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This is the extension of the group-theory of semi-convergent series.
I consider in this paper the sequences of numbers. Rearrange the terms
of a sequence. Then we shall obtain a substitution, If the series
formed by the differences of corresponding terms of the sequence and
the rearranged one be absolutely convergent, I say as in the previous
paper that the given sequence admits the substitution. The totality of
all such substitutions forms a group which I call the group of the
sequence. The totality of all possible substitutions is called the symmetric
group. Here the necessary and sufficient conditions that a sequence
admits the symmetric group are given. From the hypothesis that a
sequence admits the group of another sequence, I have obtained several
propositions. These are nothing but the properties of a group and its
divisors where the cardinal numbers of the derived sets of both sequences
are concerned.

The set of all the substitutions of the symmeltric group which I call
the set of the symmetric group may be ordered and its cardinal number
is equal to that of the continuum and then I determine the cardinal
numbers of the sets of all the groups of sequences of numbers, The
set of the group of a sequence is either countable or has the cardinal
number of the continnum. The condition to determine the alternate case
is found. Next the sum of all the numbers of a sequence taken in order
is called a series notwithstanding that it is convergent or divergent and

1. These Memoirs, A, 10, 211 (1927).
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extending the idea of the equivalent series which I have given in the
previous paper, I have divided all the scries having the same terms into
classes. This is nothing but the extension of the idea of the co-sets of
finite groups. The set of these classes may be found to have the same
cardinal number as the continuum provided that the given "series be
convergent or in some other cases.

As applications of the group-theory, I consider the sequence of
functions, Here I consider the cases that a sequence of holomorphic
functions admits the symmetric group simply or uniformly in the domain,
I explain briefly some relations with the normal family of functions,
quasi-analytic functions and the analytic continuation, while many others
are not touched, 1 expect further researches,

1. Consider a sequence of numbers or a sef of points

ZUy Zay veereenns s Zyy weeeen
We denote it by {z,}. Rearranging the terms of the sequence, we

have another sequence

{Z%}EZ%’ Zg s weennnenes By y ceeeees .

This rearrangement defines a swubstriution

We shall correspond in the following to any sequence {u,}, the serzes

>luy=t,Ftous+...... 7V I ,
where the notation does not concern the convergency of the series on

the right-hand side.
If the series >7(sy—z,) be absolutely convergent, we say that the
v

sequence {z,} admits the substitution S:(Z

v

). The system of all pos-

sible substitutions is the symmetric growp' and the system of all
substitutions admitted by a sequence forms a group of the sequence. It
can easily be proved as in the previous paper.”

2. The necessary and sufficient condilion thal the scquence {z,}
admits the symmetric group is that we may put for any v

2, =ay+tc,

where the scries 3a, 15 absolutely convergent and ¢ s a constant.

This is the generalization of the like proposition with the convergent

1, 2. Loc. cit,, 220,
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series, given in the previous paper.

If the sequence {z,} admits the symmetric group, it is clear that {z,}
must be a limited sequence. (When the absolute values of all the
numbers of a sequence are limited as a whole, then we say the sequence
is limuted or else nol Lmated. A limited sequence is nothing but a
bounded set of points.) Moreover the derived set of the set of points
{z,} cannot have more than one limiting point. For if otherwise, let
a, 3 be two of them such that

lim z, =a,
N> ”n

lim =

im 2, Ie]

NP2 n

where the sequences {v,}, {p.} are the partial sequences of {v}, then
the series

(zvl - Z*h) —i-(zp‘1 - Z“l) T (Z”'n — Z‘*n) + (zpn — Z"n) Forenn

cannot be absolutely convergent. Hence the substitution written by
cydes® (v pr)eeeer-(¥n fo)eene. , the remaining integers being unaffected,
is not admitted by the sequenice {z,}. This is contradictory to the
hypothesis. We denote by ¢ the single limiting point of the set of points
{2z} and write

s —Cc=a,, V=1, 2, ciuea.

Then lim a,=o0 and the sequence {z,—c¢} or {a,} must admit the

NI

symmetric group and hence the series 3a, must be absolutely convergent,
For if the series > a, is not absolutely convergent, its real or imaginary
part must not be absolutely convergent. Suppose the real part is not
so. Let >la, be the real part. Then since > e, is not absolutely
convergent, the sum of all the positive terms or that of all the negative
terms of >.@, must be divergent. Now suppose the sum of all the
positive terms of > @, be divergent and denote it by >75,. By the
rearrangement of the terms of the sequence {a,}, we may .assume

>0, ..., >0,> . 0.
Since a, tends to zero, we have

lim 4,=o,
NP0

and the sequence {&,} must admit any substitution since it is a substitution

of the symmetric group. Now we can find terms 8, , 4, , 6, , ... such
1 2 3

1, Loc, cit., 213.
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that

[
T bg >b”;} y

different from one another, where we do not write on the left-hand sides
of these inequalities any term which once stood on the right-hand side
of these inequalities. Since

6=, |+ =, | + =8, | +.....
+|bn‘—bl|+ ------
+Ibn bgl‘i“ ......
+|6,,3 bl +......
+ e
>i+l%.+_b_~‘
2 2 2
bn
+ — 4.
2
+ ’r, Fo.
2
+ 5”3 F o
2
Feerreens
= L (b bot e Bt )

I 2 3 weeees T vaenn Fly veenns g eninn

P2y 723 P23 eiines I oiehe 2 e 3 ceenes
must be admitted by the sequence {4,}, the left-hand side of the above
inequality must be convergent. Therefore .4, must be convergent,

This is contradictory to the assumption. Hence the series > e, must
be absolutely convergent,
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Conversely if
z=a,+¢, V=1, 2, ceererenn

and > a, be absolutely convergent, the sequence {a.} z ¢., {z,—¢} admits
cleary the symmetric group. Hence the sequence {z,} admits the
symmetric group. :

We remark that any sequence of constant terms is a special case
of the above sequence. '

3. By the proposition just proved we see that ¢ fke sequence {z,}
be not lLmiled, 1t cannot admit the symmelric group. Morecver some
of the unlimiled sequence cannot admt any substitution of the tnfinite
degree, For example the sequence

{vi=1, 2, ...... s Uy oveenne

can neither admit the symmetric group nor any substitution of the infinite
degree.

On the other hand any lLmited sequence {z,} must admit some
substitutions of the infinite degree. For let a be a point of the derived
set of {z,}, then we can find its partial sequence {z, } such that

lim z, =a.
nyR  n
Since @ is finite, there is an infinite number of pairs of terms of {z, }
such that for any given positive number e(<1),
lz, —z, | <e,

IZv -2, l\ez’
P P

Therefore the sequence {z,} admits the substitution of the infinite degree

(Vow ¥0) (Vp ) venrennnn .

‘We may suppose m<n<p<lg<..... . Let us write

M= Vi, = Viy W= Vp, = Vg.eern ’
then we have
Iim g, = a,
kyoo %

and the sequence {z,} admits the substitution (p; pz)(ps pe)... of the
infinite’ degree. Hence if the sequence {z,} be limited and a (finite) be
one of the point of the derived set of {z,}, then we can find a substitution
(vi v2) (v vy)... admitted by {2,} and that lim z, =a.

nyco n

Moreover if the derived set of any sequence {z,} contains at least
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a point at finiteness, then we can also find a partial sequence of {z,}
whose terms tend to a. Hence we have in general the proposition :

If the derived set of any sequence {z,} contans at least a point
a al fintteness, then we can find a substitution (v, v;)(vs vy)... admitted
by {e} such that lim z, =a.

nIR n

This proposition is not true with some unlimited sequences.
But if the derived set of {z,} contains no point different from oo,

then we must have lim z,=00, whatever the group admitted by the
Vpoo

sequence {z,}.
Conversely zf any sequence {z,} adwmuts substitution of the jform
(vi v)(vs w)..., we may extract from lhe sequence {z,} a partial

sequence which have a determinale limif. For if the derived set of
points of {z,} has a point different from oo, then by the preceding

proposition, there is a partial sequence of {2z, } which converges to a
finite determinate limit. If the derived set of {z, } has no point different
from o0, as we have remarked, the sequence {z, } must tend to oo,

4. Given two sequences {z,} and {Z,}, if the sequence {Z,} admits
all the substitutions of the group of the sequence {z,}, we say that #&e
sequence {Z,} admils the group of the sequence {z,}. In this case the
group of the sequence {z,} is a divisor of the group of the sequence
{Z,}.

If a sequence {Z,} admits the group of a limited sequence {2},
we may correspond lo any point a of the derived set of {z,} one and
only one point of the dérived set of {Z,} and by lhis correspondence
there remains no pont in the dertved set of {Z,} which does not
correspond to lhe pornts of the dertved set of {s.}.

For since a is finite, by a proposition of § 3, we can extract a
partial sequence {2, } of {z,} such that the sequence {z,} admits the

substitution (v, v;)(»y v,)... and that lim z, =a. By hypothesis the

1P n

sequence {Z,} admits the substitution (v, ».)(v; »,).... Idence by a
proposition of § 3, from the sequence {v,} we can extract a partial
sequence {g, ), such that lim Zg =4, where A is determinate. It

WP m

may be supposed that there would be another partial sequence {A;} of
the same sequence {v,}, such that lim 7, =27, where B is determinate
Iy ]

and different from 4. We shall prove that under our kvpothesis B 1s
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necessartly identical to A.

For if the sequence {w,} and {A;} have an infinite number of
common elements, then clearly 4=5. We assume that there are only
a finite number of common elements, or omitting the common elements,
we may assume that there are no common elements. In such a case,
suppose A==/5. Then since

im Z, =4, lim 4, =28,
Mm-pc2 m Iy 4
& being a positive number such as
|A—B| >3,
we may find an integer £ such that
|ZpL -2 | >8, for any p.., N\, >E.
m 2

On the other hand since {wn.y and {A,} are the partial sequences of
{v.}, we have

im 2z, = lim 2 =a.

myco le I»en H

Therefore for any given positive number e(<1), we can find an integer

G such that

Izpm—z)l|<e, Jor any P, N>G.

Hence there are pairs of integers (w,, A;) which satisfy the simulteneous
inequalities

IZP, —Z)\ I >8’

m i
|zpm——le | <é,

where £ is a positive integer. We take successively such a pair of
integers for which £=1, 2,... We may assume, avoiding the complex
notations, that for £=1, (u;, A\,) is such a pair; for A=z, (g, N\2); ...
Then since the series Z’(zEL —z, ) is absolutely convergent, the sequence

k& k
{z,} admits the substitution (g, A;) (s As)...(s Ax)... which by hypothesis

must also be admitted by the sequence {Z,}. Accordingly the series
Z(ZP —Z, ) must be absolutely convergent which is contrary .to the
(3 k

inequality
|2, =4, | >8.

Therefore the assumption A=A is inadmissible, or we must have A=25.
Thus it is proved that lim Z, =A4.

nPpco n
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We have arrived at the result that by aid of the substitution
(vi ) (v v)... admitted by the sequence {z,} such that lim z, =a,

Tpco 7

there corresponds to a one and only one point A =Hm Z,

NP 7
But to prove completely our proposition, we must show that for
any two substitutions (v, »,)(ws v()... and (g p)Xps p)... admitted by
the sequence {z,} such that

lim z, =1lm 2, =a,
NP2 n Ny p‘n

we have the equality
lim Z, = lim Z =A.

NP2 } RPN n
This may be proved by a similar consideration. If the sequence {v.}
and {p,} have an infinite number of common elements, then the above
equalities are cleary true. If otherwise, since

lim z, = lim z, =a,

N> n ny»co p‘n
for any given positive number €(<1), we can find for each £=1, 2,...,
a pair of integers (v,, p.) such that
&
z, —z, | <€
e, =2, | <é:

where v, and p, are different from each other. Avoiding the complex
notations, we may write

8 "% | <e,
8,5 <

Therefore the series }:(zvk—zp.k) is absolutely convergent. Accordingly

the sequence {z,} admits the substitution (v, w)(v, p)... which by

“hypothesis must be admitted by the sequence {Z,}. Hence as we have

already proved, the sequence Z, Zp y Z, s Zp s renes tends to a
L 1 2 2

determinate limit. So we have

lim Z, = lim Z =A.

nroe l n-ycoo 71«

To finish our proof we must prove that there is no point of the
derived set of {Z,} which does not correspond to a point of the derived
set of {z,}. TFor let A be any point of the derived set of {Z,}, then
there is a partial sequence {Z, } of {Z,} such that lim Z A.

Ny
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Consider the derived set of the partial sequence {z, } of {z}. Since
the sequetce {2} is limited, the derived set of {z, } must have at least a

point a at finiteness. Therefore A4 is already corresponded to a.

Thus to any point of the derived set of the bounded set {z,}, we
may. correspond one and only one point of the derived set of {Z,} and
there remains no point in the derived set of {Z,} out of the correspondence.
We remark that in general the above established correspondence is not
reversible, Hence the cardinal number of the set of the bounded set
{av} 75 not less than that of the derived set of {Z,} where the sequence
{Z,} @5 conditioned to admit the group of the limited sequence {z.}.

For example consider any limited sequence {z,} and a sequence {Z,}
which admits the symmetric group. The sequence {Z,} admits the group
of the sequence {z,} and whatever be the cardinal number of the derived
set of {z,}, that of the derived set of {Z,} is unity.

5. If the sequence {Z,} admils the group of the limited sequence
{a,}, the sequence {Z,} must tiself be limited.

For if the sequence {Z,} is not limited, we may extract a partial
sequence {.Z, } of {Z,} such that lim Z, =co. Here we may assume

Ny n

that the absolute values of the numbers of {7 } are increasing with 7.
Consider the partial set {Z"n of {z,}. Smce the set of points {z,} i
bounded, the derived set of the partial set {z, } must have a point @ at
finiteness and we may extract a new partiallb sequence {Zum} of {zvn}
such that

lim 2, =a.

mPR o

Next we want to extract a partial sequence {z } of {z, }, hence of
Z m
{z, } such that the series > (2, —z ) shall be absolutely convergent.
n I3 I+1 .
This is always possible. To prove it, put

é,‘mEz‘L — a, =T, 2, veeres

m

and consider the set {{,}. The limiting point of the set is the origin
of &-plane. Since the set {¢,} contains an infinite number of points
tending to the origin, there must be at least in one of the four quadrants,
an infinite number of points tending to the origin, Let it be for simplicity
the first quadrant, Tt e be a positive number and consider the square
in the first quadrant, the length of its sides being equal to e and the
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sides being the axes of {-plane and their parallels. In this square there
is a point of the set {{.}. Let it be

C”ZIEE 7/21 +Z‘77ml ’

then we have

oé{‘mlée, 0=, Le.

Again consider the square in the quadrant, the length of its sides

being equal to —— and the sides being the axes and their parallels.
2

In this square there is a point of the set {{,}, different from the
preceding point. Let it be

ngE Em2 + z:)?mz 4

then we have

. €
o<£f,, <—, oénmz__-z—.

(It would be unnecessary to notice #2,<<#2, and the like in the follow-
ing.) Again consider the square in the quadrant, the length of its sides
heing equal to —GT and the sides being the axes and their parallels.
2
There is a point in this square different from the preceding points. I.et
it be
§m3EEm3 +77m3 y

then we have

0=E Z—— 0L, L—— .
2 3 2

We continue these processes indefinitely, Now we have

é‘ml _sz):]/ (Eml —Emz) + (nml - 77;;12) ?

< lfml - Emzl + ‘ ”ﬂzl - nmzl

<2(e+ Z ),

also
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€ , €
6t <o(5 %),

.................................

Hence A
8 =8 | H 185, =8, [ et 1E, =L, e
C2ed 4 4 e
2 2
= 6e.

”’z} is a partial sequence of {¢,,} 7. e., of {stm"“}'

The sequence {¢
Avoiding the complex notations, we write

é’msz —a, ZZI, 2, rereeres sesees,
Z z

where {\;} is a partial sequence of {p.}. Then the series

S =t V=50 =5 )
is absolutely convergent and the sequence {z)\l} is a partial sequence of
{Zi‘m}’ hence of {Z"n}'

Since {le} is a partial sequence of {z, } which corresponds to the
sequence { Z"n}’ the sequence { Z}l} is a partial sequence of { Z"n}'
Moreover since the absolute values of the numbers of the sequenée { Z,"}
are assumed increasing with 7 and 7132 Z, =00, the absolute values of
the numbers of { le} must be also increasing and gn; le= o0, On the

other hand as we have proved, the series > (3 —% ) is absolutely
3 i+1

convergent. Therefore the substitutions (A; Az) (Ag Ag)«rreesre and (AzA3)
X (Mg Ag)eeerees are admitted by the sequence {z,}. Hence by hypothesis
these substitutions must be also admitted by the sequence {Z,} 7 e.,
the series

(O =)+ (Z =2 )+ veeeenns
3 2 3 4

and (Z)\ _Z)‘s)+(Z)‘4—Z)‘)+ .........
- 2 : 5

are absolutely convergent. Therefore the series
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lzaA‘Flzaf‘iﬁJ'+|23;‘23|'+ """

3
is also convergent. Since

12, >4,
I+1 1

|2 —4l>14 | —l4l
I+1 4 +1 4

comparing with the above series, the series

|21+ U2 =12 D+ A1 =12 ]) +e

must be convergent, which is nothing but

lim| Z, | =/finite and determinate.
I>ca 2

This is contradictory to lim Z; =00. Thus the sequence {Z,} must be
]

Iy
limited.

In the above proof we have assumed that in the first quadrant
there is an infinite number of different points of the set {{.}. But the
proof is also valid when the first quadrant contains only an infinite
number of coincident points of the set.

6. If two limiled sequences {z,} and {Z,} have the same group,
the cardinal numbers of the derived sefs of {z,} and {Z,} must be
equal.

As we have said in course of the proof of the proposition of § 4,
since the sequence {Z,} admits the group of the sequence {z,}, to any
point @ of the derived set of {z,} thereis a substitution (v, v,) (v39,)--
admitted by the sequences {z,} and {Z,} such that

lim g, =aq, limZ, =4,

ny o n n-pca 7
where the point 4 is one and only one point corresponding to the point
a. In the present case, since the sequence {z,} admits the group of the
sequence {Z,}, to a point A4 of the derived set of {Z,}, there corres-
ponds one and only one point of the derived set of {z,} while the point
a corresponds to the point 4. Therefore the correspondence of @ and
A is one to one reversible. Moreover a is any point of the derived set
of {z,} and there are no points of the derived set of {Z,} which remain
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out of the present correspondence. Thus we have established one to
one correspondence between the elements of the derived sets of {z,} and
{Z,}. Therefore the derived sets of {z,} and {Z,} are equivalent to
each other, or their cardinal numbers are equal.

‘We remark that the equality of the cardinal numbers of the derived
sets of {z,} and {Z,} is not the sufficient condition of the coincidence
of their group. For let

<Zv}={(—1)v—l"l—}’ {Zv}:{
14
Their derived sets are the same point o. But the series >z, being
semi-convergent, the set {z,} can not admit the symmetric group. On
the other hand the series .7, being absolutely convergent, the sequence
{Z,} admits the symmetric gronp ($2). Thus they have different
groups,

7. Consider a holomorphic function Z=/(z) in a domain and
{2,} be a set of points within the domain such that all the points of
the derived set shall be also within the domain. Suppose that the

I
2
14

sequence {z,} admits the substitution SEGv)' Putting

Zy:f(Zy), YTSI, 2 0eveeneee TR
we have
vz, | (@)
lZV_stI - 27 Sz (z—2,) (2—z, )

where the curve (C) in the domain is so drawn that it contains all the
points of the derived set of {z,}. By the choice of the path of integra-
tion, there is a finite number o such that

lZ—Zy!>m>0’ V=, 2yeecerseennrenes .

Therefore the second factor on the right of the above equality is
limited for all ». Since the series > (2,—2, ) is by hypothesis absolutely
v

convergent, the series > (Z,—~Z ) is so also and the sequence {Z,}
v .

admits the substitution S. Therefore the sequence {.Z,} admits the group
of the sequence {z,}.
For example consider a linear function

az+Bv
yz+8

7=
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and a limited sequence {z,}. If the point z= -8 is not contained
Y

in the set {z,} or in its derived set, the sequence

=i

admits the group of the sequence {z,}. Consider the inverse function

8Z~-B

—fyZ+; '

-
&

Since {z,} is a limited sequence, the point Z=-% is contained neither
i

in the sequence {Z,} nor in its derived set (35). Therefore the se-
quence {z,} admits the group of the sequence {Z,} 7 e., they have the
same group. Therefore the cardinal numbers of the derived sets of {z,}
and {Z,} are equal to each other. Zhus the group of a sequence does
not change by a linear transformation of the numbers of the sequence
provided that the pole of the transformatron s nol contarned in the
Sequence or 1 tls derived sel.

We remark that even when a scquence {Z,} admits the group of
a sequence {z,}, Z cannot necessarily be expressed by a holomorphic
function of z provided that all the points of the set {z,} and those of
its derived set be required to lie within the domain of the holomorphic
function.

For let the group of the sequence {Z,} be symmetric and the derived
set of {z,} contain an infinite number of points. @ being any point of
the derived set of {z,}, there is a substitution (z v,) (pyw,) - -eeeeeeee ,
admitted by the sequences {z,} and {Z,} such that

limz, =a, lim Z, =4,

nFco n NP 7
where A4 is the unjque limit of the sequence {Z,}. Il.et Z=/(z) be the
required functional relation, then since it is supposed to be holomorphic,
we have

S(a)=A.

But by assumption there is an infinite number of such point a within
the domain of existence. Therefore #(z) must be the constant A,
8. We consider in the following the set of all the substitutions of
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a group. Omitting the phraseology ““of all the substitutions” we say
the above set, ke sef of the group. TFor example the set of the sym-
metric group is the set of all substitutions of the symmetric group.

The sel of the symmelric group may be ordered (geordnef).

For consider any two substitutions written in the normal form (7. e.,
the integers in the upper line of the substitutions are in the natural
order) :

The equality of the two substitutions is by definition that for any given
positive integer NV however great, we have the relations

sv:tw V=1, 2,0ceceeee- s N,

If the conlition be not fulfilled, we say they are different. If the two
substitutions are different, there is a positive integer g such that

Sprly.

Anvhow fwo substitutions are etther equal or dyferent. Of-course
the set of a group does not contain equal substitutions as the group
itself does not so.

Now we prove the above proposition. Let S and T be any two
clements of the set of the symmetric group, then since these substitutions
are different, there is an integer p such that

Sp = L.

Comparing all the two integers standing in the same vertical line of the
fini’e sequences :

B, Fgyrerecees s Fucs .

If there be a pair of integers (s, /) such that s,=4, we may write
p instead of A, so that we may assume
S1=ly,  Sa= e Sl Spl.

If 5.<#, we order S before T, z. e., S<T. If s,>4, we order T
before S, 7. e., T<(S. Thus the set of the symmetric group is ordered.
We notice that the set has the first element, namely
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Since s; is a positive integer, it is not less than unity, If §>1, we
have E<S, or else let 5, be the first integer different from p.
Then since )

nH=1 Sym= 2,000 y Su =IO, silé‘:/'l’)

we must have s, >pu. Therefore again E<S,

0. The cardinal numdber of the set of the symmelric group s
equal fo ¢, where the german lelter ¢ signifies the cardinal number of
the continuum.

For consider a substitution of the group. It is nothing but a
permutation of a countably infinite number of elements z.e., a distribution
(Belegung) of a countably infinite number of elements. Therefore the
set of the symmetric group is equivalent to a proper subset of the distribu-
tion-set (Belegungsmenge) of countably infinite number of elements on
a countably infinite number of elements which is equivalent to the
continuum., The subset is proper, since for the substitution, the dis-
tributed elements must be different from one another. We shall prove
in the following that the continuum is equivalent to a proper subset of
the set of the symmetric group.

Consider the continuum formed by all the points of a square drawn
in z-plane. We can denote all the rational points of the continuum by
2Ly Zo,tereeere ) Dyyeererres which form a limited sequence {z,}. The derived
set of {z,} is nothing but the continuum. Now consider any point of
the continuum. As we have proved (§ 3), there is a substitution (v, v,)

X (Uy 1) veeveenes admitted by the sequence {z,} such that
lim z, =a.
NPoo n
‘We correspond the point a to the substitution (v, v;) (vsv,)-e-e - . Tet

B be another point different from the point @ of the continuum. In the
same way we may correspond the point 3 to a substitution, say (p; p2) (4
) e admitted by the sequence {z,}. Tt is clear that these two substi-
tutions are different, or else since

lim z, =a, lim z, =g,

nyrn n mpoa p'vn



Group-Theory of Sequences of Numdbers.- 2y

a and B must be equal, Thus we may correspond any point of the
continuum to a substitution of the group of the sequence {z,}.

Since the derived set of {z,} contains more than one point, the
group of the sequence {z,} cannot be the symmetric group ($2). It is
a divisor of the latter, Hence the continuum is equivalent to the proper
subset of the set of the symmetric group. This shows the equality of
the cardinal numbers of the continuum and of the set of the symmetric
group.

10. I have defined in the previous paper' the equivalency of two con-
vergent series of real numbers, In the following we shall extend this idea.

Tet >7e,, > v, be two series of complex numbers (convergent or

divergent). If the series > (2,—7,) are absoluteb; convergent, we say
that the two series are equrvalent and by symbol we write D> 2, ~> 0.,
Tiwo series which are equivalent lo a series are equivalent to each
other. The proof is the same with the convergent series.
et Sz(;v) be a substitution admitted by a sequence {z,}, then by

definition > z,~37z . We write for simplicity
v

Doz, =325,

If 572, be convergent, it has the same sum with >.z,S. But in the
general case, we cannot say about their convergency, though we can
prove that

> (z—z )=o,

quite in the same way as in the previous paper.

Now we can extend the idea of the class of the convergent series,
Tet >z, be any series (convergent or divergent) with a group T\, then
the scries transformed of >z, by any substitutions form a clss 7. e.,
the class in which is contained the series > z,, is the totality of all the

transformed series of >z, which are equivalent to >7z,. I.et PE( _2;») be

any substitution not contained in the group 1. The series >z, and
>.2,P are not of—course equivalent. But we have

>z P~372,PS,

7. e., the group of the series S%2P is also I'®, Now denoting the
symmetric group by 37, we may divide its elements into classes by the

1, Loc, cit., 236. 2. Loc. cit., 215, 3. Zbid, 235.
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idea of the co-sets. Since P is not contained in I, all the products of
P with all the elements of T' (we denote them by PI'), are quite diffe-
rent from the elements of I". T.et Q be another substitution contained
neither in T nor in PI', then all the substitutions of QI' are quite
different from those of T' and PI'. We continue this process and obtain
the sets PI', QI -+ . Therefore we may write

V=T HPE4 QL - eeereeeeernnnne )

Tet the class of the series >z, be denoted by Ci, that of > 2P by
Cp, that of 532,0 by Cq, «--ocoeeeee , then all the series which have the
Same lerms as those of the series 3z, (but different by lhe order) can
be divided vnfo classes Cp, Cp, Corerreererencernnes .

This is an extension of the proposition given in the previous paper.'

11. Tet the series S, of real numbers be semi-convergent, then
we can determine the set of the classes,

Since by hypothesis the series >x, is semi-convergent, we may
rearrange its terms so that the sum of the new scries becomes any

. . . . v
number. The rearrangement is nothing but a substitution, say SZ(&,) .

Therefore the sum of the series >,S is a funclron of the substitution
S. We write it as follows :

vas__'@(s) )

then by the property of the group I', we have
SS=3T4,SI'=d(SI).

Thus to a class Cs, there corresponds one and only one number >2,S, It
may occur that two or more classes correspond to a number. But at least
one class corresponds to one number. Now let Cg, Cq, ---+ be the classes,
each corresponding to a point (number) of a segment of x-axis. Then
the set of classes {CS, Cryeeeeee } corresponding to different numbers of
the segment is equivalent to the continuum, while the set of classes is
clearly a subset of all the classes {Cg, Cp, Cq,---- +.  Therefore the
cardinal number of the set of all the classes is not less than ¢. On the
other hand the set {E, P, Q,--:- } is a subset of the set of the sym-
metric group whose cardinal number is equalto ¢ (§9). Since the sets
{E, P, Q- } and {Cg Cp, Cq - } are equivalent; the cardinal
number of all the classes is not greater than that of the continuum.
Therefore we have the proposition :

If a series of real numbers be convergent, then the set of all the

1. 7é7d., 237.
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classes inlo whick are divtded the series transformed of the given series
by all the substitutions of lhe symmetric group has the. cardinal
number .

If the given series be absolutely convergent, the class is only one.

If the given series be divergent and if one of the transformed series
be convergent, the above proposition is also valid.

If two series of complex numbers are equivalent, their real part
must be also equivalent. But the converse is not generally true, since
their imaginary parts may not be equivalent. Hence the number of
different classes into which are divided the real part of the series D>z
and all the transformed series of the real part by the symmetric group is
not greater than the number of classes into which are divided the series
>%, and all its transformed ones. Hence by aid of the preceding pro-
position, we have the proposition: When the real part of & series or one
of tts lransformed series of complex numbers s convergent, then the
sel of all the classes tnto which are divided the series Iransformed of
the given series by all the substitutions of the symmetric group, has the
cardinal number .

It is clear that we may state the same proposition with respect to
the imaginary part of the given series, since we have only to multiply
all the terms of the series by the imaginary unit.

12. If the derived set of {2,} has a pont a at finideness, then
the cardinal number of the set of the group of {2,} is equal to that of
the continuun.

For let {z, } be a partial sequence of {z,} tending to a, then we
(M .
have

lim(z, —a)=0.
TR

Put for simplicity

EPEZV —a, P=1, 2,veerecee,
"

such that lim &,=o.
[

From the sequence {{.}, we may extract a partial sequence {é‘u } such

that the series ZCP becomes absolutely convergent, Put again

m

é‘p, =7 m TI==1, 2,0tereeees,

m



30 Ve oshizd Matsumoto,

Then the sequence {Z,} admits the symmetric group, since the series
17, is absolutely convergent. Therefore the set of the group of {Z,}
has the cardinal number ¢ (§9). Let {Z.'} be the result of a substi-
tution operated on {Z,} and denote the corresponding letters in the same
way. Then the series >3)(Z.— Z,') is absolutely convergent and
Z,,,—Z,,,’:é‘pém—é,"EL

m

J— Y —
—Zv(m)—ZSnL’ =T, 2,00errere,
w w

where by ™ we designate the right-hand side of the equality
’3

tl":zv —-a
"

when the suffix of the left~hand side is p . Therefore the series

(-2, “) is absolutely convergent. Thus to a substitution of the
w

symmetric group, there corresponds a substitution of the group of {z,}.
So that the set of the group of the sequence {z,} has the cardinal
number .

As a special case the cardinal number of the sel of the group of
a Semi-convergent sertes 15 equal fo ¢, since its terms converge to zero.
Moreover even when the given series is divergent, if there bz a conver-
gent series tronsformed of the given series by a substitution, as we
have proved above, the group of the transformed series has the same
cardinal number ¢. For as we have said, the group of the transformed
series is identical with that of the given series (§10). Therefore 7
Such a case the set of the group of the given series has also the cardinal
nwmber <.

Concluding these propositions, z/ the set of the group of @ se-
quence has a cardinal nwmber different from ¢, then the derived set of
the sequence wrust have only one pornt namely 00,

13. For example consider a sequence {z,} whose numbers satisfy
the conditions

IZ,,.H —!Zy’>g>0, V=1, 2,-vcerereecacees R

where g is a positive number, The limit of the sequence is infinite.
We prove in the following that Zhe sef of the group of this sequence s
countably infinite.

For let S=(;y) be any substitution admitted by the sequence,
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then the number of pairs of integers (», s,) such that v—s,=¢0, 7. ¢,

the degree of the substitution must be finite, If otherwise the series

>1(zy—2, ) has an infinite number of elements (different from zero)
v

where by hypothesis the series is absolutely convergent. Since
I2v+1|—l2y|>g, VYIS, 2,00evrererecrens
a fortiors |2 — 2z | >g
) v

provided w=rs,. This proves the divergency of the series 31|z,—z, |.

Or the substitution must have a finite degree. The substitution of the
least degree is the cycles of two elements (of the second degtree).

Auvy cycle of a finite number of elements is admitted by our sequence,
The cycles of two elements are

(r 2), (I 3): (1 4), ......... ,
(2 3), (2 4),eeeereees ,
(3 4),rrenenr ,

This set is a subset of the product of two countable sets. Hence it is
also countable.

In general noticing that any substitution of mth degree may be
expressed, according to the case, as either a cycle of #2 elements or as
a product of some number of cycles (ths elements of one cycle being
different from those of any other), where the total number of the ele-
ments is 72; the set of substitutions of #2th degree is a subset of the
product of 72 countable set. Therefore the set of all the substitutions of
the finite degree is the sum of a countably infinite number of countable
sets.  Therefore it is also countable; so that the group of our series is
countable.

We remark that the conditions imposed upoa our example may be
replaced by

IZV]~IZP»‘>g>O’ y#ﬂ,, U, =1, 2,=rereeres,

For it, rearrange the numbers of the sequence {z,,}, so that the new
sequenice shall be monotone in absolute value, This is possible since we
are assuming that the limit of the sequence {z,} is ©o. The rearrange-

ment is a substitution.  Denoting the new sequence by {Z.}, we have
clearly

|31u+1|—|3'u[>£>0: TSI, 2ycereeeeeseennes )
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Therefore as we have proved, the set of the group of {2y} is countable.
On the other hand we know that a sequence and its transformed one
have always the same group (§ 10). Hence tf a sequence {z,} satisfies
the condition .

lzvl~]3ul>g>0, VAR, U, WO, 2yreeceenes ,

then the sel of tls group s countable,

If there be no positive number g, the affair is quite different. By
the same reasoning as above, we may always assume that the sequence
{2,} is monotone in absolute value. Now we prove that zf the tnferior
Umit of \z,.| ~|2,| 75 zero, the set of the group of the sequence {z,}
whose dertved set has only a poinl o0 has lhe cardinal number «.

In this case the group of the sequence has substitutions of the infinite
degree. But a/l the cycles admitted by the sequence must be of degree
Jinite. For suppose that the group has a cycle of the infinite degree
such as

(e b ) Baab o)
Then the series
(Za=2p) + (2p=—2,) Feeererreenes .
+ (2a—2g) F (Ga=—g) Forecreerrenenns

is absolutely convergent, @ forfwrs the series
(za_zb) + (Zh—zn) deeeie ven ee

is absolutely convergent. Denoting the general term by (g,—z), we
must have

lim{ (z,—25) + (2, —2,) F=vveee + (ze—2z) }
I-yom
=lim(z,—2z,) : finite and determinale.
I>o»
Therefore lim 2, : finite and deternunale.
I»on

This is contrary to the hypothesis that the derived set of {z,} has ouly
a point 00,

Any substitution may be represented by a product of cycles, any
one of which has all different elements from those of the other!  In our
“present case any substitution of the group is equal to a product of cycles of

"1, Loc. cit, 213,
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degree finite.  Though the substitutions of our group have a very
simple form, yet the set of the group will be proved to have the
cardinal number ¢. Since by hypothesis

h_rn_lzvﬂl - lzvl =0,
TS

for a given positive number e(<1) and a positive integer £, we may
find an integer » such that

l2ye1]| = |2 ] <€

Avoiding the complex notations, without loss of generality we may

assume z2v—1=4A. Now changing £=1, 2, +-+-- , we have
l2.] — |a] <e,
|z} — 2] <&,

Therefore the series > (2 —2x-1) is obsolutely convergent, or the sequence
{z,} admits a countably infinite number of the transpositions of quite
different elements. Hence the group of sequence {z,} contains any
number of those transpositions, while the set of the product of these
tramspositions is equivalent to the set of all the subsets of a countably
infinite number of elements, The cardinal number of such a set is ¢,
Therefore the set of the group of {z,} has the cardinal number ¢c. ~'We may
express this in general form as follows : 77 the derived set of {z,} has only
a pont o and the tnferior limit of all the differences |z,|~|z.|,
(varp) be zero, the set of the group of {z.,} has the cardinal number «.
An example is given by the sequence {logv} where

lim(log(v»+1) ~logy) =o.

Another example is given by {1, 1, 2, 2,---%, 7,--ywhere 2, —2,_,=o0.

Concluding the results of this section, we have the proposition :

The sel of the group of any sequence of numbers {z,} whose derived
sel has only a pornt co s countable or of cardinal number ¢ according
as the inferior linut of all the differences |z,\~\z.1, (va=p) o5 dif-
ferent from or equal to zero.

Concluding the result of these two ssctioas, we have the proposition :

The set of the group of every sequence ts countable or has the
cardinal number ¢. The cardinal number of the set of the group of
every Semi-convergent series is .

Thus when a subset of the set of the symmetric group coincides with
a set of the group of a sequence, the subset is countable or of
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cardinal number ¢, For the general case it is ‘known difficult to deter-
mine it.

As an application of the substitutions of the infinite degree we shall
consider in the following the sequence of functions.

14. Given a sequence of functions {7,(z)} holomorphic in a
domain and a substitution S=(;V>, we say the sequence of functions

admzils the substitution provided that the series >{/v(z) —/, (2)} be
v

absolutely convergent for each point z of the domain. If the series be
convergent absolutely and uniformly for all points z in the domain, we
say the sequence of functions aedzuils the substitutions wnzformly in the
domain,

If the sequence {/,(2)} admits the symmetric group uniformly in
the domain, then there exists a function /(z) holomorphic in the domain
such that the series 37| /,(z) — /(2) | converges in the domain.

For consider the series

F@=AE) H AR =A@ HAE) S @ ) oo,
Since the sequence admits the symmetric group uniformly in the domain,
it admits @ forfors the substitutions
(1 2)( 3 4)reerreresracees ,
(2 3)(4 §)errreermeerenes

uniformly. Or the series

lfz(z)“‘fl(z)"f“lfq(z) —fs(z)"" """"" ’

| /(@) = Ffo(2) | +1/5(2) = fu(@) [ +eevreeens
are uniformly convergent. Therefore the series f(2) is uniformly con-
vergent. Idence f(z) is holomorphic in the domain. Since the sequence
{/,(2)} admits the symmetric group uniformly and

lierfV(Z) :f(z)a

the series S| /,(2) —/ (2) | converges (§2) in the domain.
Conversely if there is a holomorphic function /(2) such that the

series D3] A (2) —/(2) | converges uniformly in the domain, for any sub-

stitution S:(;v), the series V| /,(z) —/(2) | is also uniformly converg-

ent.  Therefore the series 3| £, (z) —/f (z) | is also uniformly convergent.
Therefore the series 31| £ (z) —/ (2)| converges wniformly, or the se-
v
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quence { £,(z)} admits the symmetric group uniformly in the domain.
From this it follows that /(z) is the limiting function of the sequence.

By aid of the above considerations, it is clear that even when a
sequence converges uniformly to a function holomorphic in the domain,
it may not admit the symmetric group. For example consider the se-
quence formed by

ful) = f +(=1)

VT2 v

in the domaia |z]<1. /,(z) converges uniformly to z for v—»co0, The
sequence { £, (z)} cannot admit the symmetric group, since the series

2 2722 +_1___( (22—1)2 1 )

21 +2 2n 2n—1+z2 272—1
is not convergent.

We remark that our sequence has the same group with the sequence

—_— v
{%} For v, p being any two different positive integers, we have

2 — —_ v (=¥ _f w2, (=1)*
A ~Sule) ==t {%__}

v ptz I
v pm (=) N vTp vpe .
=(=1) v {I+( g p— (=) (v+2)(pt2) }

Hence we have

il

lfv(Z) _fu(z)l

l p=(=1)*" K (2)

Vi

14

(—=1)Y _ (=n)* ’ K (),

®
where | K (2)] Lies between two numbers not zero. Therefore the two
sequences have the same group.

15. If the sequence { f,(2)} admzits the symmetric group for any
point 2 in the domain, then there exisls a Function f(z) lmited n
the domain such that the serres S)f\,(2) —F (2)| converges for any
point z of the domain, and conversely. f(2) 45 the hnuting function
of the sequence.

This propsition differs from that of the preceding section by the
condition of the uniform convergency. In the present case, since the

convergency is not uniform, the limiting function is not known to be
holomorphic.
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For example consider the real sequence {%*} in the interval o<x<1.
This sequence does not converge uniformly in the interval though the
limiting function is limited in it.  This sequence admits clearly the
symmetric group for any point of the interval since for any point of
o=Lx<1, the series > & is absolutely convergent, while for x=1 the
sequence is formed by the same number unity.

The above proposition does not contradicts to Stieltjes’ theorem on
the uniform convergency of a limited sequence of functions holomorphic
only wretkzn the domain 7. e., excepting the points of the boundary of
the domain.

16. Many theorems are related with our group-theory. In con-
cluding the present paper, I shall give briefly some relations other than
those with which we have met already.

Being given a sequence of Sfunctions {f,(2)} holomorphic in a
domain, the mecessary and sufficient condition that the sequence is a
. normal fanuly is that any partial sequence {f, (2)} extracted from

the grven sequence admits substitions such as

(/"’1 l’l‘l) (F’S ‘uq) ............... ,
(IJ‘} M;) (I,L_1 F,:.') .............. .

untformly in the domain where the sequence {u,} ts a partral sequernce
of {v.}. Herc we except the case where the bimiting funclion of any
partral sequence becomes oo,

The sufficieat condition is easy to prove. To prove the necessary
condition, suppose that { Al(z)} be a partial sequence of {f, (z)} such

that
}ir};]f)\l (Z) :f(z),

uniformly where the limiting function f(2) is holomorphic in the domain.
Then we have

S (2) =f)l(z) +{A.() —Al(z)}+ {As(z) —/iz(z)}_;_......

uniformly in the domain. As Mr. Borel remarked somewhere we may
change the series by some suitable condensations of terms into an abso-
lutely convergent series without affecting the other properties. By the
condensations of terms, we shall obtain an absolutely convergent series
such as
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/(Z):j;ﬁ-*- {fp‘z(g) _f“x(z) | SRRTITTRPREES ,

where {u,.} is clearly a partial sequence of {\;}, hence of {»,}). Now
the series

lfp,g(z) —fpl(z) | + If*h(z) —‘]‘;Lz(g) [T

and
—_ £ — Lorrvvnnnas
| £, = £, @+ 7, ) =7, ()] 4
are convergent, That is there are two substitutions

(F'l /‘l'-’-) (F’J luq) ...............
a‘nd (}[,: IJ’S) (qu l’l’5) reregecersrense
admitted by the sequence {f, (z)} uniformly in the domain.

Tet {A4,} be a sequence of positive numbers and C, be a class of
functions f(x) defined in an interval such that
f(\‘) (x) '

i/
A,
is less than a constant independent of » and x in the interval, After
Mr. Denjoy each function of the class C, is determined uniquely by
J(x) and all its derivatives at a point of the interval provided that the
series Z; is divergent.
A,
If it be so, consider a function of the class C,, then we have

|/ () | <K¥4,

—_—([{‘”/ _A_v_)vA;,

V4,

where A is a constant independent of » and x and {4} is the same
sequence with {A,} but different by the order of its terms, 7. e., a
sequence transformed of {4,} by a certain substitution, say S. Now
suppose that the sequence {A,} admits the substitution S, then by
definition, the series 37| A4,—A,| is convergent. Therefore |4, —A]
tends to zero for w—oo, On the other hand we have

A,
A,

|4, —A4,| =4,

I —
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r-i/ v

A,
Therefore assuming that all the numbers of the sequence {A,} are
greater than a positive number, we have

>A,

liml”/ _4—)'—: I.
A,

vroo b

Hence there is a constant X7 such that for any »
K A <.
I/ A,

Therefore we have

| S (x) | <(K')' 4.,

S < g,

A, |
where K’ is independent of v and x. Ience the function belongs also
to the class C4 and conversely. Hence in our case the calsses C, and
Ca are identical, or #he class Ca of such functions ts an tnvariant of

the group of the sequence {A,}. It is clear that the series 2]‘,/2

or i,

v

1 . .
and E,—l/—]— are divergent at the same time,
L1y

If a sequence of numbers {v,} admits the group of the sequence
of numbers {u,} where the series S, 15 conv.rgent. then the radius
of convergence of the series S, 2" is not less than wundy,

For by §§4, 5 since the derived set of {,} has one point o, that
of {#,} must also be unique and finite. Therefore we have

h_m{/ |vn| <1,
n»oo

This proves the propositon.
For a power-series f(z), let
() (n) 2
e SO0 )

7] 7!
where 2 is a point in the circle of convergence of the series >z,2"
‘When the conditions of the above propositon are satisfied and the radius
of convergence of the series >22,2" is unity, the series f (2) is continua-
ble on the straight line joining the origin to the point z.-



