To avoid it, 
I consider a semi-convergent series. If we rearrange the terms of the series 
in a different order, we arrive at the idea of the substitution of an 
infinite number of elements. If the series formed by the sum of differ
ences of the corresponding terms of the given series and the terms of the 
newly rearranged series be absolutely convergent, we say that the given series 
admits the substitution. In such a case the two series must have equal 
value. Here we touch the problem of M. Borel. On the other hand 
the substitution of an infinite number of elements leads to extend the 
idea of generalised cycles. But we do not give in this paper the full 
discussions of the cycles and hastily go to define the group. All the 
substitutions admitted by a series are proved to form a group, the group 
of the series. The extended symmetric group is a system of all possible 
substitutions. This group characterizes the absolutely convergent series 
and the group of the semi-convergent series is a divisor of the symmetric 
group. From this we may give the series which have s::ime group. 
But the detailed theorems can not be given here. 
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The difficulties of our problem lie in the fact that a semi-convergent 
series contains absolutely convergent series in it. Here we give the 
definition of the coefficients of substitution which serve to detect theore
tically the absolutely convergent series contained in the semi-convergent 
series. 

From the coefficients of substitution, we arrive at the idea of the 
exponents of substitution which have close relations with the exponent of 
absolute convergency of the series. 

By aid of the notion of the exponents of substitution, the existence
theorem of the divisor of the group of the series is proved. 

Next we classify all the semi-convergent series whose terms are the 
same but in different arrangements. For this we introduce the idea of 
equivalence of two series and all the series in a class are equivalent to 
one another and they have the same sum, while the series in different 
classes are not equivalent. Therefore Borel's problem becomes theoretically 
to search two classes, such that a series in one class and a series in the 
other shall have equal sum. 

At the end by aid of Threlfall's method of proof to change the sum 
of semi-convergent series of complex terms, it is proved that under the 
mere condition that a series and its transformed series slull have the 
same sum, a group can not in general be defined. 

1 • Being given a semi-convergent series 
00 

Lu,.=u1+u-2+ ...... +u,.+ 
~1 =l 

if the series 
00 

L( u.,-us )=( Ui-Us )+( U2-Us )+ .. , +( U,,-us )+ ... 
~,=1 n l :! n 

be absolutely convergent, we s:i.y that the given series admits the substi
tution 

S=CI ~ :::::.~.:::.:.)=-( ;, ) 
where s1, s2, .. ,Sn, ... , mean 1, 2, ...... , 11, .... , but in a different order. The 
series u1 + u2 + · · · • • • + u,. + • • • · · · is said to be frans.fonncd into the series 
us + us + · · .... + us + ...... by the substitution S, and it is clear 

1 i n 

that the transformed series L us is convergent. 
" 

The substitution S= ( 1;J is very different from the permutation of 

a finite number of elements. Take an element, say 1, in the upper row 
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of the substitution S. If s1 = I, the substitution S replaces u1 by us 1, 

i: e., S contains a cycle ( I ) of one element. I£ s1 =\= 1, write s1 to the 
right of 1 : 

I, S1• 

Let a be the integer standing upon the element r of the lower row of 
S, we write a to the left of r : 

a, I, S1. 

I£ a=si, the substitntion S contains the cycle (1 s1), if otherwise let b=si, 
we write s6 to the right of s1 : 

a, I, S1, Sb• 

If a=\=sb> let c be the integer standing above the integer a in the lower 
row of S, and write it to the left of a. Continuing this process, we 
obtain a system of integers 

(••·•••·•·Ca I S1 Sb S<l--••••••·)... . .. (I) 

where I =s,,, a=Sc,•••······ 

si=b, s6 =d,····••··· 

If this system of integers contains an infinite number of integers, 
they are different with one another. If we apply S to the series .I: u,,, 

any term whose suffix is an integer of the system, is replaced by the 
term whose suffix is the next one in the system. Hence this system of 
integers ( I ) is the generalised cycle. For example 

(
r 2 3 4········· 2n 2n+1 ·····••·) 
3 I 5 2·······••2n-2 2n+3········· 

=(······21z+2 2n ·····6 4 2 1 3 s-·····2n+ 1 2n+ 3······). 

If there remain some integers not contained in the cycle ( r ), with 
those integers we may form another cycles. Suppose that 2 is not 
contained in the cycle ( 1 ), and let 

( ......... 7 a 2 S2 S, S0••·••····) ••. ( 2) 

be the cycle containing 2. The cycle ( 1 ) and ( 2 ) do not have common 

integers. For example, if s6 =si, \\e must have 

s,= 1, s2=a, 2 =c. 

This is absurd, since by the hypothesis 2 is not contained in ( 1 ). 

2. ff the serz"es I: u., admits tlze substitution S= (;,), we have 

"" 
I:(u.,-us )=o or I:u,,=I:us 
n=l n 1, 

Since by the hypothesis the series I:(u., - s,,u) is absolutely convergent, 
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it may be summed in any order of the terms. Consider a term (u1 -tts1). 

If s1 = r, (u1 -us1)=0; in this case consider (u2-us2) instead of (u1 -Us1). 
If s2 = 2, we have only to consider ( u3 - Us3) and so on. Hence suppose 
Si+ r, then in the series I: (u,.-us,,), there is only a term 

(ua-Usa) such that Sa= I, 

and we have 

(u1-usi)+(ua-Us,.) =-Us1+Ua, 

If a=s1, the above sum is zero and we consider in the series I:(u,.-us,,) 
the term next following the term (u1 -us1) except the term (ua-usa). If 

a=\=si, there is only a term 

(ub-usb) such that b=si, 

and we have 

Continuing this process, we obtain from the series I: (u" -us,.), a 
partial series 

( I )=(ui-us1 ) +(u"-usa)+ (ub-usb)+ ······"· 

whose sum is zero. For if this partial series has a finite number of 
terms, it is identically zero by its construction ; in the other case it is 
absolutely convergent. Let (I~) be the sum of the fiast v terms of the 
partial series and (u, -us1) and (u,n - Usm) be the last two consecutive 
terms of it, then we have 

(I~) = (u, -Us1) + (u., -us,) + (ub -usb) + · · · · · · + (u,-Usz) + (um -Usm) 

according as v is odd or even. Since the given series and its transfom1ed 
series are convergent, u 1, u. 11 , us1, Usm tend to zero for z; ➔OO; we have 
therefore 

(I)= km (I~)=o. 
~ ... "' 

We remark that the construction of the partial series may easily 
b:::: shown by the cycle. Since r = s,,, s1 = b, ......... , S contains the cycle 

(.,,.,,,.,a I S1 Sb"'"'"''"), 

From this we construct the partial series 

(I)= (u1 -us1) +(u.,-us ,) + (ub-usb\ + ......... . 
If all of the terms of I: (u,.-us.,,) are not contained in (I), co:1sider 

the first remaining term. Suppose (u2-us) be that term. Beginning 
with ( u2 - usJ we construct a partial series (II) by the same considera-
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tion as (I) and by the same reasoning we have 

(II) =o. 
The partial series do not hwe ccm1mon terms. For let (II) be 

(II)=(u~-us) + (u .. -us )+(u~ -us)+ ......... , 
:! " !S 

then as we have remarked all the! integers 

......... , a, 2, {1, ....•...• 

are different from any o:ie of the integers 

......... , a, 1, b, .•.•....• 

Therefore ( I ) and (II) have no common terms. 

215 

If all the terms of I: (u - us) are not contained in either (I) or 
n n 

(II), we continue the construction of the partial series and we have 

00 

I:(u,.-us )=( I )+(II)+·········, 
u=l " 

each series on the right being equal to zero. Hence we have 
00 

L (u,.-us )=o or I:u,.=I:us 
n=-1 n » 

Q. E. D. 

This theorem may be stated as follows : 
If the series I: u,. and >-:us,. are not equal, then the series 

I:(u,.-us) is not absolutely convergent. 
" 

3. The inverse of the previous theorem is not true i: e., when 

I:u,.=I:us, the series I:(u,.-us) is not necessJ.rily absolutely converg-ent 
,. " 

For example let 

00 
\ I I I n--l I I:u,.=1--+---+·········+(-1) -+ ......... , 

,.=l 2 3 4 ?l 

s-(1 2 3 4·· .... ···2n-1 21! ......... ) 
2 I 4 3 ............ 21t 21t- I ......... , 

then we have 

f(u,,-us )=(i+-1 )-(-1 +i)+(-I +-I )-(_1 +-1 )+··•=o, 
?1-l ,. 2 2 3 4 \ 3 4 

00 

7 7 Z lu,.-us I =__l_+ __ _J_ __ +--t -+························=OO. 
=l n 2 2 I 2 I 2 

We may conclude easily that the series with alternate signs do not 
admit the substitulto11. 
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2 3 4 · ·•····21l- I 21l"·•• .. •• .. ·•··) 
I 4 3 ......... 21l 21t- l ......... . 

M. Borel1 found sufficient conditions that a series and its transformed 
series shall have the equal sum. Given a semi-convergent series 

u1 +u2 +········· +u.,+·········, 

let 11
1 +v~+········· +v,.+•········ 

be its transformed series (without knmving its convergency). 
If u,,, = 7',,, he put 

i 11z-n I = a,, 

which is called the displacement of the term of the mt!' order. The 
maximum of ai, a~, ......... , a,,,, is denotL'Cl by ).,,, and by r;,,, the maximum 

of I u,, I, I u,,,+ 1 !,.... In either of the following cases LU., does 
not change its sum : 

lin1 ).mr;,,, = o, lim )._,, I u_,, I =o or lim amr;,,.=o. 
m➔oo m-+:o 1n-►<XJ 

Either of these conditions is very rough. For even when the series 
Lu,,. admits the substitutio:1 z: e., when the series L (u,, -v.,) is absolutely 
convergent, the co:idition of Borel may not be satisfied. For example let 

l l l I Ill l l LU =1 --+---+---+---+---+··· 
~ ,I 2 3 4 5 6 7 8 , 9 l 0 

l l I I I I l I I l::u, =---+1--+~--+---+---+•·· 
·,, 3 2 4 9 6 5 8 7 10 

where S=(I 2 3 4 5 6 7 8 9 10·········) 
3 2 I 4 9 6 5 8 7 IO••·•··••• 

After the element 4, the corresp,m.ding clements of S are given by 

3"+ 3 3"+4 ...... l+l 
l + 3 3" + 2 ...... 3Hl_ 2 

J.l=l, 2, 3,••••·•••. 

The series l:: ( u,. -1ts ) is absolutely convergent, for 
,,, 

r. Methodes et problcme, de theoric des fonctiom, 68-73." (1922). 
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__ II +o+······+ \ I.· 
l+2 1J"+2z + 2 

+ \-1__ I j+o+·········, 
3>+1 3Hl_ 2 

~I l+:z•+2 - l~2il=0·(/+2z't~;)(l+~i) 
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where L means th~ sum of all the terms excepting the terms snch as 
11, i 

-
1-I This se··ies is clearly convergent. For the remaining l+l I. 

which is a1so convergent. Therefore the senes L (u,, - us ) . 1s absolutely 

convergent. Now consider that 

U3,+l = 3'+1- 3' -2 = 2(3'- I) =,13>+ 1, 

I 
u3,+1=-='Y)3,+1 3'+1 ., . 

" 

Thus Bord's conditio:1 is no: satisfiei although we hwc by the theorem 

of N° 2, LU,,= LUs . ~,. 
4. · lj' the series Lu., admits two substitutions, tr admz'ts their 

product. 
Let two substitutions be 

n ······) s •..... 
;1, ' 

1l •••.•• ) 

t ...... . 
n 

That in general the series LJt,. admits a substitution, say S, is 
nothing but the series L (u.,-us) is absolutely convergent. Therefore 

" 
the effect of the substitution is indefferent of the order of the integers 
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of the upper row in S, provided the integers standing under them are 
the same as the integers of the upper row were in the natural order. 

Therefore the effect of the substitution T is not affected when the 
integers of the upper row in T arc in the order of s1, s2 , ...... , s,,, ....... 

Hence we may write 

( 
s s., ...... s """) T= l " n 
r, 1't. .. ... r., .. ..... 

To determine the integers of the lower row, suppose 

s,.=1n, 

then in T, under m, there 1s the integer t,,, ; hence we luve 

and consequently all the integers r 1, r2, ........ ·, ?'n, · ...... •arc determined 
uniquely. 

By the product ST, we understand the substitution 

ST=R=( I 2 ......... n ......... ) 
1'1 r2 ......... r,. ......... , 

Now the theorem stated above can easily be proved. Since the 
series I:,u,. admits the substitution T, the series 

Z(un-Ut) = (ui-Ut) + (u2-Ut) + ...... + (u,.-ut) + 
n l 2 n 

is absolutely convergent; co'.l.sequently its terms may be rearranged in 
any order. We arrange its terms such as the first numbers in the 

brackets shall be us , us , · · · · · · · · ·, us , · · · · · · · · ·, then the second numbers in 
1 2 n 

the brackets become ur, ur ,···· ··, ur ,······. Therefore we have 
1 2 n, 

which is absolutely convergent. 
On the other hand we have 

Since the series Z u,, admits the substitutio:1 S, the series "5:,. ( u,, - u r ) is 
n 

absolutely convergent, or the series Zu,. admits the substitution ST. 

Q. E. D. 
By this proof, to determine whether the series I:,u,. admits the 
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substitution ST or not, we may proceed as follows : First apply S on 
L Un and obtain the series which we designate by >= u,.S, t. c., 

;Cu,.S=us +us + ...... +us+ ......... 
l 2 n 

and suppose the series JC (u,. -us ) be absolutely convergent (JC tt» admits ,. 

S). Secondly apply T on the new series JC u,.S and obtain the series 

"JCunST=ur+ur + ..... +ur + ........ . 
l 2 n 

and suppose the series JC (us -ur) be absolutely convergent (Lu,.S 
n n 

admits T). Then the series JC u,. admits the product ST. 

5. .(f the series ;Cu,. admits a substzrutzon, then tr admzrs the 

inverse of the substzrution. 

Let S=(;l :2 :::::: ~ ::::::) 
be the substitution. We denote by s- 1 its inverse, then 

such that 

r signifies the identical substitution. 

We may rearrange the integers of the upper row in s- 1 in their 

natural order without affecting the effect of th:! substih1tion. We write 

therefore 

5-1=( I 2 ··•·•• 1l ·····•) 
Pt ft~ ...... Pn ...... 

such tfr:1.t if s,.==-m, we h-ive n= Pm and conversely. 

S:nce the series JC u,. admits S, the series 

JC (u,.-us) = (u1 -us)+ (u2 -us) + ...... + (u,.-u
5

) + ...... 
n 1 2 n 

is absolutely convergent, hence the series 

(us -u;)+(us -u2)+ .. · .. ·+(us -u,.)+ ...... 
l 2 n 

1s also absolutely convergent. Therefore we may rearrange its terms 

such as the first numbers in the brackets shall be u1, u2, ..... , u,., ...... ; 
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then the second numbers in the brackets will becon~e u1 , ?tp, .. ···, ztp ,· · 
1 2 n 

Thus the series 

is absolutely convergent, i: e., the series 'f:,u,. admits the inverse substitu-
tio:1 s- 1

• Q. E. D. 
A system {)fall substz'!uftons ,rrhidz are admzt!ed by the series 'f:.u,. 

.forms a group. 
For the system co:1tai11s the identical substitution a::d if S k any 

one of the subs~ituticms of the system, the:1 as we lnvc proved, its 
inverse s- 1 is admitted by the series; hence it is contained h the system. 
Moreover if S and T be any two substitutions of the system, then as 
we have provd h the preceding p:iragraph, their product ST is admitteu 
by the series ; hence the product is contained in the system. It is clear 
tint the product of three subs:itutions obeys the law of assoc1at1o:1. 
Therefore the system of all substitutions admitted by the series forms a 
group. 

This group is called. the group of the series ~u,.. If all the substi
tutions of a group be arlmitted by a series, we my th:it the series admds 
the group. 

We remark that the series 'f:.u,. and all its transformed serie3 by the 
substitutions of the group have the same value. (N' 2) 

6. We call the: system of all possible substituth1s the symmetric 
group. An absolutely convergent series admzls Ike s;mmetr/e group, 
for we may rearrange its terms in any order without affecting its property. 
Conversely if a sencs "I-;.a,. admits the symmetrz"c group, !lien tt must be 
absolutely convergent. (It is clear if all the tenTS have the same sign.) 

For let bi, b2, ...... , b,,, ..... be the positive terms of the series "I-;.a,. 
a:1d Ci, c~, ...... , c,.,- ..... its negative tern1s. To construct a new series, 

we arrange the terms of th'.! series "I-;.a,. as follows : 

If a 1 be posifr,e, take c1 as the first term of the new series ; if a1 

be negative, instead of Ci, take b1 as the first term of the new series. 
Suppose for simplicity a1 >o and we \Wite c1 =a/. If a2 be positive, 
take c2 as the second term cf the new series ; if otherwise b1 the second 
term. Suppose for simplicity a2< o and We! wr:te b1 =a/. \i\Te proceeJ 
in this way and obtain a new series 

a/ +a/+· .. · .. + a,.'+···· .. 

by the rearrangement of the terms of the series "I-;.a,., v11·herc a,. and a,.' 
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have the different signs. 'The rearrangements is a substitution and hence 
the series 

should be by the hypothes:s absolutely co:wergent. Th-it is impossible in 
so far as the given series Za,. is not absolutely convergent, for by the 

construction 

To conclude these, the naessary and sujjiczent condztz"on that a 
series is absolutely convergent is that the series admzrs the symmetric 
group, or the group of a semi"-convergent series is a divisor of the 
symmetrz'c group. 

Certain series admit the s:ime group. For example the series J:,u,. 
and >-=(Au,.+ a,,) admit the same group, where A is an arbitrary constant 
and Za,. is an absolutely convergent series. From this we have the 
following theorem: Given two series Zu,. and >-=v,,, if we can find a 
constant µ suclz tlzat the sert'cs ;_= (u,. + µv,.) be absolutely convergent, 
then the sen't·s Zu,, and :>:v,, admit tlze same group. Fo~ in this case 
the series Lu,. and L { - u,. + (u,. + µv,.)} = Zµv,. admit the same group, 
t. e., >-=u,. and Zv,, admit the s:i.me group. 

Under the same condition, consider the limit 

lim 
n---)>-OO 

u,. 
v,. 

I 

ij there be a partial sequence ~. (111= r, 2, · •··) of the sequence 
V,,,,' 

~. (n= r, 2,-----·) such that ./or any given positive number however 
Z'n 

small, we have 

tlzen the partt'al series Zu',n and Zv ,.' of the senes '5:,u,. and '5:,v,. 
resjJfc!t'vely are absolutely convergent. For put 

u,.+µv,.=a,., n=1, 2,······, 

then by the hypothesis the series >-:a,. is absolutely convergent. Hence 
writing 
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we have 

' ' ~+,'..I=~ , , ' 
V,11, V,,,, 

and by the assumption, we have 

I a.,,' I:::::,. I _ c. 
71,,,,' 

Since 2,_a,,,' is a partial ser:es of 2,.a,. and any p:utial series of it must 
be absolutely convergent, the partial series ·x:,v.,.' is abso'.utely co:,vergent. 
Consequently the partial series 2,_u,,.' is also absolutely convergent. 

From this it follows that one of the limiting p:)ints of the set of 

numbers u.,. 
v,. 

(n= 1, 2, ...... ) must be - µ. 

We remark that even when the terms of 1hc series "E,u,. and :[1•,. 
satisfy the condition 

I:u,. + µv,. may not be absolutly convergent. For cxamp!e take 

u,.=(- r)"-1-, v,.=(- 11"-1-(1 +-1-), 11=2, 3,- ..... , 
n n logn 

then 

But the series 

p.= -r.· 

~(u + tlZJ ) = "' (- I 
1
)"-

1
-

1
-

L~ " r " /~ , 1l log 1l 

is not absolutely convergent. 
On the contrary let 

I I I LUn= I --+--- +- ...... , 
3 5 7 
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then }:(u,.-v,.)=-1 ___ 1_+_1 ___ 1_ + ...... 
2 3·4 s·6 rs 
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is absolutely convergent, hence the series }:u,. and }:v,. admit the same 
group and we notice that 

Iim ~=1. 
v,. 

7. We assume as usual the semi-convergent series 

°" 
L u,.=u1 -t u2+ ...... +u,. + ...... 
n-l 

admits the substitution 

S=( I 2 ...... 

St Sz 

n ...... ) 
s,. .... .. 

then the series 
co 

L (u,.-us )= (u1 -us)+ (ui-'us) + ...... + (u,.-us) + ...... 
n-1 n l 2 ,a. 

is absolutely convergent. Now put 

which we call the coe.fficients of substz'tution S (multiplied into u,.), then 
we have 

}:(u,.-us )= LO,.u,. 
n 

where the series }:j 0,.11 u.. I is convergent. Therefore the iiifert'or kmit 
of. the coefficients o/ substilutz'on 0,. far n-oo must be zero. For if 
there be a positive number e, such as 

lim IO,.j>e, 
n-,.co 

we should have 

L I Un - Us 12= E L I Un I 
" 

which is impossible, for the series I: I u,. I is divergent. 
From this it follows that there is an zizjim'te number of pairs (u,., 

us ) where u,. a11d us have the same sign. Therefore if there be only 
n n 
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a finite number of pairs (un, u
5 

) where u,, and 2t
5 

have th:.: s1me sign, 
n n 

the series Llln can not admit the substitution S. Moreover the :Partial 
series .formed by some o.f u,. whose coeffzczi:nts o.f substitution fl,. is 
greater than ziz absolute value than any jJositt've number however small 
is absolutely co,1ver;:ent. For let O.,', (m=1, 2, .. ···) be a partial sequ
ence of the sequence 0,., (n = r , 2, • • · • • ·) such that 

IOm'I> e, 

then the partial series )-:,Om'um' of the series L.,.Onu,, is absolutely conver
gent where Un' mean the terms Un which correspond to Om'• But since 

L IOm1
Um

1
) > e ):_ lum'I, 

the partial series LUm
1 of the series L.,_U,. is absolutely convergent. 

From this it follws that if there be the terms u,. such that u,. and 
u

5 
hwe the different signs, the partial series formed by such terms u,. is ,. 

absolutely convergent. For in sush a case the corresponding coeffic:ents 
are not less than unity, in absolute value. 

8. Given a semi-conver;:ent series 'Z,u,. 7R)e can determine a 11u11zba 
p such that ./or any given positive number e however small, the seria 
I:\ u,. \ l+PH i's convergent whz"le the series 'Z I Un I 1+p-• i's d/7Jer;:cnt. p zs 
a number positive or zero, but sometimes oo. 

To prove this, rearrange the series L I u,. I in the order of the 
magnitude of its terms. Let us denote it by 'Zan. For a number x, the 
series L,_a,.1u is convergent or divergent. Suppose it be convergent, then 
for any number y greater than x, the series L.,_a,.1+Y is convergent. The 
lower limit p of such numbers is the required. Since the series I":a,. is 
divergent, p must be positive or zero. If for any number x however 
great the series L,_a,.1 u b~ divergent, then p is infinite. In any case p 
is called the exponent o.f (absolute) convergency. 

For the series 

L,.(- r)n-1_I_, 
1l 

p=o, 

L..(- r)"--~r -, p=oo. 
Iogn 

(logn)1 u 
For the last series, since Jim~~~~ 

"~"' 1t 

hwe for n sufficiently great, 

o for any numb~r x, we 
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_I_< I 
1t (log1l)l+x 

which shows p= oo. 
The exponent of convergcncy is sometimes useful, For if we choose 

the pairs of terms (un, us ) such that the coefficients of substitution s:itisfy 
" 

the relation, p being finite, 

JOnl =o(lun\P+e), 

the series I:,(u»-u ) is absolutely convergent. Therefore the series I:,u,. 
s,. 

will admit the substitution S = ( n ) 
Sn • 

We remark that wh~n x<p, the series >=un]unl is not necessarily 
convergent. For example consider the convergent series 

From it we construct the series, p and q being different integers, 

p terms q terms p terms 

q terms 

which is clearly convergent. But the: series 

is not convergent in so far as x < 1. For its general terms arc 

I +•••+ I iPv n )1
+:,: (P1/ n r"' 

=( ;., - ;., ) (1/ ;z/+x • 
Hence the series is equal to the series 
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which is divergent in so far as x < r. 
9. In the following for simplicity instead of Un I Un I", we write u,.1+", 

i: e., u,.1+"' has the same sign with Un and its absolute value is I u,. j 1+"'. 

I./ the exponent of conver,!{ency p of the series LUn be a positive 
number and the series Zu},+" be cmzverffcnt, where o<x<p, then the 
series Zu!.+"' admits the ffTOUp ef the series L,Un, 

Let S=( ~) be any substitution of the group of the series >=u,., 
then the series Z(u,.-us) is absolutely convergent. Consider the ratio 

n 

u,.1+"-u/+" 
fi ~~-,.->o, 

( 1 ) If Un and us have different signs, excepting a finite number 
n 

of terms, we have 

ju,.i+"'I < lunl, lus i+xl < ius I 
n n 

tterefore f is less than unity. 
( 2 ) If u,. and us have the same sign, at first consider such co-

n 

efficients of substitution fl,. which satisfy the inequalities 

o<e<; 18,.j ¾ff, 

where e 1s less than unity and ff greater than unity. By the relatio:1 

we have 

us us 
1--"-=8"' or -'-' = 1-8,.>o, 

u,. u,. 

I -(I -(},,_)1+"' f= lu,.I" ---'---'---o,. 

Since u,.- o, we have 

1+(1+ff)l+z ./<-~~-, 
€ 

t. e., f is less than a number. 
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Secondly consider the coefficients such as I fl,. I < e. Put 1 -0n=1)n, 

then 'T)n is positive ancl we have 

Let m be the positive integer next greater than the integral part of x, 
we have 

./< I +7Jn+•••·••7J~ • 

Since '1)n < 1 + e, we have 

./< I +(1 +e)m, 

i. e., .f is less than a number. 
Thirdly consider the case where I 0,.1 > g. In this case since g is 

greater than unity and I - (}n is positive, the coefficients (}n must be 
negative ; hence 

Now 

or 

us 
_n_=1-0,.>1 +g, 

U,,. 

1+g ./<--~-, 
g 

" 

~<-1-. 
Us I +g 

n 

I--1_ 

1+g 

i. e., f is less than a number. (If u,.=us, then u,.1+"'-us L+"'=o which 
n " 

is trivial.) 

Therefore we have in all the cases 

Ju,.1+"'-us I+zl=O(lu,.-us I) 
n n 

which shows that the series >=u,.1+z admits the substitution S and hence 
the group of the series LUn. 

We assumed in the above theorem that the positive number x is 
less than the exponent of the series. But the _theorem is also true for 
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x<p. For x >p, the hypothesis upon the series '5:,.un10 is unnecessary. 
In this case since the series L,.Un1

+z is absolutely convergent, it admits 
the symmetric group, (N° 6), a ./ortt'on· the group of the series L,.Zln, 
For x=p, the condition of convergency of the series L,.Unl+P is necessary. 

Consider for example the series L,.Un whose terms are monotone 
decreasing in absolute value. Then by Abel's theorem the series 
:Zu,. I Un I" where x is positive, is also convergent, for the factors I Un I" are 
positive and decrease monotonely to zero. Therefore the series I:,_u.,.1u 

admits the group of the series I:,_u,.. This result will be applied for the 
criterion of convergency. For the seriss Zus 10

, transformed of the ,. 

series 'E,.u,.11
"' by a substitution S=(:) must be convergent if the series 

'5:,_u,. admits the substitution S. 

10. Consider as usual the semi-convergent series >=un and the 

substitution S = ( ;: ). We write the coefficients of substitution tJ,. as 

follows: 

and we call a.1" the exponents of sztbstt"tzdton. AccorJingly we lnve 

~cu -u )-="'fJ u ="°'+u i+w,. L..:.. n s L..:.. n n /__.:,,. - n • 
n 

Since u,. tends to zero for 11---.00, (f the series >=us be convergait, 
" 

the number of the exponents o/ substitution w,. whtch are not greater 
tlum - 1 must be jinite, z: e., !he i,~fcrzor lt'mz't of co,. must be greater 
or equal to - I +o. For under the condition u,.r+w,. must tend to zero 
for n-oo. 

fl the series >=un admz'!s the sztbsfttutz'on S, the superz'or lt'mtt of 
the exponents o.f sullstztufton must not be less thm the exponent if 
convergency of the series >=u,.. For by the definitio:1 of the expo:1ent 
of co:wergency p, the series :Zu,.i+P-• is not absolutely co:wergent where 
c is any positive number however smaU. (N' 8) Hence if the superior 
limit of the cxpJnents of substitutio:1 co,. be less than p, then except 
some finite number of terms, we have 

2.---::lu,.-us I =:Zj u,.ll+w,. >:Zlu,.li+p-• 
n 

which is co:1trary to the assumption that the series >=u,. admits the 
substitution S. 



Group-Theory of Semi-Converg-ent Series. 

For example consider the series I:( - 1 y--1
-

1
- whose exponents of 

n 
convergency p= o and the substitution 

S=( I 2 3 4 5 6 7 ...... ) 
3 2 I 4 7 6 5·•·••· 

which 1s admitted by the series. Here 

4n+ I 

or 

In the same way 

ClJJn.+3 == 

---=( I )l+w4n+l 

4n+ 3 4n+ 1 

log( 4n + 3) - log 2 

log(4n + 1) 

log(4n + 1 )-log 2 

log(4n + 3) 

but since the terms of the even order are not replaced, it may be de
signated by 

W2n=OO. 

Thus the inferior limit of the exponents of substitution is unity while 

the superior limit is oo ; both limits being greater than the exponent of 
convergency. 

11. Gz"ven a number o./ substz"tutio11s, zl the zi,fenor lzim"t of the 
exponents o./ each substz"tutzon be g-reater tlzan zero, then those sub
stz"tuttons form a g-roup. This g-roup is a dtvtsor of the g-rou.P of the 
senes. 

( ) S-- ( 1Sln ) I Let be any one of the given substitution. 

u,.-us =±u,.1+),., n= I, 2, ········(I) 
n 

We put 

T T (Jt) ,,et = t,. be another one of the given substitutions, then we may 

write (N° 4) 

Put u
5

-ur=±u
5

17"l'-n, n=1, 2, ...... (2) 
n. n n 
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then the sequence µ,. ( n = 1 , 2 ,- • • • • ·) is nothing but the sequence of the 
exponents of the substitution T. We have by the hypothesis 

lim A,.>o, lim µ,.>o, 
~ ~00 

z: e., except some finite number, A,., µ,. are greater than a positive num
ber, say x. 

Let w,. ( n = I, 2 ,- • • • • ·) be the exponents of the product ST, then 
we have 

U -u =+u 1+1un 1t=1 2······ n r - n , , , • 
n 

Now we want to prove that the inferior limit of w,. is also positive 
By ( 1 ) we have 

Hence by ( 2 ) we have 

u -u = +u 1+>.,. +u 1+1L» n r -n -s 
" " 
= ±u,.I+>.,,±(u,.+u,.I+l,. )1+11-n ..... ( 3) 

At first consider the exponents such as 

x<A,.<;.g, x<µ,.<,.h, 

where g and h are any positive number however great. By ( 3 ) we have 

lu,.-ur I< /u,./ 1+1n+ ju,.j 1 +1L»(1 + I u,.j).,. )1+11-10• 

n 

Hence if An<.µ,., 

I u,.-ur I< ju,.jl+).,.{ I+ I u,.111-n-)·,.(1 + lu,.j).,.)1+11-11}. 

n 

Since An and µ,. are greater than x>o and u,. tends to zero for 
n-oo, the second factor on th~ right lies between 1 and 3. Hence if 
we put 

we have 

where o,. is negative but tends to zero. Therefore e>o being given 
(x>e), for sufficiently great 11, say n>Ni, 

w,.>x-e>o . ........................... ( 4) 
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When A,.> µn, we obtain the same rernlt interchanging simply An 
and µ,. in the above discussion. 

Secondly consider the exponents such as 

where we assume !!>hi, h1 ?,,h. 
By ( 3 ) we have 

Ju,.-u,. I< lu,,I I+).,.+ lu,.l 1+µ,,(1 + !u"l>.,,)l+µ,. 
" 

Since A,.>g>h1?,,µ,. and u,. tends to zero with n, lu,,I>.,.-µ" tends to 
zero with n. On the other hand since I u,.,j >.,, < I u,. Iµ,,, we have 

I ).) ( 1+lu I).,. )I+µ" J J I (1+ u,,J 111+µ11= " (1+ u,, µ,,) +µ,. 
1 +ju,,,µ,. 

<(1 + ju,.Jv-n)l+µ,, 

which tends to unity for n~oo, for µ,. are finite and positive, z: e., the 

second factor on the right of the inequality ( 5 ) is greater than unity 
and tends to it for n-oo. Hence we C'.X1clude quite in the same way 
that for sufficiently great n, s:ty n > N 2, 

w,,>x-E . .......................... ( 6) 

Thirdly consider the exp::ments such as 

x<A,.<;;gi, µ,.>h, 

where we assume g 1<h, ![¾![1• The inequality 

lu,.-u,. I< I u" 11+\,{ 1 + I u,,jv-,.->.,,(1 + I u,.I >.,.p+µ,.} 
n 

is also valid. Under the condition of A,,, since I u,. I >.,. tends to zero for 
n-oo, 

(1+µ11)log(1+ Ju,.!\,)<(1+µ) Ju,.l>.11 • 

Consequently we have 

For n sufficiently great 
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while the exponent of the. second factor is 

which bec)mes negative when n increases, for Ju,,\'" tends to zero for 
11-00, and p,,>li>g1>J.,,. Hence we have 

Jim lu,,\P..,-A,,(r + [u,.[\,)1+tJ.,,=o. 
t:-'J>C/.1 

Using the same notation as the first case, we have 

where o,. is negative but tends to zero, or for sufficiently grc::i.t n, say 

n>N3, 

w,.>x-c ................ ........ ( i) 

Fourthly consider the exponents such as 

J.,,>f:, 11,,>lt. 

By ( 3) we have 

\u,,-ur \ < iu,.1 1+\,+ lu,.1 1+11-,,(1 + \11,,\'11)1+µ,,_ 
" 

Here we have 

Therefore 

I 
~ \u,, I+µ,,( 1 + \u,.',.IJl+tJ.,,<c(l+11-,.)log(1t,,I + ,u,,I (l+µ,,), 

The exponents on the right is equal to 

If we put 

lu,.\'" 
log\uu\ 

si nee log I u,, I tends to - oo and I u,, I >-,, to zero with n, 1J,. is positive 
and tends to zero with n. Now the exponent is equal to 

( 1 + p,,) ( r -1),.) '.og I u,, \ , 

therefore we have 
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Now the exponent on the right is 

( + )( - )- + ( - - 7J,. ) I fl,. I 7J,, - I fl,.: I 7J,. ~- • 
\ /ln 

Since /ln > h where h is positive and great, and 7J,, tends to zero for 
n-'XJ, for n sufficiently great, say n > Ni, 

YI I 
I -1,,--·'-"- > 

p,. 2 

Consequently for n>1V,, 

1+J'."'. 
111 -··· I< lit l+A,..L 171 I :.J 

11 "'r " ' I ,. • 
II 

Therefore we have 

I u ·- u I < ? I it I I+A,, " r ... ·,: ' 
" 

or 

hence we hwe according to the case, for n>N5, (iV~-:>-M), 

or 

............... ( 8 ) 
h w,,>--· -e>x-e. 
2 

(We may assume from the beginning h>u.) 
Concluding these four cases, let N be the greatest of Ni, N~, 1Vi. N,., 

then by ( 4 ), ( 6 ), ( 7 ), ( 8) for any given positive number e however 
small, we have 

w,,>x-e, .for all n>N; 

hence the inferior limit of the exponents of the substitution ST is 
greater than zero z: e., the pro:iuct of the substitutio:1s S and T belongs 
to the same category as S and T. 

(II) Again let S = ( n ) be any one of the given substih1tions 
s,. 

and put 

u,,-us =+u,.1 +\,, 11=1, 2, ......... (9) 
" 

Put for simplicity 
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us -un= ±us l+w,. ..................... (ro) 
n n 

\Yhere w,. are the exponents of the inverse sulstitution s- 1
• Now we 

want to prove tlnt fhe inferior limit of llJ,. is also positive. 
By ( 9 ) we have 

Ins I >lu,.l(r-lu,.l\) ................... (11) 
" 

Since the inferior limit of ..l,, is positive, we may take 

excepting some finite number of the exponents. Moreover u,. tends to 
zero for n-oo. Therefore we have for sufficiently great 11, say n > N, 

r - ju,.l\>o, 

The term on the right of the second inequality is clearly finite (even 
when ..l,.-oo). Therefore we can find a positive number M such that 

for n>N, 

lu,,j\ ( +..i )<M 
I " • 

r-!u,.I\ 

Consequently for n > N, 

(1 - !u,.j\)l+),,.>e-,11. 

Therefore, since by ( 9 ) and ( 1 o) I u,, 11+\,= I us 11+"'", we have by ( 11) 
n 

lus !1+>·»> ius 11+"',,(1- lu,,!\)l+).,. 
n n 

Hence M 
,l,. t----<llJ,.. 

loglus I 
n 

Therefore given a positive number c: however small, we can find M(N, ),:N) 
such that 

Hence the inferior limit of the exponents of the inverse substitution s-1 

is greater than zero z: e., the inverse substitution of the substitution S 
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belong:; to the same category as S. 
Concluding ( I ) and ( II ) , given a number of substitutions, if the 

inferior limit of the exponents of each substi~ution be greater than zero, 

then those substitutions form a group. Since all these substitutions are 

contained in the group of the series >=u,., the group formed by these 

substitutions is a divisor of the group of the series. 

12. LetP=( 1
;) be any substz"tutz'rm, S=( 1l ) be any one of 
I'n . Sn 

the substitutzo~zs of the group I' ef the series Zu,., the series >_-:,.up 
n 

has the same group I', provided the senes >._-;.up be convergent. 
" 

As we have sai'..i above, without ch1nging the effect, we may write 

the substitution S as follows : 

where if :A=m, then r,.=sm and conversely. On the other hand, since 

by the hypothesis, the series >=(u,.-us) is absolutely convergent, we may 
n 

rearrange its terms as we please without changing its property. Now 

we arrange -the terms of th~ series Z(u,.-us) so as the first numbers ,. 

in the brackets shall be up , up , ...... , Up , .. .. .. then we have 
I 2 n 

which is abs0lutely convergent ; moreover we have using the notation of 

N" 4 

Provided the series s;:-, u be convergent. /~ P,. 

Therefore the series Zup admits the substitution S. 
n 

Conversely let S be any substitution admitted by the series )=up then 
n 

clearly the series 2----:.u,. admits the substitution S; hence S is contained in 

the group r. Hence the group of the series >=up is also r. 
n 

If in the preceding theorem we write 



TosluirJ Matsumoto. 

the group of the series X:Vn is PrP-1
• For if S=( n ) be a substi-s,, 

tntioa of the group r, as before it may b:: written as follows 

s=( p,.) 
rn . 

Now if p,.=m, then rn=sm. Find the integer such as sm=:P,. Now 
?ti> =v,., and by S, ltp is replaced by u,., where u,. -?ts -up. Hence 
-,. n ,. ,. m I 

up is replaced by ltp. But ltp =v, hence by S, 7.J,. is replacd by 'l':• 
n t I 

On the other hand by P, n is rephced by p,.. By S, p,. is replacd by 
r,,, where r,.=sm-f>,. Now by p-1, P1 is replaced by /. He:1ce by 
PSP- 1

, n is replaced by /. Therefore the series >=v,, admits the sub

stitution PSP-1
, i. e., the group of th:: series >=v,. L; PrP 1. 

If a substituion P and any substitu1ion S of l' arc such th:it 

where T is a substitution of I', then we say tl:c substitution P and the 
group are permutable which is written as follows : 

If we write as before 

up =v,,, n= 1, 2, ....•..•. , ,. 

and if P and I' be: permutable, then the seri,:s >=u,. and :Zv,. hwe the 
s:rn1e group I'. This case occurs cspxially whea the given substitution 

is a substitution of the group I' itself. Now let S = ( n ) be any o:1e 
s,. 

of the substitution of the group I' of the series )=u,., then writing 

Us ==Vn, ?t==r, 2, ......... , 
n 

the series :Zv,. has the s:m1e group I'. If we put 

then by the dcfinitio:1 of the substitutio:1 S, the series >=a,. is absolutely 
convergent. This is coincident \Yith a theorem of N" 6. 

1 3. If two series >=u,. and >=v,. are such th:i.t the series >=(u,.-v,.) 
is absolutely convergent, then we say the series >=u,. and )=1•,. are 
eqwvalent. We denote it by '"Eu,.~ '):_v,.. 
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Tzro series which are eqmvalent to a series are equivalent to each 
other. For if LU,.~L7',., Lu,.--I:'w,,, then I:'(u,.-v,.) an:1 L(u,.-w,.) 
are absolutely convergent; consequently I::(11,.-w,.) is absolutely convergent 
z: e., I:'v,.-- I:'w,.. 

Let S be any substitution of the group r of the series I:'um then 
any series I:'u,.S is equivalent to the series I:'u,.. Such series form a 
class. Let P be any substitution which is not contained in the group r, 
then the series I:'u,.P and )=u,.PS are equivalent, provided the series are 
convergent. Such series form another class. The series >=u,. and )=u,.P 
are not equivalent by the hypothesis. Therefore all the series of the 
former class are not equivalent to any series of the latter class. 

Therefore all the convergent series haziz1t![ the same terms as those 
of the series >=u,., exceptii1![ their order, can be devided info classes, 
such that all the series of each class are equzvalent to one another, 
'll'hz7e tlze series ef one class is equivalent to none of the other classes. 

We remark that all the series of one class have the same value, 
{N° 5) Borel's problem now becomes to find the classes such that the 
sum of a series of o:ie of the classes is equal to the sum of a series of 
another class. 

1 4. It is natural to ask whether all the substitutions which do not 
change the value of a semi-convergent series form a group. But in 
general this question is answered ne![atively. To prove this we have 
only to give a series I:_u,. a11d two substitution P and Q such that 

but 

Herr Threlfall I gave a simple proof for the possibility of changing 
the sum of the semi-convergent series of complex numbers. To find the 
substitutions P, Q we follow his arguments. 

Consi:ler a series 

We may take the numbers a2,.(n= r, 2, ...... ) so as the series f is semi
convergent and its sum is equal to zero. J ..et P be the substitution which 

I. Redingt convergcnte Rcihen; Math. Zeit., 24, 212 (1925). 
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transforms f into 

I~ is clear th:it the series f does nnt cbang its value by the substitution 
P. Hence we have 

f=fP=o. 

Now consider the series of complex numbers 

then the series is semi-convergent and 

F-=o. 

2 

lim ({, 2
n-l = +o, or arc (a!,,-1 +ta\,-1)- +o, 

n---,.co a~n-1 

z: e., there is an infinite number of points in the firs~ quadrant appro:ich
ing, at the limit, the real axis and the sum of the real p:1rt of such 
terms is oo by the conditio:1 given above. Now fro:11 the first term of 
the sequence a2,._1+za22,.-1 (n-=1, 2, .... ,), we take h1 terms whose 

re arguments are less th:in - so that the sum of their real parts becomes 
4 

greater than unity. We denote those terms by at, a~, ...... , ah, then we 
I 

have 

hi 
I: f2(a,.) >I. 
n-=l 

This is always possib~e, for in any angle co:1'.ainiog the real axis 
within it, there is an infinite number of terms a~,. -1 + 1a\,._1 whose sum 
is infinite From the sequc:nce a2n-l + ia\,._, (n= I, 2,""' ) after the term 

re 
a1. take /12-h1 terms in order whose argumen\s are less th-in -x- so 
~ 4 2 

that the sum of their real parts becomes greater than unity. We denote 

them by ah +I ah + 2 ...... , ah, then 
1 t 1 ' Z 
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We continue this process. Now we have 

o<tan(arc a,,)< 1, 

2 39 

Excepting the terms a1, a2, • • • • • • we denote the remaining terms of the 
series F in order by {11, {12, ...... and let <p(n) be the number of terms a, 
standing before [1,., then for n-->oo, 

Next we define the integer t(n) such that 

and it converges to unity for n-->OO, This is always possible by the 
choice of a, and a,-->o. Next e>o being given, for sufficiently great 1,1, 

by the choice of a,, 

l((n) 

Therefore for n-->OO, :Z av---+I. 
V~~(n)+l 

Hence for n-->OO 

and we arrange in order those terms a. before those terms {1. (n = 1, 2, 

...... ). Thus vve obtain a new series by the rearrangements of the 
terms of the give:1 series. Let Q b.:: th1.t substitution. We shall prove 
the convergency of the new series. 

Suppose that among k terms of the new series, there arl'! 1n terms 
of a, and n terms of {1. and that 

Then the sum of k terms of the seties is equal to 

where we have 
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But x(n) is so defined that 

On the other hand since the original series is convergent 

Therefore x(n) is greater than q,(n + r). Hence by the relations 

we conclude that 

Consequently 

,,. 
Jim I )= a, I = o. 
n+co \l=X(n)+l 

Therefore the new series converges to unity. Hence we have by the 
substitution Q applied to the imaginary and real p:trts of F, 

fQ=o, j'PQ=r, 

z". e., by PQ the series f changes its value. Consequently all the sub
stz"tutzons which do not ch,mge the value o.f the series f can not construct 
a group. 


