Group-Theory of Semi-Convergent Series

By
Toshizô Matsumoto

(Received September Io, 1926)

It is desirable to extend the idea of the group of substitutions of a finite number of elements. Consider the sequence of all the natural numbers in the natural order. If we arrange them in a different order and write them successively under the integers of the first sequence, then we may conceive there a substitution of an infinite number of elements. A system of such substitutions may be conditioned to form a group. But such a definition is purely logical and would not be fruitful. To avoid it, I consider a semi-convergent series. If we rearrange the terms of the series in a different order, we arrive at the idea of the substitution of an infinite number of elements. If the series formed by the sum of differences of the corresponding terms of the given series and the terms of the newly rearranged series be absolutely convergent, we say that the given series admits the substitution. In such a case the two series must have equal value. Here we touch the problem of M. Borel. On the other hand the substitution of an infinite number of elements leads to extend the idea of generalised cycles. But we do not give in this paper the full discussions of the cycles and hastily go to define the group. All the substitutions admitted by a series are proved to form a group, the group of the series. The extended symmetric group is a system of all possible substitutions. This group characterizes the absolutely convergent series and the group of the semi-convergent series is a divisor of the symmetric group. From this we may give the series which have same group. But the detailed theorems can not be given here.

The difficulties of our problem lie in the fact that a semi-convergent series contains absolutely convergent series in it. Here we give the definition of the coefficients of substitution which serve to detect theoretically the absolutely convergent series contained in the semi-convergent series.

From the coefficients of substitution, we arrive at the idea of the exponents of substitution which have close relations with the exponent of absolute convergency of the series.

By aid of the notion of the exponents of substitution, the existencetheorem of the divisor of the group of the series is proved.

Next we classify all the semi-convergent series whose terms are the same but in different arrangements. For this we introduce the idea of equivalence of two series and all the series in a class are equivalent to one another and they have the same sum, while the series in different classes are not equivalent. Therefore Borel's problem becomes theoretically to search two classes, such that a series in one class and a series in the other shall have equal sum.

At the end by aid of Threlfall's method of proof to change the sum of semi-convergent series of complex terms, it is proved that under the mere condition that a series and its transformed series shall have the same sum, a group can not in general be defined.

1. Being given a semi-convergent series

$$
\sum_{n=1}^{\infty} u_{n}=u_{1}+u_{2}+\cdots \cdots+u_{n}+\cdots \cdots
$$

if the series

$$
\sum_{n=1}^{\infty}\left(u_{u_{n}}-u_{s_{i}}\right)=\left(u_{1}-u_{s_{1}}\right)+\left(u_{2}-u_{s_{2}}\right)+\cdots+\left(u_{u_{i}}-u_{s_{s_{2}}}\right)+\cdots
$$

be absolutety convergent, we say that the given series admits the substitution
where $s_{1}, s_{2}, \ldots s_{n}, \ldots$, mean $1,2, \ldots \ldots, n, \ldots$, but in a different order. The series $u_{1}+u_{2}+\cdots \cdots+u_{n}+\cdots \cdots$ is said to be transformed into the series $u_{s_{1}}+u_{s_{2}}+\cdots \cdots+u_{s_{n_{2}}}+\cdots \cdots$ by the substitution S , and it is clear that the transformed series $\sum u_{s_{n}}$ is convergent.

The substitution $\mathrm{S}=\binom{n}{s_{u}}$ is very different from the permutation of a finite number of elements. Take an element, say 1, in the upper row
of the substitution S . If $s_{1}=\mathrm{I}$, the substitution S replaces u_{t} by u_{s}, i. e., S contains a cycle (I) of one element. If $s_{1} \neq \mathrm{I}$, write s_{1} to the right of I :

$$
\mathrm{I}, s_{1} .
$$

Let a be the integer standing upon the element 1 of the lower row of S , we write a to the left of I :

$$
a, \mathbf{1}, s_{1} .
$$

If $a=s_{1}$, the substitntion S contains the cycle ($\mathrm{I} s_{\mathrm{k}}$), if otherwise let $b=s_{1}$, we write s_{b} to the right of s_{1} :

$$
a, \mathrm{I}, s_{1}, s_{b} .
$$

If $a \neq s_{b}$, let c be the integer standing above the integer a in the lower row of S , and write it to the left of a. Continuing this process, we obtain a system of integers

$$
\left(\cdots \cdots \cdots \subset \text { a І } s_{1} s_{b} s_{d} \cdots \cdots \cdots\right) \ldots \text {........... І }
$$

where

$$
\begin{array}{ll}
\mathrm{I}=s_{u}, & a=s_{c}, \cdots \cdots \cdots \\
s_{1}=b, & s_{b}=d, \cdots \cdots \cdots
\end{array}
$$

If this system of integers contains an infinite number of integers, they are different with one another. If we apply S to the series $\sum u_{n}$, any term whose suffix is an integer of the system, is replaced by the term whose suffix is the next one in the system. Hence this system of integers (I) is the generalised cycle. For example

$$
\begin{aligned}
& \left(\begin{array}{llllll}
1 & 2 & 3 & 4 \cdots \cdots \cdots & 2 n & 2 n+1 \\
3 & 1 & 5 & 2 & \cdots \cdots \cdots \cdot \omega_{2 n-2} & 2 n+3 \\
1 & \cdots \cdots \cdots \cdot .
\end{array}\right) \\
& =(\cdots \cdots 2 n+22 n \cdots \cdots 642 \text { 1 } 35 \cdots \cdots 2 n+12 n+3 \cdots \cdots) \text {. }
\end{aligned}
$$

If there remain some integers not contained in the cycle (1), with those integers we may form another cycles. Suppose that 2 is not contained in the cycle (i), and let

$$
\left(\cdots \cdots \cdots \gamma \propto 2 s_{2} s_{\beta} s_{0} \cdots \cdots \cdots\right) \ldots \text {................... }
$$

be the cycle containing 2. The cycle (1) and (2) do not have common integers. For example, if $s_{\delta}=s_{1}$, we must have

$$
s_{3}=1, \quad s_{2}=a, \quad 2=c .
$$

This is absurd, since by the hypothesis 2 is not contained in (1).
2. If the series $\sum u_{a_{2}}$ admits the substitution $\mathrm{S}=\binom{n}{s_{2}}$, we have

$$
\sum_{n=1}^{\infty}\left(u_{n}-u_{s_{n}}\right)=0 \quad \text { or } \quad \sum u_{n}=\sum u_{s_{n}}
$$

Since by the hypothesis the series $\sum\left(u_{1}-s_{n} u\right)$ is absolutely convergent,
it may be summed in any order of the terms. Consider a term $\left(u_{1}-u s_{1}\right)$. If $s_{1}=1,\left(u_{1}-u_{s_{1}}\right)=0$; in this case consider $\left(u_{2}-u_{s_{2}}\right)$ instead of $\left(u_{1}-u s_{1}\right)$. If $s_{2}=2$, we have only to consider $\left(u_{3}-u_{s}\right)$ and so on. Hence suppose $s_{1} \neq 1$, then in the series $\sum\left(u_{i_{2}}-u s_{n}\right)$, there is only a term

$$
\left(u_{a}-u_{s_{a}}\right) \text { such that } s_{a}=\mathbf{1} \text {, }
$$

and we have

$$
\left(u_{1}-u s_{s_{1}}\right)+\left(u_{a}-u s_{n}\right)=-u s_{s_{1}}+u_{a} .
$$

If $a=s_{1}$, the above sum is zero and we consider in the series $\sum\left(u_{n}-u s_{n}\right)$ the term next following the term $\left(u_{1}-u s_{1}\right)$ except the term $\left(u_{a}-u s_{a}\right)$. If $a \neq s_{1}$, there is only a term

$$
\left(u_{b}-u_{s_{b}}\right) \text { such that } b=s_{1},
$$

and we have

$$
-u_{s_{1}}+u_{i}+\left(u_{b}-u_{s_{b}}\right)=u_{t}-u_{s_{b}} .
$$

Continuing this process, we obtain from the series $\sum\left(u_{u_{2}}-u_{s_{n}}\right)$, a partial series

$$
(\mathrm{I}) \equiv\left(u_{1}-u s_{l}\right)+\left(u_{u_{a}}-u s_{s_{a}}\right)+\left(u_{b}-u s_{s_{b}}\right)+\cdots \cdots \cdots
$$

whose sum is zero. For if this partial series has a finite number of terms, it is identically zero by its construction; in the other case it is absolutely convergent. Let $\left(I_{\nu}\right)$ be the sum of the fiast ν terms of the partial series and $\left(u_{l}-u_{s_{l}}\right)$ and ($\left.u_{m}-u_{s_{m}}\right)$ be the last two consecutive terms of it, then we have

$$
\begin{aligned}
\left(I_{v}\right) & =\left(u_{1}-u s_{l}\right)+\left(u_{t}-u s_{s_{l}}\right)+\left(u_{b}-u u_{s_{b}}\right)+\cdots \cdots+\left(u_{l}-u s_{l}\right)+\left(u_{m}-u s_{m}\right) \\
& =u_{\imath}-u s_{s_{m}} \text { or }-u s_{l}+u_{m},
\end{aligned}
$$

according as ν is odd or even. Since the given series and its transformed series are convergent, $u_{l}, u_{\mu}, u_{s_{l}}, u_{s_{m}}$ tend to zero for $\nu \rightarrow \infty$; we have therefore

$$
(I)=\lim _{v \rightarrow \infty}\left(I_{\nu}\right)=0 .
$$

We remark that the construction of the partial series may easily be shown by the cycle. Since $\mathrm{I}=s_{a}, s_{1}=b, \ldots \ldots \ldots, \mathrm{~S}$ contains the cycle

$$
\left(\cdots \cdots \cdots a \text { I } s_{1} s_{b} \cdots \cdots \cdots \cdots\right)
$$

From this we construct the partial series

$$
(\mathrm{I})=\left(u_{1}-u_{s_{1}}\right)+\left(u_{u}-u_{s_{l}}\right)+\left(u_{b}-u_{s_{b}}\right)+\cdots \cdots \cdots
$$

If all of the terms of $\sum\left(u_{n}-u_{s_{n}}\right)$ are not contained in (I), consider the first remaining term. Suppose $\left(u_{2}-u_{s_{2}}\right)$ be that term. Beginning with $\left(u_{2}-u s_{5_{2}}\right)$ we construct a partial series (II) by the same considera-
tion as (I) and by the same reasoning we have

$$
(\mathrm{II})=0 .
$$

The partial series do not have common terms. For let (II) be

$$
\text { (II) }=\left(u_{2}-u_{s_{2}}\right)+\left(u_{\alpha}-u_{s_{\alpha}}\right)+\left(u_{\beta}-u_{s_{\beta}}\right)+\ldots \ldots \ldots
$$

then as we have remarked all the integers

$$
\ldots \ldots \ldots, \alpha, 2, \beta, \ldots \ldots \ldots
$$

are different from any one of the integers

$$
\ldots \ldots . . ., a, \text { г }, b, \ldots \ldots \ldots
$$

Therefore (I) and (II) have no common terms.
If all the terms of $\sum\left(u_{n}-u_{s_{n}}\right)$ are not contained in either (I) or (II), we continue the construction of the partial series and we have

$$
\sum_{n=1}^{\infty}\left(u_{n}-u_{s_{n}}\right)=(\mathrm{I})+(\mathrm{II})+\cdots \cdots \cdots,
$$

each series on the right being equal to zero. Hence we have

$$
\sum_{n=1}^{\infty}\left(u_{n}-u_{s_{n}}\right)=0 \quad \text { or } \quad \sum u_{n}=\sum u_{s_{n}}
$$

> Q. E. D.

This theorem may be stated as follows:
If the series $\sum u_{n}$ and $\sum u s_{n}$ are not equal, then the series $\sum\left(u_{i}-u_{s_{u t}}\right)$ is not absolutely convergent.
3. The inverse of the previous theorem is not true i. ϵ., when $\sum u_{n}=\sum u_{s_{n}}$, the series $\sum\left(u_{u_{2}}-u_{s_{n}}\right)$ is not necessarily absolutely convergent. For example let

$$
\begin{aligned}
\sum_{n=1}^{\infty} u_{n} & =1-\frac{1}{2}+\frac{\mathrm{I}}{3}-\frac{1}{4}+\cdots \cdots \cdots+(-1)^{n-1} \frac{1}{n} \pm \cdots \cdots \cdots, \\
\mathrm{S} & =\left(\begin{array}{lllll}
1 & 2 & 3 & 4 \cdots \cdots \cdots 2 n-1 & 2 n \cdots \cdots \cdots \cdot \\
2 & 1 & 4 & 3 & \cdots \cdots \cdots \cdot 2 n \\
2 n-1 & \cdots \cdots \cdots \cdot
\end{array}\right)
\end{aligned}
$$

then we have

$$
\begin{gathered}
\sum_{n=1}^{\infty}\left(u_{n}-u_{s_{n}}\right)=\left(1+\frac{1}{2}\right)-\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+\frac{1}{4}\right)-\left(\frac{1}{3}+\frac{1}{4}\right)+\cdots=0, \\
\sum_{i=1}^{\infty}\left|u_{n}-u_{s_{n}}\right|=\frac{3}{2}+\frac{3}{2}+\frac{7}{12}+\frac{7}{12}+\cdots \cdots \cdots \cdots \cdots \cdots \cdots=\infty
\end{gathered}
$$

We may conclude easily that the series with alternate signs do not admit the substitution.

$$
\mathrm{S}=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & \cdots \cdots \cdots 2 n-1 & 2 n \cdots \cdots \cdots \cdots \cdots \\
2 & 1 & 4 & 3 & \cdots \cdots \cdots & 2 n \\
2 n-1 & \cdots \cdots \cdots
\end{array}\right) .
$$

M. Borel ${ }^{1}$ found sufficient conditions that a series and its transformed series shall have the cqual sum. Given a semi-convergent series

$$
u_{1}+u_{2}+\cdots \cdots \cdots+u_{i}+\cdots \cdots \cdots,
$$

let

$$
v_{1}+v_{2}+\cdots \cdots \cdots+v_{n}+\cdots \cdots \cdots
$$

be its transformed serics (without knowing its convergency). If $\tau_{\ell_{n}}=\tau_{\imath_{2}}$, he put

$$
|m-n| \equiv \alpha_{n}
$$

which is called the displacement of the term of the $\mathrm{m}^{\text {th }}$ order. The maximum of $a_{1}, a_{2}, \cdots \cdots \cdots, \alpha_{m}$ is denoted by λ_{m} and by γ_{m} the maximum of $\left|u_{n}\right|,\left|u_{m+1}\right|, \ldots \ldots$. In either of the following cases $\sum u_{n}$ does not change its sum:

$$
\lim _{m \rightarrow \infty} \lambda_{m} \eta_{m}=0, \quad \lim _{m \rightarrow \infty} \lambda_{i n}\left|u_{n}\right|=0 \quad \text { or } \quad \lim _{m \rightarrow \infty} \alpha_{m} \eta_{m}=0 .
$$

Either of these conditions is very rough. For even when the series $\sum u_{i}$ admits the substitution $i . e$., when the series $\sum\left(u_{i}-v_{i}\right)$ is absolutely convergent, the condition of Borel may not be satisfied. For example let

$$
\begin{aligned}
& \sum u_{i n}=\mathrm{I}-\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}-\frac{\mathrm{I}}{4}+\frac{\mathrm{I}}{5}-\frac{\mathrm{I}}{6}+\frac{\mathrm{I}}{7}-\frac{\mathrm{I}}{8}+\frac{\mathrm{I}}{9}-\frac{\mathrm{I}}{10}+\cdots \\
& \sum u_{s_{4}}=\frac{\mathrm{I}}{3}-\frac{\mathrm{I}}{2}+1-\frac{\mathrm{I}}{4}+\frac{\mathrm{I}}{9}-\frac{\mathrm{I}}{6}+\frac{\mathrm{I}}{5}-\frac{\mathrm{I}}{8}+\frac{\mathrm{I}}{7}-\frac{\mathrm{I}}{10}+\cdots
\end{aligned}
$$

where

$$
\mathrm{S}=\left(\begin{array}{ccccccccccc}
\mathrm{I} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \cdots \cdots \cdots \cdot \\
3 & 2 & 1 & 4 & 9 & 6 & 5 & 8 & 7 & 10 & \cdots \cdots \cdots \cdot
\end{array}\right)
$$

After the element 4, the corresponding elements of S are given by

$$
\begin{array}{lllll}
3^{v}+1 & 3^{v}+2 & 3^{v}+3 & 3^{\nu}+4^{\cdots} \cdots \cdots 3^{v+1} & 3^{v+1}+1 \\
3^{v}+1 & 3^{v+1} & 3^{v}+3 & 3^{v}+2 \cdots \cdots \cdot 3^{v+1}-2 & 3^{v+1}+1 \\
\nu=1, & 2, & 3, \cdots \cdots \cdots .
\end{array}
$$

The series $\sum\left(u_{n}-u_{s_{n}}\right)$ is absolutely convergent, for

$$
\sum_{n=1}^{\infty}\left|u_{n}-u_{s_{n}}\right|=\left|\mathrm{I}-\frac{1}{3}\right|+\mathrm{o}+\left|\frac{1}{3}-1\right|+\cdots \cdots+\mathrm{o}+\left|\frac{1}{3^{2}+2}-\frac{1}{3^{v+1}}\right|+0
$$

I. Méthodes et problèmés de thèoric des fonction:, 68-73. (1922).

$$
\begin{aligned}
& +\left|\frac{1}{3^{v}+4}-\frac{1}{3^{v}+2}\right|+0+\cdots \cdots+\left|\frac{1}{3^{v}+2 i+2}-\frac{1}{3^{v}+2 i}\right| \div 0+\cdots \\
& \quad+\left|\frac{1}{3^{v+1}}-\frac{1}{3^{v+1}-2}\right|+0+\cdots \cdots \cdots, \\
& \sum_{v, i}\left|\frac{1}{3^{v}+2 i+2}-\frac{1}{3^{v}+2 i}\right|=\sum_{v, i}^{-}-\frac{2}{\left(3^{v}+2 i+2\right)\left(3^{v}+2 i\right)}
\end{aligned}
$$

where $\sum_{\nu, i}$ means the sum of all the terms excepting the terms such as $\left|\frac{1}{3^{v}+2}-\frac{1}{3^{v+1}}\right|$. This se ies is clearly convergent. For the remaining terms

$$
\begin{aligned}
\sum_{v=1}^{\infty}\left|\frac{\mathbf{1}}{3^{v}+2}-\frac{1}{3^{v+1}}\right| & =\sum_{v=1}^{\infty} \frac{2\left(3^{v}-1\right)}{\left(3^{v}+2\right) 3^{v+1}} \\
& <\sum_{v=1}^{\infty} \frac{\mathbf{I}}{3^{v}}
\end{aligned}
$$

which is a'so convergent. Therefore the series $\sum_{\vec{J}}\left(u_{n}-u_{s_{i 2}}\right)$ is absolutely convergent. Now consider that

$$
\begin{aligned}
& \alpha_{3^{v+1}}=3^{v+1}-3^{\nu}-2=2\left(3^{\nu}-1\right)=\lambda_{3^{\nu+1}}, \\
& u_{3^{v+1}}=\frac{1}{3^{v+1}}=\eta_{3^{v+1,}} \\
& \lambda_{3^{v+1}} \eta_{3^{v+1}}=\frac{2}{3}\left(1-\frac{1}{3^{v}}\right) \rightarrow-\frac{2}{3} \neq 0 .
\end{aligned}
$$

Thus Borel's condition is not satisfied although we have by the theorem of $\mathrm{N}^{0}{ }_{2}, \quad \sum u_{a_{2}}=\sum u_{s}$.
4. If the series $\sum u_{a}$ admits two substitutions, it admits their product.

Let two substitutions be

$$
\left.\begin{array}{l}
\mathrm{S}=\left(\begin{array}{lllll}
\mathrm{I} & 2 & \cdots \cdots & n & \cdots \cdots \\
s_{1} & s_{2} & \cdots & s_{i 2} & \cdots \cdots
\end{array}\right), \\
\mathrm{T}=\left(\begin{array}{lllll}
\mathrm{I} & 2 & \cdots & n & n \\
t_{1} & t_{2} & \cdots & \cdots & t_{n}
\end{array} \cdots \cdots\right.
\end{array}\right) .
$$

That in general the series $\sum u_{n}$ admits a substitution, say S , is nothing but the series $\sum\left(u_{t}-u_{s_{n}}\right)$ is absolutely convergent. Therefore the effect of the substitution is indefferent of the order of the integers
of the upper row in S , provided the integers standing under them are the same as the integers of the upper row were in the natural order.

Therefore the effect of the substitution T is not affected when the integers of the upper row in T are in the order of $s_{1}, s_{3}, \cdots \cdots, s_{u}, \cdots \cdots$. Hence we may write

$$
\mathrm{T}=\left(\begin{array}{cccc}
s_{1} & s_{2} & \cdots \cdots & s_{2} \\
r_{1} & r_{2} & \cdots & \cdots
\end{array}\right)
$$

To determine the integers of the lower row, suppose

$$
s_{n}=m
$$

then in T , under m, there is the integer $t_{\text {m }}$; hence we have

$$
r_{n}=t_{m},
$$

and consequently all the integers $r_{1}, r_{2}, \cdots \cdots \cdots, r_{n}, \cdots \cdots \cdots$ are determined uniquely.

By the product ST, we understand the substitution

$$
\mathrm{ST} \equiv \mathrm{R} \equiv\left(\begin{array}{llll}
1 & 2 & \cdots \cdots \cdots & n \\
r_{1} & r_{2} & \cdots \cdots \cdots \cdots & r_{n} \cdots \cdots \cdots
\end{array}\right)
$$

Now the theorem stated above can easily be proved. Since the series $\sum u_{n}$ admits the substitution T , the series

$$
\sum\left(u_{n}-u_{t_{n}}\right)=\left(u_{1}-u_{t_{1}}\right)+\left(u_{2}-u_{t_{2}}\right)+\cdots \cdots+\left(u_{n}-u_{t_{n}}\right)+\cdots \cdot
$$

is absolutely convergent; consequently its terms may be rearranged in any order. We arrange its terms such as the first numbers in the brackets shall be $u_{s_{i}}, u_{s_{2}}, \cdots \cdots \cdots, u_{s_{n}}, \cdots \cdots \cdots$, then the second numbers in the brackets become $u_{r_{1}}, u_{r_{2}}, \cdots, u_{r_{n}}, \cdots \cdots$. Therefore we have

$$
\sum\left(u_{n}-u_{t_{n}}\right)=\left(u_{s_{1}}-u_{r_{2}}\right)+\left(u_{s_{2}}-u_{r_{2}}\right)+\cdots \cdots+\left(u_{s_{n}}-u_{r_{n}}\right)+\cdots
$$

which is absolutely convergent.
On the other hand we have

$$
\sum\left(u_{n}-u_{r_{n}}\right)=\sum\left(u_{n}-u_{s_{n}}\right)+\sum\left(u_{s_{n}}-u_{r_{n}}\right)
$$

Since the series $\sum u_{n}$ admits the substitution S , the series $\sum\left(u_{n}-u_{r_{n}}\right)$ is absolutely convergent, or the series $\sum u_{n}$ admits the substitution ST.
Q. E. D.

By this proof, to determine whether the series $\sum u_{n}$ admits the
substitution ST or not, we may proceed as follows: First apply S on $\sum u_{n}$ and obtain the series which we designate by $\sum u_{n} \mathrm{~S}, i . c$.,

$$
\sum u_{n} \mathrm{~S} \equiv u_{s_{1}}+u_{s_{2}}+\cdots \cdots+u_{s_{n}}+\cdots \cdots \cdots
$$

and suppose the series $\sum\left(u_{n}-u_{s_{n}}\right)$ be absolutely convergent ($\sum u_{n}$ admits S). Secondly apply T on the new series $\sum u_{n} \mathrm{~S}$ and obtain the series

$$
\sum u_{n} \mathrm{ST}=u_{r_{1}}+u_{r_{2}}+\cdots \cdots+u_{r_{n}}+\cdots \cdots \cdots
$$

and suppose the series $\sum\left(u_{s_{n}}-u_{r_{n}}\right)$ be absolutely convergent ($\sum u_{n} \mathrm{~S}$ admits T). Then the series $\sum u_{n}$ admits the product ST.
5. If the series $\sum u_{2}$ admits a substitution, then it admits the inverse of the substitution.

Iet

$$
\mathrm{S}=\left(\begin{array}{ccccc}
1 & 2 & \cdots & \cdots & n \\
s_{1} & s_{2} & \cdots & \cdots & s_{n} \\
s_{1} & \cdots & \cdots
\end{array}\right)
$$

be the substitution. We denote by S^{-1} its inverse, then

$$
\mathrm{S}^{-1}=\left(\begin{array}{ccccc}
s_{1} & s_{2} & \cdots \cdots & s_{n} & \cdots \cdots \\
1 & 2 & \cdots & \cdots & n
\end{array}\right)
$$

such that

$$
\mathrm{SS}^{-1}=\mathrm{S}^{-1} \mathrm{~S}=1
$$

I signifies the identical substitution.
We may rearrange the integers of the upper row in S^{-1} in their natural order without affecting the effect of the substitution. We write therefore

$$
\mathrm{S}^{-1}=\left(\begin{array}{ccccc}
1 & 2 & \cdots & \cdots & n \\
p_{1} & p_{2} & \cdots \cdots & \cdots & p_{n}
\end{array} \cdots \cdots .\right)
$$

such that if $s_{n} \equiv m$, we have $n=p_{m}$ and conversely.
Since the series $\sum u_{n}$ admits S , the series

$$
\sum\left(u_{n}-u_{s_{n}}\right)=\left(u_{1}-u_{s_{1}}\right)+\left(u_{2}-u_{s_{2}}\right)+\cdots \cdots+\left(u_{n}-u_{s_{n}}\right)+\cdots \cdots
$$

is absolutely convergent, hence the series

$$
\left(u_{s_{1}}-u_{1}\right)+\left(u_{s_{2}}-u_{2}\right)+\cdots \cdots+\left(u_{s_{n}}-u_{n}\right)+\cdots \cdots
$$

is also absolutely convergent. Therefore we may rearrange its terms such as the first numbers in the brackets shall be $u_{1}, u_{2}, \cdots \cdot, u_{n}, \cdots \cdots$;
then the second numbers in the brackets will become $u_{p_{1}}, u_{p_{2}}, \cdots, u_{p_{n}}, \cdots$ Thus the series

$$
\left(u_{1}-u_{p_{1}}\right)+\left(u_{2}-u_{p_{2}}\right)+\cdots \cdots+\left(u_{n}-u_{p_{n}}\right)+\cdots \cdots
$$

is absolutely convergent, $i . c$., the series $\sum_{n} u_{n}$ admits the inverse substitution S^{-1}.
Q. E. D.

A system of all substitutions rwhich are admitted by the series $\sum u_{n}$ forms a groutp.

For the system contains the identical substitution a :d if S be any one of the substitutions of the system, their as we have proved, its inverse S^{-1} is admitted by the series; hence it is contained i^{1} the system. Moreover if S and T be any two substitutions of the system, then as we have provel in the preceding paragraph, their product ST is admitted by the series; hence the product is contained in the system. It is clear that the product of three substitutions obeys the law of association. Therefore the system of all substitutions adınitted by the series forms a group.

This group is called the group of the series $\sum u_{n}$. If all the substitutions of a group be admitted by a series, we say that the series admits the grout.

We remark that the series $\sum u_{n}$ and all its transformed series by the substitutions of the group have the same value. ($\mathrm{N}^{\prime}{ }_{2}$)
6. We call the system of all possible substitutions the symmetric group. An absolutcly convergent series admits the symmetric group, for we may rearrange its terms in any order without affecting its property. Conversely if a series $\sum a_{n}$ admits the symmetric grout, then it must be absolutely convergent. (It is clear if all the terms have the same sign.)

For let $b_{1}, b_{2}, \cdots \cdots, b_{n}, \cdots \cdots$ be the positive terms of the series $\sum a_{n 2}$ and $c_{1}, c_{2}, \cdots \cdots, c_{n}, \cdots \cdots$ its negative terms. To construct a new series, we arrange the terms of the series $\sum a_{22}$ as follows:

If a_{1} be positive, take c_{1} as the first term of the new series; if a_{1} be negative, instead of c_{1}, take b_{1} as the first term of the new series. Suppose for simplicity $a_{1}>0$ and we write $c_{1}=a_{1}{ }^{\prime}$. If a_{2} be positive, take c_{2} as the second term of the new series; if otherwise b_{1} the second term. Suppose for simplicity $a_{2}<0$ and we write $b_{1}=a_{2}^{\prime}$. We proceed in this way and obtain a new series

$$
a_{1}^{\prime}+a_{2}^{\prime}+\cdots \cdots+a_{n 2}^{\prime}+\cdots \cdots
$$

by the rearrangement of the terms of the series $\sum a_{n}$, where a_{n} and $a_{n}{ }^{\prime}$
have the different signs. The rearrangements is a substitution and hence the series

$$
\left(a_{1}-a_{1}^{\prime}\right)+\left(a_{2}-a_{2}^{\prime}\right)+\cdots \cdots+\left(a_{n}-a_{n}^{\prime}\right)+\cdots \cdots
$$

should be by the hypothesis absolutely convergent. That is impossible in so far as the given series $\sum a_{n}$ is not absolutely convergent, for by the construction

$$
\left|a_{1}-a_{1}^{\prime}\right|+\left|a_{2}-a_{2}^{\prime}\right|+\cdots \cdots+\left|a_{n}-a_{n 2}^{\prime}\right|+\cdots \cdots=2 \sum\left|a_{n}\right| .
$$

To conclude these, the necessary and sufficient conaition that a series is absolutely convergent is that the series admits the symmetric group, or the group of a semi-convergent series is a divisor of the symmetric group.

Certain series admit the same group. For example the series $\sum 2 t_{n}$ and $\sum\left(\lambda u_{n}+a_{n}\right)$ admit the same group, where λ is an arbitrary constant and $\sum a_{n}$ is an absolutely convergent series. From this we have the following theorem: Given two series $\sum u_{n}$ and $\sum y_{n}$, if we can find a constant μ such that the series $\sum\left(u_{n}+\mu \tau_{n}\right)$ be absolutcly convergent, then the serie's $\sum u_{n}$ and $\sum v_{n}$ admit the same group. Fo: in this case the series $\sum u_{n}$ and $\sum\left\{-u_{n}+\left(u_{n}+\mu v_{n}\right)\right\}=\sum \mu z_{n}$ admit the same group, i. $e ., \sum u_{n}$ and $\sum v_{n}$ admit the same group.

Under the same condition, consider the limit

$$
\lim _{n \rightarrow \infty} \frac{z t_{n}}{v_{n}} .
$$

If there be a partial sequence $\frac{u_{m}^{\prime}{ }^{\prime}}{v_{n}^{\prime}},\left(n_{n}=1,2, \cdots\right)$ of the sequence $\frac{u_{n}}{v_{n}},(n=1,2, \cdots \cdots)$ such that for any given positive number however small, ree have

$$
\left|\frac{u_{n}^{\prime}}{v_{m}^{\prime}}+\mu\right| \geqslant \varepsilon
$$

then the partial series $\sum u_{n}^{\prime}$ and $\sum v_{n}^{\prime}$ of the series $\sum u_{n}$ and $\sum v_{n}$ respectively are absolutely convergent. For put

$$
u_{n}+\mu \tau_{n} \equiv a_{n}, \quad n=1, \quad 2, \cdots \cdots,
$$

then by the hypothesis the series $\sum a_{n}$ is absolutely convergent. Hence writing

$$
u_{m}^{\prime}+\mu v_{m}^{\prime} \equiv a_{a_{n}}^{\prime},
$$

we have

$$
\frac{u_{m}^{\prime}}{v_{m}^{\prime}}+\mu=\frac{a_{m}^{\prime}}{v_{m}^{\prime}},
$$

and by the assumption, we have

$$
\left|\frac{a_{m}^{\prime}}{v_{n}^{\prime}}\right| \geq \varepsilon
$$

Since $\sum a_{m}{ }^{\prime}$ is a partial series of $\sum a_{n}$ and any partial series of it must be absolutely convergent, the partial series $\sum v_{, \ldots}{ }^{\prime}$ is absolutely coivergent. Consequently the partial series $\sum u_{n 2}{ }^{\prime}$ is also absolutely convergent.

From this it follows that one of the limiting points of the set of numbers $\frac{u_{n}}{v_{n}},(n=1,2, \cdots \cdots)$ must be $-\mu$.

We remark that even when the terms of the series $\sum u_{n}$ and $\sum v_{n}$ satisfy the condition

$$
\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=-\mu \neq 0,
$$

$\sum u_{n}+\mu v_{n}$ may not be absolutly convergent. For example take

$$
u_{n}=(-\mathrm{I})^{n} \frac{\mathrm{I}}{n}, \quad v_{n}=(-\mathrm{I})^{n} \frac{\mathrm{I}}{n}\left(\mathrm{I}+\frac{\mathrm{I}}{\log n}\right), n=2,3, \cdots \cdots,
$$

then

$$
\lim _{n \rightarrow \infty} \frac{u_{n}}{z_{n}}=1, \quad \mu=-1
$$

But the series

$$
\sum\left(u_{n}+\mu \tau_{n}\right)=\sum(-1)^{n-1} \frac{1}{n \log n}
$$

is not absolutely convergent.
On the contrary let

$$
\begin{aligned}
& \sum u_{n}=1-\frac{1}{3}+\frac{\mathrm{I}}{5}-\frac{\mathrm{I}}{7}+\cdots \cdots, \\
& \sum v_{n}^{\prime}=\frac{\mathrm{I}}{2}-\frac{\mathrm{I}}{4}+\frac{\mathrm{I}}{6}-\frac{\mathrm{I}}{8}+\cdots \cdots
\end{aligned}
$$

then

$$
\sum\left(u_{n}-z_{n}\right)=\frac{1}{2}-\frac{1}{3 \cdot 4}+\frac{1}{5 \cdot 6}-\frac{1}{7 \cdot 8}+\cdots \cdots
$$

is absolutely convergent, hence the series $\sum u_{n}$ and $\sum v_{n}$ admit the same group and we notice that

$$
\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=\mathbf{I} .
$$

7. We assume as usual the semi-convergent series

$$
\sum_{n=1}^{\infty} u_{n}=u_{1}+u_{2}+\cdots \cdots+u_{n}+\cdots \cdots
$$

admits the substitution

$$
\mathrm{S}=\left(\begin{array}{ccccc}
1 & 2 & \cdots & \cdots & n \\
s_{1} & s_{2} & \cdots & \cdots & s_{n}
\end{array} \cdots \cdots \cdot\right)
$$

then the series

$$
\sum_{n=1}^{\infty}\left(u_{n}-u_{s_{n}}\right)=\left(u_{1}-u_{s_{1}}\right)+\left(u_{2}-u_{s_{2}}\right)+\cdots \cdots+\left(u_{n}-u_{s_{n}}\right)+\cdots \cdots
$$

is absolutely convergent. Now put

$$
\theta_{n} \equiv\left(\mathrm{I}-\frac{u_{s_{n}}}{u_{n}}\right), \quad n=\mathrm{I}, 2, \cdots \cdots
$$

which we call the coefficients of substitution S (multiplied into u_{n}), then we have

$$
\sum\left(u_{n}-u_{s_{n}}\right)=\sum \theta_{n} u_{n}
$$

where the series $\sum\left|\theta_{n}\right|\left|u_{n}\right|$ is convergent. Therefore the inferior limit of. the coefficients of substitution θ_{n} for $n \rightarrow \infty$ must be zero. For if there be a positive number ε, such as

$$
\lim _{n \rightarrow \infty}\left|\theta_{n}\right| \geq \varepsilon
$$

we should have

$$
\sum\left|u_{n}-u_{s_{n}}\right| \geq \varepsilon \sum\left|u_{n}\right|
$$

which is impossible, for the series $\sum\left|u_{n}\right|$ is divergent.
From this it follows that there is an infnite number of pairs (u_{n}, $u_{s_{n}}$) where u_{n} and $u_{s_{n}}$ have the same sign. Therefore if there be only
a finite number of pairs $\left(u_{n}, u_{s_{n}}\right)$ where u_{n} and $u_{s_{n}}$ have the same sign, the series $\sum u_{n}$ can not admit the substitution S . Moreover the partial series formed by some of u_{n} whose coefficients of substitution θ_{n} is greater than in absolute value than any positive number hoveverer small is absolutely convergent. For let $\theta_{m}{ }^{\prime},(m=1,2, \cdots \cdots)$ be a partial sequence of the sequence $\theta_{n},(n=1,2, \cdots \cdots)$ such that

$$
\left|\theta_{m}^{\prime}\right| \geq \varepsilon,
$$

then the partial series $\sum \theta_{m}^{\prime} u_{m}^{\prime}$ of the series $\sum \theta_{n^{2} u_{n}}$ is absolutely convergent where $u_{n}{ }^{\prime}$ mean the terms u_{n} which correspond to $\theta_{m}{ }^{\prime}$. But since

$$
\sum\left|\theta_{m}^{\prime} u_{m}^{\prime}\right| \geq \varepsilon \sum\left|u_{m}^{\prime}\right|
$$

the partial series $\sum u_{m}{ }^{\prime}$ of the series $\sum u_{n}$ is absolutely convergent.
From this it follws that if there be the terms u_{n} such that u_{n} and $u_{s_{n}}$ have the different signs, the partial series formed by such terms u_{n} is absolutely convergent. For in sush a case the corresponding coefficients are not less than unity, in absolute value.
8. Given a semi-convergent series $\sum u_{n}$ we can determine a mumber p such that for any given positive number ε however small, the series $\sum\left|u_{n}\right|^{1+\rho+8}$ is convergent while the series $\sum\left|u_{n}\right|^{1+\rho-8}$ is divergent. ρ is a number positive or zero, but sometimes ∞.

To prove this, rearrange the series $\sum\left|u_{n}\right|$ in the order of the magnitude of its terms. Let us denote it by $\sum a_{n}$. For a number x, the series $\sum a_{n}{ }^{1+x}$ is convergent or divergent. Suppose it be convergent, then for any number y greater than x, the series $\sum a_{n}{ }^{1+y}$ is convergent. The lower limit ρ of such numbers is the required. Since the series $\sum a_{n}$ is divergent, ρ must be positive or zero. If for any number x however great the series $\sum a_{n}{ }^{1+x}$ be divergent, then ρ is infinite. In any case ρ is called the exponent of (absolute) convergency.

For the series

$$
\begin{array}{ll}
\sum(-1)^{n-1} \frac{1}{n}, & \rho=0 \\
\sum(-1)^{n-1} \frac{1}{\sqrt{n}}, & \rho=1 \\
\sum(-1)^{n} \frac{1}{\log n}, & \rho=\infty
\end{array}
$$

For the last series, since $\lim _{n \rightarrow \infty} \frac{(\log n)^{1+x}}{n}=0$ for any number x, we have for n sufficiently great,

$$
\frac{\mathrm{I}}{n}<\frac{\mathrm{I}}{(\log n)^{1+x}}
$$

which shows $\rho=\infty$.
The exponent of convergency is sometimes useful, For if we choose the pairs of terms $\left(u u_{n}, u_{s_{n}}\right)$ such that the coefficients of substitution satisfy the relation, ρ being finite,

$$
\left|\theta_{n}\right|=o\left(\left|u_{n}\right|^{p+\varepsilon}\right)
$$

the series $\sum\left(u_{n}-u_{s_{n}}\right)$ is absolutely convergent. Therefore the series $\sum u_{n}$ will admit the substitution $\mathrm{S}=\binom{n}{s_{n}}$.

We remark that when $x<\rho$, the series $\sum u_{n}\left|u_{n}\right|$ is not necessarily convergent. For example consider the convergent series

$$
\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3}}+\cdots \cdots .
$$

From it we construct the series, p and q being different integers,

$$
\begin{aligned}
& -\underbrace{\frac{1}{q \sqrt{2}}-\cdots-\frac{1}{q \sqrt{2}}}_{q \text { terms }}+\cdots \cdots
\end{aligned}
$$

which is clearly convergent. But the series

$$
\begin{aligned}
& \frac{1}{(p \sqrt{\mathrm{I}})^{1+x}}+\cdots+\frac{\mathrm{I}}{\left(p_{1} \sqrt{1}\right)^{1+x}}-\frac{\mathrm{I}}{(q \sqrt{\mathrm{I}})^{1+x}}-\cdots-\frac{\mathrm{I}}{(q \sqrt{\mathrm{I}})^{1+x}}+\frac{\mathrm{I}}{\left(p_{\sqrt{2}}\right)^{1+x}} \\
& +\cdots+\frac{\mathrm{I}}{(p \sqrt{2})^{1+x}}-\frac{1}{(q \sqrt{2})^{1+x}}-\cdots-\frac{\mathrm{I}}{\left(q_{\sqrt{2}}\right)^{1+x}}+\cdots \cdots
\end{aligned}
$$

is not convergent in so far as $x \leqslant 1$. For its general terms are

$$
\begin{aligned}
& \frac{1}{(p \sqrt{n})^{1+x}}+\cdots+\frac{1}{(p \sqrt{n})^{2+x}}-\frac{1}{(q \sqrt{n})^{1+x}}-\cdots-\frac{1}{(q \sqrt{n})^{1+x}} \\
& =\left(\frac{1}{p^{x}}-\frac{1}{q^{x}}\right) \frac{1}{(\sqrt{n})^{1+x}} .
\end{aligned}
$$

Hence the series is equal to the series

$$
\left(\frac{\mathrm{I}}{p^{x}}-\frac{\mathrm{I}}{q^{x}}\right) \sum \frac{\mathrm{I}}{(\sqrt{u})^{1+x}}
$$

which is divergent in so far as $x \leqslant \mathrm{x}$.
9. In the following for simplicity instead of $u_{n}\left|u_{n}\right|^{x}$, we write $u_{n}{ }^{1+x}$, i. e., u_{n}^{1+x} has the same sign with u_{n} and its absolute value is $\left|u_{n}\right|^{1+x}$.

If the exponent of convergency ρ of the series $\sum u_{n}$ be a positive number and the series $\sum u_{n}^{1+x}$ be convergent, where $0<x<\rho$, then the series $\sum u_{n}^{1+x}$ admits the group of the series $\sum u_{n}$.

Let $\mathrm{S}=\binom{n}{s_{n}}$ be any substitution of the group of the series $\sum u_{n}$, then the series $\sum\left(u_{n}-u_{s_{n}}\right)$ is absolutely convergent. Consider the ratio

$$
f \equiv \frac{u_{n}^{1+x}-u_{s_{n}}^{1+x}}{u_{n}-u_{s_{n}}}>0,
$$

(i) If u_{n} and $u_{s_{n}}$ have different signs, excepting a finite number of terms, we have

$$
\left|u_{n}^{1+x}\right|<\left|u_{n}\right|, \quad\left|u_{s_{n}}{ }^{1+x}\right|<\left|u_{s_{n}}\right|
$$

therefore f is less than unity.
(2) If u_{n} and $u_{s_{n}}$ have the same sign, at first consider such coefficients of substitution θ_{n} which satisfy the inequalities

$$
0<\varepsilon \leqslant\left|\theta_{n}\right| \leqslant g
$$

where ε is less than unity and g greater than unity. By the relation

$$
\mathrm{I}-\frac{u_{s_{n}}}{u_{n}}=\theta_{n}, \text { or } \frac{u_{s_{n}}}{u_{n}}=\mathrm{I}-\theta_{n}>0
$$

we have

$$
f=\left|u_{n}\right|^{x} \frac{1-\left(\mathrm{I}-\theta_{n}\right)^{1+x}}{\theta_{n}}
$$

Since $u_{n} \rightarrow 0$, we have

$$
f<\frac{1+(1+g)^{1+x}}{\varepsilon},
$$

i. $\epsilon ., f$ is less than a number.

Secondly consider the coefficients such as $\left|\theta_{n}\right|<\varepsilon$. Put $\mathrm{I}-\theta_{n} \equiv \eta_{n}$, then η_{n} is positive and we have

$$
f=\left|u_{n}\right|^{x} \frac{\mathrm{I}-\eta_{n}^{1+x}}{\mathrm{I}-\eta_{n}}
$$

Let m be the positive integer next greater than the integral part of x, we have

$$
f<1+\eta_{n}+\cdots \cdots \cdot \eta_{n}^{m}
$$

Since $\eta_{n}<\mathrm{I}+\varepsilon$, we have

$$
f<\mathrm{I}+(\mathrm{I}+\varepsilon)^{m}
$$

i. e, f is less than a number.

Thirdly consider the case where $\left|\theta_{n}\right|>g$. In this case since g is greater than unity and $\mathrm{I}-\theta_{n}$ is positive, the coefficients θ_{n} must be negative ; hence

$$
-\theta_{n}>g, \quad \frac{u_{s_{n}}}{u_{n}}=\mathrm{I}-\theta_{n}>\mathrm{I}+g, \quad \frac{u_{n}}{u_{s_{n}}}<\frac{\mathrm{I}}{\mathrm{I}+g}
$$

Now

$$
f=\left|u_{s_{n}}\right|^{x} \frac{\left(\frac{u_{n}}{u_{s_{n}}}\right)^{1+x}-1}{\frac{u_{n}}{u_{s_{n}}}-1}<\frac{1}{1-\frac{1}{1+g}}
$$

or

$$
f<\frac{1+g}{g}
$$

2. ϵ., f is less than a number. (If $u_{n}=u_{s_{n}}$, then $u_{n}^{1+x}-u_{s_{n}}{ }^{1+x}=0$ which is trivial.)

Therefore we have in all the cases

$$
\left|u_{n}^{1+x}-u_{s_{n}}^{1+x}\right|=O\left(\left|u_{n}-u_{s_{n}}\right|\right)
$$

which shows that the series $\sum u_{n}{ }^{1+x}$ admits the substitution S and hence the group of the series $\sum u_{n}$.

We assumed in the above theorem that the positive number x is less than the exponent of the series. But the theorem is also true for
$x \leq \rho$. For $x>\rho$, the hypothesis upon the series $\sum u_{n}^{1+x}$ is unnecessary. In this case since the series $\sum u_{n}{ }^{1+x}$ is absolutely convergent, it admits the symmetric group, $\left(\mathrm{N}^{\circ} 6\right)$, a fortiori the group of the series $\sum u_{n}$. For $x=\rho$, the condition of convergency of the series $\sum u_{n}^{1+\rho}$ is necessary.

Consider for example the series $\sum u_{n}$ whose terms are monotone decreasing in absolute value. Then by Abel's theorem the series $\sum u_{n}\left|u_{n}\right|^{x}$ where x is positive, is also convergent, for the factors $\left|u_{n}\right|^{x}$ are positive and decrease monotonely to zero. Therefore the series $\sum u_{n}^{1+x}$ admits the group of the series $\sum u_{n}$. This result will be applied for the criterion of convergency. For the seriss $\sum u_{s_{n}}{ }^{1+x}$, transformed of the series $\sum u_{n}^{1+x}$ by a substitution $\mathrm{S}=\binom{n}{s_{n}}$ must be convergent if the series $\sum u_{n}$ admits the substitution S .
10. Consider as usual the semi-convergent series $\sum u_{n}$ and the substitution $\mathrm{S}=\binom{n}{s_{n}}$. We write the coefficients of substitution θ_{n} as follows:

$$
\left|\theta_{n}\right| \equiv\left|u_{n}\right| \omega_{n}, n=1,2, \cdots \cdots \cdots
$$

and we call ω_{n} the exponents of substitution. Accordingly we have

$$
\sum\left(u_{n}-u_{s_{n}}\right)=\sum \theta_{n} u_{n}=\sum \pm u_{n}^{\mathrm{I}}+\omega_{n} .
$$

Since u_{n} tends to zero for $n \rightarrow \infty$, if the series $\sum u_{s_{n}}$ be convergent, the number of the exponents of substitution ω_{n} wohich are not greater than - 1 must be finite, i. ϵ., the inferior limit of ω_{n} must be greater or equal to $-\mathrm{I}+\mathrm{o}$. For under the condition $u_{n}{ }^{\mathrm{I}}+\omega_{n}$ must tend to zero for $n \rightarrow \infty$.

If the series $\sum u_{n}$ admits the substitution S , the superior limit of the exponents of substitution must not be less thrn the exponent of convergency of the series $\sum u_{n}$. For by the definition of the exponent of convergency ρ, the series $\sum u_{n}^{1+\rho-8}$ is not absolutely convergent where $\boldsymbol{\varepsilon}$ is any positive number however small. ($\mathrm{N}^{\supset} 8$) Hence if the superior limit of the exponents of substitution ω_{n} be less than ρ, then except some finite number of terms, we have

$$
\sum\left|u_{n}-u_{s_{n}}\right|=\sum\left|u_{n}\right|^{1+\omega_{n}}>\sum\left|u_{n}\right|^{1+p-q}
$$

which is contrary to the assumption that the series $\sum u_{n}$ admits the substitution S .

For example consider the series $\Sigma(-1)^{n-1} \frac{\mathrm{I}}{n}$ whose exponents of convergency $\rho=0$ and the substitution

$$
\mathrm{S}=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
3 & 2 & 1 & 4 & 7 & 6 & \cdots
\end{array}\right)
$$

which is admitted by the series. Here

$$
\frac{1}{4 n+1}-\frac{1}{4 n+3}=\left(\frac{1}{4 n+1}\right)^{1+\omega_{4 n+1}}
$$

or

$$
\omega_{12+1}=\frac{\log (4 n+3)-\log 2}{\log (4 n+1)} .
$$

In the same way

$$
\omega_{t n+3}=\frac{\log (4 n+1)-\log 2}{\log (4 n+3)} ;
$$

but since the terms of the even order are not replaced, it may be designated by

$$
\omega_{2 n}=\infty .
$$

Thus the inferior limit of the exponents of substitution is unity while the superior limit is ∞; both limits being greater than the exponent of convergency.
11. Given a number of substitutions, if the inferior limit of the exponents of each substitution be greater than zero, then those substitutions form a group. This group is a divisor of the group of the series.
(I) Let $\mathrm{S}=\binom{n}{s_{n}}$ be any one of the given substitution. We put

$$
u_{n}-u_{s_{n}}= \pm u_{n}^{1}+\lambda_{n}, \quad n=1,2, \ldots \ldots \text { (} 1 \text {) }
$$

Let $\mathrm{T}=\binom{n}{t_{n}}$ be another one of the given substitutions, then we may write (N_{4}°)

$$
\mathrm{T}=\binom{s_{n}}{r_{n}}
$$

Put

$$
u_{s_{n}}-u_{r_{n}}= \pm u_{s_{n}} 1+\mu_{n}, \quad u=1,2, \ldots \ldots \text { (2) }
$$

then the sequence $\mu_{n}(n=1,2, \cdots \cdots)$ is nothing but the sequence of the exponents of the substitution T. We have by the hypothesis

$$
\lim _{n \rightarrow \infty} \lambda_{n}>0, \quad \lim _{n \rightarrow \infty} \mu_{n}>0,
$$

i. ϵ., except some finite number, λ_{n}, μ_{n} are greater than a positive number, say x.

Let $\omega_{n}(n=\mathrm{I}, 2, \cdots \cdots)$ be the exponents of the product ST, then we have

$$
u_{n}-u_{r_{n}}= \pm u_{n}^{1+\omega_{n}}, n=1,2, \cdots \cdots
$$

Now we want to prove that the inferior limit of ω_{n} is also positive By (1) we have

$$
u_{s_{n}}=u_{n} \mp u_{n}^{1+\lambda_{n}}
$$

Hence by (2) we have

$$
\begin{aligned}
u_{n}-u_{r_{n}} & = \pm u_{n}^{1+\lambda_{n}} \pm u_{s_{n}} 1+\mu_{n} \\
& = \pm u_{n}^{1+\lambda_{n}} \pm\left(u_{n} \mp u_{n}^{1}+\lambda_{n}\right)^{1+\mu_{n}} \ldots . .(3)
\end{aligned}
$$

At first consider the exponents such as

$$
x<\lambda_{n} \leqslant g, \quad x<\mu_{n} \leqslant h,
$$

where g and h are any positive number however great. By (3) we have

$$
\left|u_{n}-u_{r_{n}}\right|^{<}\left|u_{n}\right|^{1+\lambda_{n}}+\left|u_{n}\right|^{1+}+u_{n}\left(\mathrm{I}+\left|u_{n}\right|^{n}\right)^{1+}+\mu_{n} .
$$

Hence if $\lambda_{n} \leqslant \mu_{n}$,

$$
\left.\left|u_{n}-u_{r_{n}}\right|<\left|u_{n}\right|^{1+\lambda_{n}\{1} 1+\left|u_{n}\right| \mu_{n}-\lambda_{n}\left(1+\left|u_{n}\right|^{\lambda_{n}}\right)^{1+\mu_{n}}\right\} .
$$

Since λ_{n} and μ_{n} are greater than $x>0$ and u_{n} tends to zero for $n \rightarrow \infty$, the second factor on the right lies between 1 and 3. Hence if we put

$$
\left|u_{n}\right|_{\delta_{n}} \equiv 1+\left|u_{n}\right| u_{n}-\lambda_{n 2}\left(\mathrm{I}+\left|u_{n}\right|^{n_{n}}\right)^{1+u_{n}}
$$

we have

$$
\omega_{n}>\lambda_{n}+\delta_{n},
$$

where δ_{n} is negative but tends to zero. Therefore $\varepsilon>0$ being given $(x>\varepsilon)$, for sufficiently great n, say $n>N_{1}$,

When $\lambda_{n}>\mu_{n}$, we obtain the same result interchanging simply λ_{n} and μ_{n} in the above discussion.

Secondly consider the exponents such as

$$
\lambda_{n}>g, \quad x<\mu_{n} \leqslant h_{1},
$$

where we assume $g>h_{1}, h_{1} \geqslant h$.
By (3) we have

$$
\begin{aligned}
& \left|u_{n}-u_{r_{n}}\right|<\left|u_{n}\right|^{1+\lambda_{n}}+\left|u_{n}\right|^{1}+\mu_{n}\left(\mathrm{I}+\left|u_{n}\right|^{\lambda_{n}}\right)^{1+}+\mu_{n} \\
& =\left|u_{n}\right|^{1+}+\mu_{n}\left\{\left|u_{n}\right|^{\left.\lambda_{n}-\mu_{n}+\left(1+\left|u_{n}\right|^{\lambda_{n}}\right)^{1+}+\mu_{n}\right\}} \cdots(5)\right.
\end{aligned}
$$

Since $\lambda_{n}>g>h_{1} \geqslant \mu_{n}$ and u_{n} tends to zero with $n,\left|u_{n}\right|^{\lambda_{n}-\mu_{n}}$ tends to zero with n. On the other hand since $\left|u_{n}\right| \lambda_{n}<\left|u_{n}\right| \mu_{n}$, we have

$$
\begin{aligned}
\left(\mathrm{I}+\left|u_{n}\right|^{\lambda_{n}}\right)^{1}+\mu_{n} & =\left(\frac{\mathrm{I}+\left|u_{n}\right|^{\lambda_{n}}}{\mathrm{I}+\mid u_{n} \mu_{n}}\right)^{1+\mu_{n}}\left(\mathrm{I}+\left|u_{n}\right| \mu_{n}\right)^{1+\mu_{n}} \\
& <\left(\mathrm{I}+\left|u_{n}\right| \mu_{n}\right)^{1+\mu_{n}}
\end{aligned}
$$

which tends to unity for $n \rightarrow \infty$, for μ_{n} are finite and positive, $i . e .$, the second factor on the right of the inequality (5) is greater than unity and tends to it for $n \rightarrow \infty$. Heace we conclude quite in the same way that for sufficiently great n, s.2y $n>N_{2}$,

$$
\begin{equation*}
\omega_{n}>x-\varepsilon . \tag{6}
\end{equation*}
$$

Thirdly consider the exponents such as

$$
x<\lambda_{n} \leqslant g_{1}, \quad \mu_{n}>h,
$$

where we assume $g_{1}<h, g \leqslant g_{1}$. The inequality

$$
\left|u_{n}-u_{r_{n}}\right|<\left|u_{n}\right|^{1+\lambda_{n}}\left\{\mathrm{I}+\left|u_{n}\right|^{\left.\mu_{n}-\lambda_{n}\left(\mathrm{I}+\left|u_{n}\right|_{n}\right)^{1}+\mu_{n}\right\}}\right.
$$

is also valid. Under the condition of λ_{n}, since $\left|u_{n}\right|^{\lambda_{n}}$ tends to zero for $n \rightarrow \infty$,

$$
\left(\mathrm{I}+\mu_{n}\right) \log \left(\mathrm{I}+\left|u_{n}\right| \lambda_{n}\right)<\left(\mathrm{I}+\mu_{n}\right)\left|u_{n}\right| \lambda_{n}
$$

Consequently we have

$$
\begin{aligned}
\left|u_{i j}\right| \mu_{n}-\lambda_{n}\left(\mathrm{I}+\left|u_{n}\right|\right)^{1}+\mu_{n} & <\left|u_{n}\right| \mu_{n}-\lambda_{n \epsilon}\left(1+\mu_{n}\right)\left|u_{n}\right| \lambda_{n n} \\
& =\left(\left|u_{n}\right| e\right)^{\mu_{n}-\lambda_{n}\left(1+\mu_{n}\right)\left|u_{n}\right|^{\lambda_{n}}-\mu_{n}+\lambda_{n} .}
\end{aligned}
$$

For n sufficiently great

$$
\left|u_{n}\right| e<\mathrm{I},
$$

while the exponent of the second factor is

$$
\lambda_{n}+\left|u_{n}\right| \lambda_{n}-\left(\mathrm{I}-\left|u_{n}\right| \lambda_{n}\right) \mu_{n}
$$

which becomes negative when n increases, for $\left|u_{n}\right| \lambda_{n}$ tends to zero for $n \rightarrow \infty$, and $\mu_{n}>h>g_{1} \geqslant \lambda_{n}$. Hence we have

$$
\lim _{n \rightarrow \infty}\left|u_{n}\right| \mu_{n}-\lambda_{n}\left(\mathrm{I}+\left|u_{n}\right| \lambda_{n}\right)^{1}+\mu_{n}=0
$$

Using the same notation as the first case, we have

$$
\omega_{n}>\lambda_{n}+\delta_{n},
$$

where δ_{n} is negative but tends to zero, or for sufficiently great n, say $n>N_{3}$,

$$
\omega_{n}>x-\varepsilon_{\ldots} \ldots \ldots \ldots \ldots \ldots \ldots
$$

Fourthly consider the exponents such as

$$
\lambda_{n}>g, \quad \mu_{n}>h
$$

By (3) we have

$$
\left.\left|u_{n}-u_{r_{n}}\right|<\left|u u_{n}\right|^{1+\lambda_{n}}+\left|u u_{n}\right|^{1+\mu_{n}(1}+\left|u_{n}\right|^{\lambda_{n}}\right)^{1+\mu_{n_{0}}}
$$

Here we have

$$
\left(\mathrm{I}+\left|u_{n}\right| \lambda_{n j}\right)^{1}+\mu_{n n}<e\left|u_{n}\right|^{\lambda_{n}}\left(\mathrm{I}+\mu_{n}\right) .
$$

Therefore

$$
\left.\left|u_{n}\right|^{1}+\mu_{n}\left(\mathrm{I}+\left|u_{n}^{\lambda_{n}}\right|\right)^{1}+\mu_{n}<c^{(1+}+\mu_{n}\right) \log \left|u_{n}\right|+\left|u_{n}\right|^{\lambda_{n}}\left(1+\mu_{n}\right) .
$$

The exponents on the right is equal to

$$
\left(\mathrm{I}+\mu_{n}\right) \log \left|u_{n}\right| \cdot\left\{1+\frac{\mid u_{n} \lambda_{n}}{\log \left|u_{n}\right|}\right\} .
$$

If we put

$$
-\eta_{n} \equiv \frac{\left|u_{n}\right|^{2 n}}{\log \left|u_{u}\right|},
$$

since $\log \left|u_{n}\right|$ tends to $-\infty$ and $\left|u_{n}\right| \lambda_{n}$ to zero with n, η_{n} is positive and tends to zero with n. Now the exponent is equal to

$$
\left(1+\mu_{n}\right)\left(\mathrm{I}-\eta_{n}\right) \log \left|u_{n}\right|
$$

therefore we have

$$
\left.\left|u_{n}\right| 1+\mu_{n}\left(\mathrm{I}+\left|u_{n}\right|_{n}\right)^{1}+\mu_{:}<\left.\left|u_{n}\right|\right|^{\left(1+\mu_{n}\right)}\right)^{\left(1-n_{n}\right)} .
$$

Now the exponent on the right is

$$
\left(\mathrm{I}+\mu_{n}\right)\left(\mathrm{I}-\eta_{n}\right)=1+\mu_{n}\left(\mathrm{I}-\eta_{n}-\frac{\eta_{n}}{\mu_{n}}\right)
$$

Since $\mu_{n}>h$ where h is positive and great, and η_{n} tends to zero for $n \rightarrow \infty$, for n sufficiently great, say $n>N_{4}$,

$$
1-\eta_{n}-\frac{\eta_{n}}{\mu_{n}}>{ }_{2}^{\mathrm{I}} .
$$

Consequently for $n>N_{\mathrm{t}}$,

$$
\left|u_{n}-u_{r_{n}}\right|<\left|u_{n} 1+\lambda_{n}+\left|u_{n}\right|^{1+\frac{\mu_{n}}{2}}\right.
$$

Therefore we have
or

$$
\begin{aligned}
& \left|u_{n}-u_{r_{n}}\right|<2\left|u u_{n}\right|^{1+\lambda_{n}}, \\
& \left|u u_{n}-u_{r_{n}}\right|<2\left|u u_{n}\right|^{1+\frac{\mu_{n}}{2}} ;
\end{aligned}
$$

hence we have according to the case, for $u>N_{5},\left(N_{5} \geq N_{4}\right)$,
or

$$
\begin{align*}
& \omega_{n}>g-\varepsilon>x-\varepsilon, \\
& \omega_{n}>\frac{h}{2}-\varepsilon>x-\varepsilon . \tag{8}
\end{align*}
$$

(We may assume from the beginning $h>2 x$.)
Concluding these four cases, let N be the greatest of $N_{1}, N_{\mathrm{E}}, N_{3}, N_{\mathrm{i}}$, then by $(4),(6),(7),(8)$ for any given positive number ε however small, we have

$$
\omega_{n}>x-\varepsilon, \text { for all } n>N ;
$$

hence the inferior limit of the exponents of the substitution ST is greater than zero i. e., the product of the substitutions S and T belongs to the same category as S and T .
(II) Again let $\mathrm{S}=\binom{n}{s_{n}}$ be any one of the given substitutions and put

$$
u_{n}-u_{s_{n}}= \pm u_{n}^{1+}+\lambda_{n}, \quad n=1,2, \ldots \ldots \ldots(9)
$$

Put for simplicity

$$
u_{s_{n}}-u_{n}= \pm u_{s_{n}}^{1+\omega_{n}} \ldots \ldots \ldots \ldots \ldots \ldots \text { (10) }
$$

where ω_{n} are the exponents of the inverse sulstitution S^{-1}. Now we want to prove that the inferior limit of ω_{a} is also positive.

By (9) we have

$$
\left.\left|u_{s_{n}}\right|>\left|u_{n}\right|\left(\mathrm{r}-\left|u_{n}\right|_{n} n_{n}\right) \ldots \ldots \ldots \ldots \ldots \text { (I I }\right)
$$

Since the inferior limit of λ_{n} is positive, we may take

$$
\lambda_{n}>x>0
$$

excepting some finite number of the exponents. Moreover u_{n} tends to zero for $n \rightarrow \infty$. Therefore we have for sufficiently great n, say $n>N$,

$$
\begin{gathered}
\mathrm{I}-\left|u_{n}\right|_{n}>\mathrm{O}, \\
-\left(\mathrm{I}+\lambda_{n}\right) \log \left(\mathrm{I}-\left|u_{n}\right|_{n} \lambda_{n}\right)<\frac{\left|u_{n}\right| \lambda_{n}}{\mathrm{I}-\left.\left|u_{n}\right|^{2}\right|_{n}}\left(\mathrm{I}+\lambda_{n}\right) .
\end{gathered}
$$

The term on the right of the second inequality is clearly finite (even when $\lambda_{n} \rightarrow \infty$). Therefore we can find a positive number M such that for $n>N$,

$$
\frac{\left|u_{n}\right|_{n}}{\mathrm{I}-\left|u_{n}\right|_{n}^{\lambda_{n}}}\left(\mathrm{I}+\lambda_{n}\right)<M .
$$

Consequently for $n>N$,

$$
\left(\mathrm{r}-\left.\left|u_{n}\right|_{n} \lambda^{1}\right|^{1+\lambda_{n}}>e^{-\mu}\right.
$$

Therefore, since by (9) and (1о) $\left|u_{n}\right|^{1+\lambda_{n}}=\left|u_{s_{n}}\right|^{1+\omega_{n}}$, we have by (II)

$$
\begin{aligned}
\left|u_{s_{n}}\right|^{1+\lambda_{n}} & >\left|u_{s_{n}}\right|^{1+\omega_{n}}\left(1-\left|u_{n}\right|_{n}\right)^{1+\lambda_{n}} \\
& >\left|u_{s_{n}}\right|^{1+\omega_{n}} e^{-N}
\end{aligned}
$$

Hence

$$
\lambda_{n}+\frac{M}{\log \left|u_{s_{n}}\right|}<\omega_{n}
$$

Therefore given a positive number ε however small, we can find $N_{1}\left(N_{1} \geqslant N\right)$ such that

$$
\omega_{n}>x-\varepsilon, \text { for all } n>N_{1} .
$$

Hence the inferior limit of the exponents of the inverse substitution S^{-1} is greater than zero $i . \varepsilon$., the inverse substitution of the substitution S
belongs to the same category as S .
Concluding (I) and (II), given a number of substitutions, if the inferior limit of the exponents of each substitution be greater than zero, then those substitutions form a group. Since all these substitutions are contained in the group of the series $\sum u u_{n}$, the group formed by these substitutions is a divisor of the group of the series.
12. Let $\mathrm{P}=\binom{n}{p_{n}}$ be any substitution, $\mathrm{S}=\binom{n}{s_{n}}$ be any one of the sutbstitutions of the group Γ of the series $\sum u_{n}$, the series $\sum u_{p_{n}}$ has the same group I , provided the series $\sum u^{{ }^{p_{n}}}$ be convergent.

As we have said above, without changing the effect, we may write the substitution S as follows:

$$
\mathrm{S}=\left(\begin{array}{lll}
p_{1} & p_{2} \cdots \cdots p_{n_{2}} \cdots \cdots \\
r_{1} & r_{2} \cdots \cdots r_{n} \cdots \cdots
\end{array}\right)
$$

where if $p_{n}=m$, then $r_{n}=s_{m}$ and conversely. On the other hand, since by the hypothesis, the series $\sum\left(u_{n}-u_{s_{n}}\right)$ is absolutely convergent, we may rearrange its terms as we please without changing its property. Now we arrange the terms of the series $\sum\left(u_{n}-u_{s_{n}}\right)$ so as the first numbers in the brackets shall be $u_{p_{1}}, u_{p_{2}}, \cdots, u_{p_{n}}, \cdots \cdots$ then we have

$$
\sum\left(u_{n}-u_{s_{n}}\right)=\left(u_{p_{1}}-u_{r_{1}}\right)+\left(u_{p_{2}}-u_{r_{2}}\right)+\cdots \cdots+\left(u_{p_{n}}-u_{r_{n}}\right)+\cdots \cdots
$$

which is absolutely convergent; moreover we have using the notation of $\mathrm{N}^{\mathbf{0}} 4$

$$
\sum u_{p_{n}} \mathrm{~S}=\sum u_{r_{n}}
$$

provided the series $\sum u_{p_{n}}$ be convergent.
Therefore the series $\sum u_{p_{n}}$ admits the substitution S .
Conversely let S be any substitution admitted by the series $\Sigma u_{p_{n}}$ then clearly the series $\sum u_{n}$ admits the substitution S ; hence S is contained in the group Γ. Hence the group of the series $\sum u_{p_{n}}$ is also Γ.

If in the preceding theorem we write

$$
u_{p_{n}} \equiv \tau_{n}^{\prime}, \quad n=1, \quad 2, \ldots \ldots \ldots
$$

the group of the series $\sum v_{n}$ is PLP $^{-1}$. For if $\mathrm{S}=\binom{n}{s_{n}}$ be a substitution of the group Γ, as before it may be written as follows

$$
\mathrm{S}=\binom{f_{n}}{r_{n}} .
$$

Now if $p_{n}=m$, then $r_{n}=s_{m}$. Find the integer such as $s_{m}=p_{2}$. Now $u_{p_{n}}=u_{n}$, and by S, $u_{p_{n}}$ is replaced by $u_{r_{n}}$, where $u_{r_{n}} \equiv u_{s_{m}} \equiv u_{p_{i}}$. Hence $u_{p_{n}}$ is replaced by $u_{p_{i}}$. But $u_{p_{i}}=v$, hence by S, z_{n} is replaced by τ_{i}. On the other hand by P, n is replaced by p_{n}. By S, p_{n} is replaced by r_{n}, where $r_{n} \equiv s_{m} \equiv p_{i}$. Now by P^{-1}, p_{l} is replaced by l. Heace by $\operatorname{PSP}^{-1}, n$ is replaced by l. Therefore the series $\sum \tilde{v}_{n}$ admits the substitution $\mathrm{PSP}^{-1}, i, \varepsilon$., the group of the series $\sum \tau_{n}$ i; $\mathrm{PrP}{ }^{-1}$.

If a substituion P and any substitution S of I are such that

$$
\mathrm{PSP}^{-1}=\mathrm{T} \text {, or } \mathrm{PS}=\mathrm{TP}
$$

where T is a substitution of Γ, then we say the substitution P and the group are permutable which is written as follows:

$$
P \Gamma P^{-1}=\mathrm{\Gamma} \text { or } \mathrm{P} \mathrm{\Gamma}=\Gamma \mathrm{P} .
$$

If we write as before

$$
u_{p_{n}} \equiv v_{n}, \quad n=1, \quad 2, \ldots \ldots \ldots
$$

and if P and Γ^{\prime} be permutable, then the series $\sum u_{n}$ and $\sum v_{n}$ have the same group C . This case occurs especially when the given substitution is a substitution of the group Γ itself. Now let $\mathrm{S}=\binom{n}{s_{n}}$ be any one of the substitution of the group Γ of the series $\sum \mu_{n}$, then writing

$$
u_{s_{n}} \equiv \gamma_{n}, \quad n=1,2, \ldots \ldots \ldots,
$$

the series $\sum v_{n}$ has the same group Γ. If we put

$$
u_{n}=v_{n}+a_{n}, \quad n=1,2, \ldots \ldots \ldots,
$$

then by the definition of the substitution S , the series $\sum a_{n}$ is absolutely convergent. This is coincident with a theorem of $\mathrm{N}^{\top} 6$.
13. If two series $\sum u_{n}$ and $\sum v_{n}^{\prime}$ are such that the series $\sum\left(u_{n}-v_{n}^{\prime}\right)$ is absolutely convergent, then we say the series $\sum u_{n}$ and $\sum v_{n}$ are equivalent. We denote it by $\sum t_{n} \sim \sum v_{n}$.

Tro series which are equivalent to a series are equivalent to each other. For if $\sum u_{n} \sim \sum v_{n}, \sum u_{n} \sim \sum w_{n}$, then $\sum\left(u_{n}-v_{n}\right)$ and $\sum\left(u_{n}-w u_{n}\right)$ are absolutely convergent; consequently $\sum\left(v_{n}-\tau \rho_{n}\right)$ is absolutely convergent i. e., $\quad \sum v_{n} \sim \sum w_{n}$.

Let S be any substitution of the group Γ of the series $\sum u_{n}$, then any series $\sum u_{n} \mathrm{~S}$ is equivalent to the series $\sum u_{n}$. Such series form a class. Let P be any substitution which is not contained in the group Γ, then the series $\sum u_{n} \mathrm{P}$ and $\sum u_{n} \mathrm{PS}$ are equivalent, provided the series are convergent. Such series form another class. The series $\sum u_{n}$ and $\sum u_{n} \mathrm{P}$ are not equivalent by the hypothesis. Therefore all the series of the former class are not equivalent to any series of the latter class.

Therefore all the convergent series having the same terms as those of the series $\sum u_{n}$, excepting their order, can be devided into classes, such that all the series of each class are equivalent to one another, rekile the series of one class is equivalent to none of the other classes.

We remark that all the series of one class have the same value, ($\mathrm{N}^{\circ}{ }_{5}$) Borel's problem now becomes to find the classes such that the sum of a series of one of the classes is equal to the sum of a series of another class.
14. It is natural to ask whether all the substitutions which do not change the value of a semi-convergent series form a group. But in general this question is answered negatively. To prove this we have only to give a series $\sum u_{n}$ and two substitution P and Q such that

but

$$
\sum u_{n}=\sum u_{n} \mathrm{P}=\sum u_{n} \mathrm{Q},
$$

$$
\sum u_{n} Q \neq \sum u_{n} \mathrm{PQ} .
$$

Herr Threlfall ${ }^{1}$ gave a simple proof for the possibility of changing the sum of the semi-convergent series of complex numbers. To find the substitutions P, Q we follow his arguments.

Consider a series

$$
f=a_{1}^{2}+a_{1}+a_{2}+a_{3}^{2}+a_{3}+a_{1}+\cdots \cdots+a_{2 n-1}^{2}+a_{2 n-1}+a_{2 n}+\cdots \cdots,
$$

where $a_{2 n-1}>0(n=1,2, \cdots \cdots)$ and $a_{2 n-1} \rightarrow 0$ such that

$$
\sum_{n=1}^{\infty} a_{2 n-1}=\infty
$$

We may take the numbers $a_{2 n}(n=1,2, \cdots \cdots)$ so as the series f is semiconvergent and its sum is equal to zero. Tet P be the substitution which

[^0]transforms f into
$$
f \mathrm{P}=a_{1}+a_{1}^{2}+a_{2}+a_{3}+a_{3}^{2}+a_{1}+\cdots \cdots+a_{2 n-1}+a_{2 n-1}^{2}+a_{2 n}+\cdots \cdots .
$$

It is clear that the series f does not chang its value by the substitution P. Hence we have

$$
f=f \mathrm{P}=0 .
$$

Now consider the series of complex numbers

$$
\begin{aligned}
F \equiv & f \mathrm{P}+i f=\left(a_{1}+i a_{1}^{2}\right)+\left(a_{1}^{2}+i a_{1}\right)+\left(a_{2}+i a_{2}\right)+\cdots \cdots \\
& +\left(a_{2 n-1}+i \dot{a}_{2 n-1}^{2}\right)+\left(a_{2}^{2}{ }_{n-1}+i a_{2 n-1}\right)+\left(a_{n}+i i_{2 n}\right)+\cdots \cdots,
\end{aligned}
$$

then the series is semi-convergent and

$$
F=0 .
$$

Consider the term $\left(a_{2 n-1}+i a_{2 n-1}^{2}\right)$, then since $a_{2 n-1}>0$, and $a_{2 n-1} \rightarrow 0$,

$$
\lim _{n \rightarrow \infty} \frac{a_{2 n-1}^{2}}{a_{\leq n-1}}=+\mathrm{o}, \quad \text { or } \operatorname{arc}\left(a_{2 n-1}+i a_{i n-1}^{2}\right) \rightarrow+\mathrm{o},
$$

i. e., there is an infinite number of points in the firs. quadrant approaching, at the limit, the real axis and the sum of the real part of such terms is ∞ by the condition given above. Now from the first term of the sequence $a_{2 n-1}+i a_{2 n-1}^{2}(n=1,2, \cdots \cdots)$, we take h_{1} terms whose arguments are less than $\frac{\pi}{4}$ so that the sum of their real parts becomes greater than unity. We denote those terms by $\alpha_{l}, \alpha_{i}, \cdots \cdots, \alpha_{h_{1}}$, then we have

$$
\sum_{n=1}^{h_{1}}\left\{\left(\alpha_{n}\right)>1 .\right.
$$

This is always possible, for in any angle containing the real axis within it, there is an infinite number of terms $a_{i n-1}+\dot{i}_{a_{n-1}}^{2}$ whose sum is infinite From the sequence $a_{2 n-1}+i \dot{a}_{2 n-1}^{2}(n=1,2, \cdots \cdots)$ after the term $\alpha_{h_{1}}$ take $h_{2}-h_{1}$ terms in order whose arguments are less than $\frac{\pi}{4 \times 2}$ so that the sum of their real parts becomes greater than unity. We denote them by $\alpha_{h_{1}+1}, \alpha_{h_{1}+2}, \cdots \ldots, a_{h_{2}}$, then

$$
\sum_{n=\frac{\overrightarrow{h_{1}}+1}{h_{2}}}^{\mathcal{R}\left(\alpha_{n}\right)>1 .}
$$

We continue this process. Now we have

$$
\begin{gathered}
0<\tan \left(\operatorname{arc} \alpha_{n}\right)<1, \\
\operatorname{arc} \alpha_{n} \rightarrow 0, \\
\sum_{v=1}^{n} \mathcal{R}\left(\alpha_{v}\right) \rightarrow \infty .
\end{gathered}
$$

Excepting the terms $\alpha_{i}, \alpha_{2}, \cdots \cdots$ we denote the remaining terms of the series F in order by $\beta_{1}, \beta_{2}, \cdots \cdots$ and let $\varphi(n)$ be the number of terms α_{ν} standing before β_{n}, then for $n \rightarrow \infty$,

$$
\sum_{i=1}^{n} \beta_{v}+\sum_{v=1}^{\varphi(n)} a_{v} \rightarrow 0 .
$$

Next we define the integer $\chi(n)$ such that

$$
\sum_{\nu=p(n)+1}^{x(n)} \nrightarrow\left(\alpha_{\nu}\right)>1,
$$

and it converges to unity for $n \rightarrow \infty$. This is always possible by the choice of α_{ν} and $\alpha_{\nu} \rightarrow 0$. Next $\varepsilon>0$ being given, for sufficiently great ν, by the choice of α_{v},

$$
\left|\alpha_{\nu}-\mathcal{R}\left(\alpha_{\nu}\right)\right|<\varepsilon \mathcal{R}\left(\alpha_{\nu}\right) .
$$

Therefore for $n \rightarrow \infty,{ }_{v=\hat{\varepsilon}(\vec{n})+1}^{x(n)} a_{\nu} \rightarrow \mathrm{I}$.
Hence for $n \rightarrow \infty$

$$
\sum_{i=1}^{n} \beta_{v}+\sum_{\nu=1}^{x(n)} a_{\nu} \rightarrow I
$$

and we arrange in order those terms α_{ν} before those terms $\beta_{v}(n=1,2$,). Thus we obtain a new series by the rearrangements of the terms of the given series. Let Q be that substitution. We shall prove the convergency of the new series.

Suppose that among k terms of the new series, there are m terms of α_{ν} and n terms of β_{ν} and that

$$
\chi(n) \leqslant m \leqslant \chi(n+1) .
$$

Then the sum of k terms of the seties is equal to

$$
\sum_{\nu=1}^{n} \beta_{\nu}+\sum_{\nu=1}^{x(n)} \alpha_{\nu}+\sum_{\nu=x}^{m} \sum_{x, 1}^{m} \alpha_{\nu}
$$

where we have

$$
\left|\sum_{v=x(n)+1}^{m} \alpha_{\nu}\right| \leqslant \sum_{v=x(n)+1}^{x(n+1)}\left|\alpha_{\nu}\right|<2 \sum_{v=x(\bar{n})+1}^{x(n+1)} \mathcal{R}_{(}\left(\alpha_{\nu}\right) .
$$

But $\chi(n)$ is so defined that

$$
\sum_{\nu=\rho(n)+1}^{x(n)}\left\{\left(\alpha_{\nu}\right) \rightarrow \mathrm{I} .\right.
$$

On the other hand since the original series is convergent

$$
\sum_{v-p(\vec{n})+1}^{\rho(n+1)} \text { R }\left(a_{v}\right) \rightarrow 0 .
$$

Therefore $\chi(n)$ is greater than $\varphi(n+\mathrm{I})$. Hence by the relations

$$
\begin{aligned}
& \sum_{\nu=\rho(n)+1}^{x(n)} \Re\left(\alpha_{\nu}\right)=\sum_{\nu=\gamma(\bar{n})+1}^{\varphi(n+1)} \Omega\left(\alpha_{\nu}\right)+\sum_{\nu=p(n+1)+1}^{x(n)} R\left(\alpha_{\nu}\right) \rightarrow I, \\
& \sum_{v-\rho(n+1)+1}^{x(n+1)} \Re\left(\alpha_{\nu}\right)=\sum_{v-p(n+1)+1}^{x(n)} \Re\left(\alpha_{v}\right)+\sum_{v=x(n)+1}^{x(n+1)} \Re\left(\alpha_{\nu}\right) \rightarrow 1,
\end{aligned}
$$

we conclude that

$$
\sum_{\nu=x(\bar{n})+1}^{x(n+1)} R\left(\alpha_{\nu}\right) \rightarrow 0 .
$$

Consequently

$$
\lim _{n \rightarrow \infty}\left|\sum_{v=x(\vec{n})+1}^{m} \alpha_{\nu}\right|=0 .
$$

Therefore the new series converges to unity. Hence we have by the substitution Q applied to the imaginary and real paris of F,

$$
f Q=0, \quad f P Q=1
$$

i. ϵ., by PQ the series f changes its value. Consequently all the substitutions which do not change the value of the series f can not construct a group.

[^0]: I. Redingt convergente Reihen; Math. Zeit., 24, 212 (1925).

