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ABSTRACT

This paper consists of four parts, In Part T two differential equations generally
used for interpreting the reverberation and investigating the acoustic properties of building
materials are discussed. In Part IT the growth of sound in a single room when a
source is sounding and its decay after the emission is stopped are studied, and a new
formula for reverberation is obtained. . Tn Part ITL the growth and decay of sound in
two adjacent rooms are considered, and a new method of measuring the acoustic properties
of building materials is proposed. In Part IV the method used by E. A, Eckhardt and
V. I.. Chrisler’ for measurinz the transmission of sound is discussed, and it is proved
that the * reduction factor ” defined by them is not a pure constant but a function depend-
ing generally on the rooms where the observations are made.

Part I

If ¢, be the sound energy incident on the surface of a body in a
room, for instance, the wall, the ceiling, the floor, or a piece of furni-
ture, and if &, be the part of ¢ which is preserved as sound energy in
the room after the incidence, then we define the *‘ coefficient of reduction ”
of the body by '

61—6‘2
€,

7

I

and assume that it is a constant depending on the nature of the body,
but not on the incident energy e.. )

Tet us consider the case where the room and the furniture are made

1 E. A. Eckhardt & V. L. Chrsler, B. S., Sci. Pap,, 21, 37 (1926).
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of v different kinds of material whose coefficients of reduction are 7, 7,
......... 7, ; and whose respective surface areas are .5, Sp.ev.eaSy.

Let 7 represent the mean value of the time-intervals bstween suc-
cessive incidences of the sound enmergy on all the bodies in the room,
and V the reciprocal of 7, z e. the mean number of incidences in unit
time.

Tet us further assume that (A) the incidence of the sound energy
in the room on the bodies takes place at equal intervals z, and that (B)
the incident amount of energy is divided proportionally among their
respective surface areas.

‘When there is a source of sound in the room which can emit
energy continuously at a constant rate g, and if its emission is started,
the sound energy in the room increases; and then if the emission is
stopped, it begins to decreass.  While if the emission is continued, the
sound energy in the room tends to have a limiting value, and the state
becomes steady.

Tet F5™ be the sound energy in the room in this steady state.
Then the part of £ which strikes the surface of the area .S; in an

interval 7 is A5 i, and conscquently the loss of sound energy on
that surface in an interval 7 is AF == #;: where
SEASH‘I"SZ'*_ ............ "*_Sy.

Therefore, the loss of sound cnergy from the room in an iaterval z in
the stealy state is given by

S

o

i=1

7= ER,

*917’1+S27'_)+ ...... +Sv7'v
S

where R=

and the sound energy lost in unit time is given by

L5OR

T

= NRES ieeveeiinnnn. eereeereneerran (1. 3)

Thus we seze that in the steady state the loss of sound energy from
the room in unit time is proportional to the sound energy in the room
at that instant, and that its proportional constant is given by NA.

Tet us now inquire into the loss which would take place when the
sound energy in the room is in a state of increasing or of decreasing.
Is it reasonable to assume that (a} in a state of increasing or of
decreasing the loss of sound energy from the room in unit time is still
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proportional to the sound energy in the room, and that (b) for the
proportional constant the same proportional constait VAR in the steady
state may be used? In other words, if £, £ be the sound energies
in the room in the increasing and the decreasing states, are the two
differential equations

4
%‘ =& = NRE vttt (1. 4)
%—: — NRE....ocsiioimiaeirirsneerenines (1. 5)

satisfied by Z" and £? The main object of Part T is to answer the
above question.

If we assume these equations to be correct, we must have

E o= & — e Y e .6
B (1.0
E=FEeg" ... et (1.7)

where £, is the sound energy when the emission is stopped, and ¢ in
(1.6) is measured from the instant when the sound from the source
starts, and in (1.7) from the instant when it ceases to emit. These
expressions are identical with those obtained by G. Jager!, E. A.
Eckhardt®, S. Nakamura®, and E. Buckingham'. The relation (1.7)
was already found by W. C. Sabine® before them,

Jager also obtained the expression N = ; where ¢ is the speed

4V
of sound and V the volume of the room, assuming that the sound energy
is uniformly distributed throughout the room, both with regard to position
and direction of propagation, '
If we assume that the sound energy in the room after the source
has ceassd to emit sound is given by (1.7), then the sound energy in
the room at # and # + r are given by

— - R — -NR
B, =Fye ™, B = Ee VO,

and therefore we have

But thz loss of sound energy from the room in the interval z from ¢ to
gy

G. Jiger, Wiener Sitz. Ber., 120, 613 (1911),

E. A, Eckhardt, Frank. Inst, J., 195, 799 (1923).

S. Nakamura, [ ZE8WIHGEE, 1, 452 (1925).

E, Buckingham, B. S., Sci. Pap., 20, 193 {1925).

W. C. Sabine, Collected Papers on Acoustics, pp. 34-37, 39

B IS I N
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{4+ © must be £R, which is obtained by the same method as (1.2);
and we must have

Bpi =~ ER=F, (1 = R)eeeeeerreerererenn. (1. 9)

The expressions (I.8) and (1.¢) arve incompatible unless R is zero.
Hence we may conclude that (1.7) is not adaptable to the assumptions
(A) and (B).

The inadaptability of (1.6) can similarly be inferred.

Now let us examine the differential equations (1. 4) and (1.5). ILet
the curve in Fig. 1 show the decay of sound energy i1 the room after
the emission is stopped. ILet XM, YV, represent the amounts of
sound energy in the room at £ and Z + t respectively, and X ¥] the

tangent to the curve at the point Xj, then

E
we have
Fig. 1. )
) X7 = XM, - ViV,
' =FE, — Fn
2 Y, =ER .
2 Dividing this by 7, we get
M .
e ¢ A4 = NER
T .

and this is exactly equal to ths absolut: value of the right haad side of
(1.5). Namely we have

XiZ)

— NRE =— -2 s (1.10)
T
But the left hand side of (1.35) is
dE Xz X7
= =tanf, =— 12 = L 1.11
at ' Z, z (t.11)

and X,Z, is generally unequal to X 7.
Next, let Fig. 2 show the growth of sound energy in the room,
then we have

Yz, = Y,N, — X;M,

- s | P‘ig. )
= L — L} - ’
= (ev + £ — EIR) ~ L k
= et — ER, B
and I’
YZe o NRE (1.12)
: N2 <+

That is, the right hand side of (r.4) is t ttT
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%; but the left hand side of (1.4) is
T
dF Y.z,
— = 0, = ey ieerenenen tesescaarsetianas .
7 an 0, . (I 13)

and Y37, is generally unequal to ¥ Z.,

Tastly, let AV increase to infinity and K decrease to zero, while their
product VR retains a finite constant value £ Then at ths limit, the
left hand sides of (1.5) and (1.4), or (1.10) and (1. 12) become

—RE=— lim Xz =tan01=—a£,
T>0 T dt
’
e — kE = lim "z, _ tan 0, = aE
T>0 z dat

respectively, and the reduced forms of (1.4) and (1. 5), i.e.,

dE e — kE,
dt

dE _ LE
dt

are satisfied. The case where /V tends to infinity and R to zero, while
NR remains constant, will occur when the sound energy is lost by a
certain continuous process, but not by such a discontinuous one as
incidence.

When the sound energy in the room is discussed as a whole, the
sum of all the fractions of sound energy which may be different from
each other with regard to position or direction of propagation is con-
sidered. Since the sum is considered, the loss of sound energy from the
room may appear to be continuous,

But, if the loss of some fractions of sound energy occur discontinu-
ously by incidence, it is not reasonable to assume (1.4) and (1.5)
to give the growth and decay of the sound energy in the room in a
strict sense,

Part II.

If ¢, be the sound encrgy incident on the surface of a body in a
room, and if e; be the part of ¢, which is preserved as sound energy
in the room after the incidence, then let the quantity p given by

P=-B e, reeenens e (2.1)

5

be called the “ coefficient of preservation ” of the sound by the body,
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and assume that it is a coustant depending on the nature of the body,
but not on the incident energy e

It should be noticed that the coefficient of preservation thus defined |
is different from the coefficient of reflection ordinarily used. Iet ¢ be
the incident sound energy and ¢, ¢, ¢, be the parts of ¢ which are
reflected, transmitted, and dissipated by the body respectively.  Then
when the body struck by the sound wave is the wall of a room, e,=¢
and the coefficient of preservation is the same as the coefficient of
reflection; but if the body is a screen, e;=¢ +¢; and the coefficient
of preservation is equal to the sum of the coefficient of reflection and
that of transmission; while, if the screen last mentioned were used as a
door, it is clear that we have e=é.

Tet 7 represent the mean value of the time-intervals between suc-
cessive incidences of the sound energy on all the bodies in the room,
and ¢ the rate of emission, assumed constant, of a continuous sound
source in the room,

Tet the source start emitting in the previously soundless room at
the time 7=o0 and cease to sound at the time Z=wmr, then let us obtain
the sound energy in the room at the time /={(m+n)r, where 7 is a.
positive integer and 7z a positive integer or zero.

Divide the time-interval from f=o0 to 7/=mr into 22 equal short
intervals and consider the sound energy emitted in the z<th short interval
from the beginning, assuming that it strikes the bodies (#+72—2) times
by the time £=(m+n)r.

Fig. 3.

1 ! | i
1 ] 1

t=o i=mr 1=(m+n)r

First, consider the simplest case where the coefficient of preservation
2 is constant for all incidences. An empty room made of a single
material, with neither windows nor entrances is an example. In this
case the sound energy under consideration will be reduced to
BT e (2. 2)
by £=(m+u)r after (m+2—7) incidences. Therefore, the sound energy
£ in the room at ¢=(m+#n)r is given by ‘
m
E _— Z €Tpm+’ﬂ"l;
i=1
1—p"

= erﬁﬂ' .................................... (2.3)
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Next, consider a more general case which would occur ordinarily ;
the room and the furniture are made of v different kinds of material
whose coefficients of preservation are #;, #,,...... #, and whose respective
surface areas are S,, .Ss,.......5,.

The sound energy er emitted by the source in the zth short interval
is to strike the bodies once in the next interval. By assumption (B) we
have

Sip+Sap Tt +.5.2,
S

as the reduced sound energy of er at /=(7-+1)r, where
S=5+5,+...... + S5,
This sound energy will again be reduced to

er (;S!Mzﬁz—l” ...... +.5,5, )2
Ky

by ¢t=(z42)r, and to
er( ‘g’ﬁ‘+‘§2p2; """ +5.4, )mm—i ............... (2.2)

by /=(m+mn)r. Hence the sound energy £ in the room at
f=(m+n)r is given by

E — ier( Siti+Supstce+Siy )"”"-i
i=1

Ry
— _”;ET Pm+n—i
q=1
= er I_—?ET_P"’
. (2.3)
......... 2.3
Whel‘e P = *glﬁl '!"S‘:}pz'; ...... +Sv_¢v < I.

The sound energy Z§™ in the room, just when the source is stop-
ped, is given by putting z=o0 in (2. 3), namely

which is exactly the same as obtained by W. C. Sabine.!

The sound energy in the room, when the state becomes steady by
prolonged use of the source, may be given by the limiting value of
(2. 4) when 2 tends to infinity, namely

1 W, C. Sabine, o0p. cit., p. 44.
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(5) — I
Ef = er e S RN € )
This may be used to give the sound energy in the room even a few
seconds after the source has started, when 2 is very small,
By (2. 3) and (2. 4), we have

BT = FP™ oo, (2.3.1)

This expression or (2.3) gives the sound energy in the room at the
time of an integral multiple of 7, and not at any other time. But between
7z and 7 there exists a relation

t=(m+ n)r.
Hence by puting
L= 1— mr,
we have
T'=wnr, or n= { ;

7 represents the time measured from the instant when the source is
stopped. Therefore we may write (2.3.1) as

7
N S (2. 3.2)

Now, let us assume that this represents the sound energy in the
room at any instant 7, which may be considered as a continuous
variable.

Differentiating (2. 3. 2), we get

dE™ EM™log P -

= A5
dt T
=— AE™,
where A=— log P B ERRIRAE tevesreeraarrane P (2 6)
T

It follows from this that the rate of decay of the sound energy in
the room at any instant after the emission has ceased is proportional to
the sound energy in the room at that instant, This was experimentally
found by W. C. Sabinel.

By a similar reasoning it may be assumed that the sound energy
in the room at any instant when the source is sounding is given by
the following continuous function of #:

1 W, C, Sabine, op. ¢t pp. 34-37.
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A =P

iy -SRI (2.4.1)
which is obtained from (2. 4) by replacing 7 by HZ Differentiating
T
this, we get
JES %) g 2t
7—- E—I_*P— cesesacensosranans v...... (2. 7)

This gives the rate of growth of the sound energy ia the room when
the source is sounding.

Let D be the sound energy which is lost from the room in unit
time in the steady state.  Since in the steady state the loss of sound
energy just balances the emission of the source, we must have

D =g,
Hence, eliminating ¢ from this and (2. 5), we get
D=_1 - P B
T
= A E((,”’),

1—P Lt e erttieereretene e, (2.8)
—

where A =

Thus we see that in the steady state the loss of sound energy from
the room in unit time is proportional to the sound energy in the room.
This has been already obtained in Part I

It is important to notice that 4 in (2.6) is not equal to A“ in
(2.8), but they are approximately equal only when 2 takes a value
sufficiently near to 1; and in such a case (2.7) may be reduced to

11
LEST_)_ ==¢ P%
dt
== AE . i (207, 1)
)

£,

Since is the rate of growth of the sound energy in the room

and e is the emission of sound energy from the source in unit time, A E§™
represents the rate of the loss of sound energy from the room. Hence, if 2
takes a value near to 1, the loss of sound energy from the room in unit time,
when the source is sounding, is proportional to the sound energy in the room.

From these it follows that both when the sound energy in the
room is increasing and decreasing, the loss of sound energy from the
room in unit time may be approximately given by the produce of A“”
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and the sound energy in the room, provided that 2 takes a value suffi-
ciently necar to 1.

Tet 7% represent the time-interval required to reduce the sound
energy in the room, after the emission is stopped, to one half of its
initial value, then from (2. 3.2) we get

7,
1 2
o E&m) — E((;M)P T ,
2
or 77_,:_&&_, ................. o rerrerevereeaeaean (2.9)

—log 7
Thus we see that, if 2 remains constant, 7; is proportional to r. This
shows the reason why the reverberation is strong in large rooms.
Let 7] be the time when £% in (2. 3. 2) becomes a given value
/£, then we have

7
le — E&”O ( kglﬁl +;S‘2ﬁz+ ...... +£p 7\,._‘)—':—.
S .

Keeping £ and E{™ as fixed values, let .S) be increased by .5 and
.S be decreased by .S 1, then we have

B = E { P+ (Brm2)Sh }
S y

and, therefore,

(m) B —
7 log £ 7 {log (1 + —(ﬁ—‘—é&-) + log P}.
F, S

1f l (ﬁl—ﬁz)sx,‘_’ I

G be sufficiently small compared with 1, this may be

written

\m) _
T lOg' E’ = —7; { zsz ?l Asvlg - IOgP} ...... (2. IO)
F PS ’

This shows that there exists between .S;. and 7] a relation of a rectan-
gular hyperbola, which was found by W. C. Sabine' by experiments
with cushions and open windows,

Part III

Tet there be two adjacent rooms I and II which are in acoustic
communication only through an incompletely soundproof panel 1, which
is set up as a part of the otherwise soundproof partition between the

1 W, C. Sabine, op. ci?., p. 20
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?
rooms; and let the two rooms have the same acoustic properties, i.e.

let 2.5, and t defined in Part II be the same for the two rooms.
Let us assume that the coefficient of transmission

: e
Fig. 4. = i, (3.1)
€1
OURC . .. 0
SoURCE where ¢, is the incident sound energy and ¢

the part of the energy which passes through
the body, is a constant independent of ¢. The
r I coefficient of transmission ¢ takes, of course,
different values for different bodies.

w

Let a uniform and continuous sound source be started at the time
/=0 to emit the energy at the rate ¢ in room I and the emission be
stopped at the time /=mr. And let it be required to obtain the respec-
tive sound energies in the two rooms at the time f=(wm+7)7r, where
m is a positive integer and 7z a positive integer or zero.

Dividing the time-interval from #=o to ¢=(m+n)r into (m+n)
equal short intervals, we shall calculate what amount of sound energy
emitted by the source in the z=h [/=sm] short interval would exist in
room I at ¢=(m+n)z.

The sound energy er, which was emitted by the source in the z-th
short interval and has never been in room II, reduces to

ET Pm+n—i
by ¢t=(m+mn)t after (m-+n—2) incidences in room I.

The sound energy, which went out into room Il and came back
again into room I passing through the panel twice, will undergo (727
—7—2) reflections in the time interval (m+n—z)7. So the part of
sound energy er, which was emitted by the source in the s-th short
interval and passed through the panel twice, reduces to

Sy )2 tmit
r prinsi :
er(-Eey

where .S, is the area of the pancl ¥ and ¢ its coefficient of transmis-
sion, Hence

ETman—i CZ (

Sy
S
where ,40-;C; shows the combination of 2 among (mz+7—7), gives the
part of the sound energy which exists in room I at #=(m+#)t having

E )
g) Pm+n—’1,—-,

passed through the panel twice.
For the same reason,
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€Tmin_iCi (w§ - q) pmin-ict ET s 'CG( Sy g)ﬁP’"J‘”"i_6 .........
mt+tn—1 Sv b mtn-1 S b

give the parts of energy which are present in room I at /=(m+n)t
having passed through the panel four times, six times, etc, respectively.

Therefore, the sound energy which was emitted by the source in the
2~th short interval and exists in room I at f=(m+#2) 7 is

m+n— S\J : mt+n—i—2 S ‘ mtw-i—4 .
ET {P * t+m+u—icz( S g) P * ! ~+ m+n—LC4< Sv Q) P + +
6
+m+n—icﬁ (% )P”l+”—i_6+ ---}, ............ (3. 2)

where ,Cy=0 when p<A
Summing up (3.2) from 7=1 to z=wm, the sound energy F{™ in
room I at ¢=(m+#z)c is given by

m m
ﬁm): eT {Z Pm+n—i+ Q2 Z m+n_LC2Pm+n--'L—2
i=1

+ 04 i m+n—ic4 priamiti g QG i m+n—iC6 Pt }

i=1 i

. P mtn-1 mtn-1 4
-_—er{—P" + GG QU3 G P
=2 j=n j=n
+ Qb Z CP Pj 6+ ...... }
. (3-3)
where ;
Y

From this we can easily obtain the sound energy Ef in room I
when the emission of the sound energy is stopped, and the sound energy
E{ in room I when the source has sounded long enough to establish
a steady state in both rooms as follows:

m—1

£ = {12 4 ¢ a0 G

1 —

+ Qﬁg,c,; O K (3.4)
() — I Q“q % %
£ ET{ 1—P + (1—2) + (1—2F) + (1—2)
Foreeerins }
— 1—27
- erm ........................... (3. 5)

Similarly we obtain £, £, and Z£57?, the corresponding energy
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amounts in room II, as follows:

m+n—1 m+n—1 mtn—1
Bp = {05 6P+ O Pt 75
i i=n j=

=n =7

m—1 m-1 m~-1
E = er {Q 5GP @GP OGP
. =1 i= =5

i) = e { e _QP)Z + (1—Qgp)* + (I_C_);)e Forenn)

If the emission of the source be cut off after the sound energies
in the two rooms have reached the steady values Z{%, E{ respectively,
then the sound energics £, £ in the two rooms after the time 7t
are given by

E%m) = er ,,_»__.I,rij,,*_ {Pn 4 nCZQan-E + nC‘QIPn—Ai

(1—FPP—
+ GO P 5+ ... } + er _(ﬁ@_ {“CIQP’H
GO P+ COP } ......... (5 9)
B = et #@— {P" + GO P +,C.O P
L GOP A+ ., } b _‘;_)f —& {nq QP
+ GO P + L COPP L } ...... (3. 10)

which are obtained by the same method as (3. 3), (3. 6).
If QO be so small that we may neglect the terms containing its
higher powers, we get

E}”).——'stl—f}g—, ................................. (3.9.1)
— n—1
Eip? =et {P+7E(II_1€;2}P Q reveenninnn (3. 10.1)

In these expressions 7 denotes a positive integer or zero, but, by
the same reasoning as we obtained (2. 3.2) and (2.4.1), it may be
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assumed that (3.9. 1) and (3. 10.1) are transformed into the following
continuous functions of 7°:

Vi

=

Ef”’)::'er—lii})—, ........... et errereiianeas (3. 9.2)
T
{P+l(1—f>)} <
E? = et LA s ST (3.10.2)

(1—F~) Q

The decay of sound energy in two adjacent rooms was studied
by E. Buckingham' and A. II. Davis® on the assumption that the sound
energy in each room was uniformly distributed throughout the room,
both with regard to position and direction.

We shall now propose a method of measuring the coefficients of
preservation and transmission using two adjacent rooms.

Keeping 2 in (3.5) as a fixed value, let Q become zero and let
E§ denote the value of A3 in this case, then we get

B = et e L1
0 P—y (3 )
which is identical with (2. 5).

From (3.5), (3.8) we get

() >
21 0 1—F
= ) ettt et a e raeaiana, 3.12)
s 0 6
and
VIED Y —{ERY = et; i, (3.13)
from (3.11), (3.13)
1 — P = V{EI(V‘J‘E;;{E}T‘)’ L= By v, (3.14)
¢
and from (3.12), (3.14)
X .
Q= k—z;T‘)’ ........ e rrerieerereans Cevrerenen (3.15)
10

Since £, E52, and L5 are all values in steady states, they and
their ratios are measurable quantities; and, therefore, if they or their
ratios are measured, 2 and (Q may be obtained by (3. 14), (3.15).

Let .5} in each room be increased by .51, and .§; be decreased by
Sz, then we get

E. Buckingham, /oc. cit.
A. H. Davis, Phil. May., §0, 75 (1925}

1
2
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1 — P — Lpl)slﬂ_ =2,
)
%' can be measured by the same method as %4 Eliminating 1 —2 from
this and (3. 14), we get

(Zﬁl_pz)sl,'?- — /é, — k,
Y

or

S

ﬁl—?zz(/é’—k) esereasassans teerveseareens (3. 16)

Sie
If either p, or p, is known, the other may be obtained by (3. 16). If
.S, is the area of an open window, and if its coefficient of preservation
is assumed to be zero, (3.16) becomes

k)

=& =) —— e e .1
pi=( ) Sie (3.17)
From (3.15) we get
RY S IR
= =k Y s .18)
7= Q R (3

The coefficient of preservation and that of transmission may be
obtained by (3.17) and (3.18).

In the course of this experiment it is necessary to make () become
zero without changing the value of 2. This will be done, if the windows
of room II are all opened, so that the sound energy may pass through
the panel from room I to room II, but not back from room II to room
I; or if a substance whose coefficient of preservation is. very small is
placed near the panel ¥ in room II. There is another method. = The
Fig. s. rooms I and II are each provided with
soundproof windows 777 and Wy as shown
in Fig. 5, which have the same areas as

1 uﬁ[ W. After the values of E{7, £{3 have
X

w; w been obtained we measure Z§™ by iater-
changing the material of the window I~
with that of 4.

Part IV

T.et there be two adjacent rooms I and II which are in acoustic
communication only through a window 77 built in the partition between
the rooms. l.et F, A represent the respective average intensitics in the
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Fig. 6. two rooms, with the window open when
a uniform and continuous source in
SOQURCE room I has sounded long enough to
establish a steady state in both rooms.
If an incompletely soundproof panel is
fitted in the window ¥, the value of F
is increased, say, to F+/, and that of
H decreased, say, to //—/. If the average intensity were /+/ in room
I with the window open, the average intensity in room II would be

g ttr
r Ft

reduced by the panel from X —FL to HZ/—4%. E. A. Eckhardt and V.

L. Chrisler' called the ratio of Z—/% to . iﬁi, or

w

Here we see that the average intensity in room II is

H—7 F
H F+f

the ““reduction factor” of the panel and they observed this value for
many kinds of building material.

Is the “ reduction factor” which is defined by E. A. Eckhardt and
V. L. Chrisler a constant depending only on the panel, but not on the
rooms where the observations are made? In order to denote an acoustic
property of the panel by the ‘‘ reduction factor,” it is necessary that the
“reduction factor” be such a constant. The object of Part IV is to
examine whether it is such a constant or not, under the same assump-
tion as we have made before.

Let ry, A, O, and 7y, Py, Oy be the values of 7, 72, Q for rooms
I and II

If £, £y be the sound energies in the two rooms with the panel
in place in the steady state, then the sound energies lost in unit time
from room I and room II are

EI(I "PI) En(1 =2y

(3 (33

T, feerrenirerre e arensnraas (4. 1)

respectively ; and the sound energy received in unit time by room I from
room II through the panel and that received by room II from room I are

£nOn £

(31 7y

Since the state is steady in both rooms, we must have the following two

1 E. A. Eckhardt & V. L. Chrisler, Joc. ci2.
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equations :
E(1—-PF) =+ £ On
7L n
Ly — P — £
TIr 71

where ¢ is the rate of emission of the source. Solving these equations,
we get ’
ery(1—Ay)
( —PI)(I —Pp)— Q\0On
Ey=— ez e e, (1. 3)
(I _PI)(I "‘PH) — 1COn
These expressions give the sound energies in rooms I and II with the
panel in place. (4.2) and (4. 3) are the generalized forms of (3.5) and
(3. 8).
Next, let £], £y be the sound energies in rooms I and II with
the window open; and Pi, 01 Fr, Qh be the values of 2, O, Py, Ou
in this case. Then we have

E = 5,1'1(1 —Pfx)

I:

=BG —F)— OO, (4. 4)
Ey = AL (4. 5)

(=P =)~ Q0
as the expressions corresponding to (4. 2), (4.3); where ¢ is the rate
of emission of the source which is adjusted to satisfy the condition

N U (4. 6)
It is clear that the * reduction factor ” defined by E. A, Eckhardt

and V. 1., Chrisler is equal to —g—’L

1
From (4. 3), (4. 5) we get

Eu e (PN -F)-0i0n O . e (2.7)
£y ¢ (x — )1 _PII?_ QiOn O’
and from (4. 2), (4. 4), (4.6)
(1 —Py) = (1 —#) ,
(1 =21 —Py)— O1Qu (1 —Pr)1 —Pp)—~ Q1Ch
or _& (1 =21 — ) — Q1O — 11—/

¢ (I”‘Pi)(l _PII)—QIQH 1— /Py
Substituting this in (4.7) we get
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£y I —Pfx Or (
1 = PP 4.8)
Ex 1—Fy 1

For the values of 1 — /2 and ¢y we have

1 — 2Py = (1=2)81+...... +(1=2y-1)Sy1+(1 —5,)S,
St
.......................................... (4.9)
S
Q1=T:g; ....... N .(4.10)

where .Sy, Sy are the surface areas of rooms I and II, and $,, ¢ the
coefficients of preservation and of transmission of the panel. Since for
the open window we may assume that its coefficients of preservation
and of transmission are zero and unity respectively, we have

- P — (I—ﬁl)Sl"i' ...... +(l—ﬁy_1)Sy_1+S\.
1 n= ’
St
..... PP PRUUPRURPPIR 0 P &3 |
’ Sv
i et iee s e ea 12
0 S, (4.12)
Comparing (4. 11) with (4.9) we get
1— Zi=( — Py + 5, S‘" et (4.13)
Sy
Substituting (4. 10), (4. 12) into the expression (4.8) we get
By _ 1—FP
= G ceeveaens (4.13)
Ey 1—=Fy

If 1 — 2 were equal to 1— 2, the “reduction factor ” is the same
“as the coefficient of transmission. But, as (4. 13) shows, 1 — /2 differs
from 1— /Py by
kS'v
S
and since 7 and p, will often take values near to 1, we can in general
not neglect this difference compared with 1 — 2.

Therefore, we may conclude that the “ reduction factor” defined by
E. A. Eckhardt and V. L., Chrisler depends generally on the values of

, S . .
A and -=* , 7 e on the rooms where the observations are made.

’

St

y
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