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ABSTRACT 

This paper consists of four parts. In Part I two differential cquatiom generally 
used for interpreting the reverberation and investigating the acoustic properties of building 
materials are discussed. In Part II the growth of sound in a s,n;:le room_ when a 
source is sounding and its decay after the emission is stopped are studied, and a new 

formula for reverberation is obtained ... In Part III the growth and decay of so:ind in 
two adjacent rooms are comidered, and a new method of measuring the acoustic properties 
of building materials is proposed. In Part IV the method used by E. A. Eckhardt and 
V. L. Chrisler' for measuring the trammission of sound is discussed, and it is proved 
that the "reduction factor" defined by them is not a p:ire constant but a function depend­
ing generally on the room, where the observations are made. 

Part I 

If e1 be the sound energy incident 0:1 the surface of a body in a 
room, for instance, the wall, the ceiling, the floor, or a piece of furni­
ture, and if ei be the part of e1 which is preserved as sound energy in 
the room after the incidence, then we define the " coefficient of reduction '' 
of the body by 

e1-e2 
el 

' .......................................... (1. r) 

and assume that it is a constant depending on the nature of the body, 
but not on the incident energy e1• 

Let us consider the case where the room and the furniture are made 

r E. A. Eckhardt & V. L. Chrisler, B. S., Sci. Pap., 21, 37 (1926). 
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of II different kinds of material whose coefficients of reduction arc r1, ?';?,, 

...... ... r.; and whose respective surface areas are Si, Sz, ...... s •. 
Let , rep;:-esent the mean value of the time-intervals between suc­

cessive incidences of the sound energy on all the bodies in the room, 
and N the reciprocal of ,, z: e. the mean number of incidences in unit 
time. 

Let us further assume that (A) the incidence of the sound energy 
in the room on the bodies takes place at equal intervals , , and that (B) 
the incident amount of energy is divided proportio:1ally among their 
respective surface areas. 

When there is a source of sound in the room which ca:1 emit 
energy continuously at a constant rate e, and if its emission is started, 
the sound energy in the room increases ; and then if the emission is 
stopped, it begins to decrease. While if the emission is continued, the 
sound energy in the room tends to have a limiting value, and the state 
becomes steady. 

Let E(t') be the sound energy in the room in this steady stale. 
Then the part of E5"') which strikes the surface of the area St in an 

interval , is .£5"') Si , a·1d cons:::quently the loss of sound energy on 

h t f . ~ l . Ee"°) Si h t a sur ace m a:1 1:iterva , 1s u -- rt ; w ere 
s 

S - .S\ + S 2 + ............ + S,. 

Therefo;:-e, the loss of s.:mnd energy from the room in an interval , i11 
the steajy state is given by 

where S,r, +S2r2 + ...... +s.r. 
s 

,\···••• ........... ( .. ,) 

and the sound energy lost in unit time is given by 

.£5"')R = NRE5°') .................................... (1. 3) 
'Z" 

Thus we see that in the steady state the loss of sound energy from 
the room in unit time is proportional to the sound energy in the room 
at that instant, and that its proportional constant is given by N R. 

Let us now inquire into the loss which would take place when the 
sound energy in the room is in a state of increasing or of decreasing. 
Is it reasonable to assume that (a) in a state of increasing or of 
decreasing the loss of sound energy from the room in unit time is still 
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proportional to the sound energy in the room, and that (b) for the 
proportional constant the same prop0rtio:ial consta·1t NR in the steady 
state may be used? In other words, if E', E be the sound energies 
in the room in the increasing and the decreasing states, are the two 
differential equations 

dE' = e - NRE', .................................... (r. 4) 
dt 

dE -- = - NRE ....................................... (r. 5) 
dt 

satisfied by E' and E? The main object of Part I is to answer the 
ab0ve question. 

If we assume these equations to be correct, we must have 

E' = -~e-{1 - e-Nm}, ........................... (1. 6) 
NR 

E = Ece-Nm; ............................................. (r. 7) 

where E.i is the sound energy when the emissio:1 is stopped, and t in 
( 1. 6) is measured from the insta:it when the sound from the source 
starts, and in ( r. 7) from the insta:1t when it ceases to emit. 
expressions are identical with those obtained by G. Jager', 
Eckharde, S. Nakamura3, and E. Buckingham\ The relation 
was already found by W. C. Sabiner' before them. 

These 
E. A. 

( I. 7) 

Jager also obtained the expression N = ~ ; where c is the speed 
4V 

of sound and V the volume of the room, assuming that the sound energy 
is uniformly distribeted throughout the room, both with regard to position 
and directio:1 of propagation. 

If we assume that the sound energy in the room after the source 
has ceased to emit sound is given by ( 1. 7), then the sound energy in 
the room at t and t + , are given by 

Ee = Eo e-Nm, EeH = Eo e-NR(tH), 

a'.ld th~rdore we have 

Et+'t = E1 e-NR.'t = E, e-R .. ............................ (1. 8) 

But th2 loss of sound energy from the room in the interval r from t to 

r G. Jiger, Wiener Sitz. Rer., 120, 613 (1911). 

2 E. A. Eckhardt, Frank. Inst., J., 195, 799 (1923). 

3 S. Nakamura, □ ,j;;~lfi%b-@¥fl'lr, l, 452 (1925). 
4 E. Buckingham, B. S., Sci. Pap., 20, 193 (1925). 

\V. C. Sabine, Collected Papers on Acoustics, pp. 3~-37, 39. 
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t + , must be E,R, which is obtained by the same method as (r. 2); 
and we must have 

Em= E1 - .EiR = E, (r - R) ...................... (r. 9) 

The expressioas (r. 8) a'.1d (r. 9) a,e incompatible unless R is zero. 
Hence we may conclude that ( r. 7) is not adaptable to the assumptions 

(A) and (B). 

The ina '.iaptability of ( r. 6) can similarly be inferred. 
Now let us examine the differential equations (r. 4) and (1. 5). Let 

the curve in Fig. r show the decay of sound energy i 1 the ro::im after 
the emission is stopped. Let .x;M;, Y 1N 1 represent the amounts of 
sound energy in the room at t and t + , respectively, and .x;.v;: the 

E 
Fig. 1. 

tangent to the curve at the point .x;, then 
we have 

.XiZ; = .x;Jlfr - Y;.N; 
=E,-E1+-. 
= .EiR . 

Dividing this by ,, we get 

!" 

a:1d this is exactly equal to the abso~ut~ value of the right hnd side of 
( 1. 5). Na:11ely w~ have 

- ~VRE =- (1. 10) 

But the left hand side of ( I. 5) is 

dE .x;z; -- = tan81 =- ---
dt z~y; !" 

and .x;zl is generally unequal to .x;z;. 
Next, let Fig. 2 show the growth of sound energy in the room, 

then we have 

and 

Y;ZJ = Y 2N 2 - X:llll; 
= E;n - E; 
= (c, + E; - E;R) - E; 
= a - E;R, 

Y;Z2 - NRE' ( ) --- - € - , ......... I. 12 
!" 

That is, the right hand side of ( 1. 4) is 

E' Fig. 2. 
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Y2Z2 
; but the left hand side of ( 1. 4) is 

dE' = tan82 = J?;Zz , ........................... (1. 13) 
dt T' 

and ViZ2 is generally unequal to Y; Z 2• 

Lastly, let N increase to infinity and R decrease to zero, while their 
product NR retains a finite constant value k. Then at th:c: limit, the 
left hand sides of (r. 5) and (1. 4), or (r. 10) and (r. 12) become 

- kE = - lz1·n x;z; 8 dE - = tan 1 = ~t , 
•;;-,.o -r a, 

respectively, and the reduced forms of ( r. 4) and ( r. 5), i.e., 

dE' = e - kE', 
dt 

dE ~- kE 
dt 

are satisfied. The case where N tends to infinity and R to zero, while 
NR remains constant, will occur when the sound energy is lost by a 
certain continuous process, but not by such a discontinuous one as 
incidence. 

When the sound energy in the room is discussed as a whole, the 
sum of all the fractions of sound energy which may be different from 
each other with regard to position or direction of propagation is con­
sidered. Since the sum is considered, the loss of sound energy from the 
room may appear to be continuous. 

But, if the loss of some fractions of sound energy occur discontinu­
ously by incidence, it is not reasonable to assume ( r. 4) and ( r. 5) 
to give the growth and decay of the sound energy in the room in a 
strict sense. 

Part II. 

If e1 be the sound energy incident on the surface of a body in a 
room, and if e2 be the part of e1 which is preserved as sound energy 
in the room after the incidence, then let the quantity p given by 

P=~ ................................................ (2.1) 
€1 

be called the "coefficient of preservation" of the sound by the body, 
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and assume that it is a constant depending on the nature of the body, 
but not on the incident energy e1• 

It should be noticed that the coefficient of preservation thus defined 
is different from the coefficient of reflection ordinarily used. Let e1 be 
the incident sound energy and e~, e~', e/ be the parts of e1 v,hich arc 
reflected, transmitted, and dissipated by the body respectively. Then 
when the body struck by the sound wave is the wall of a room, eJ=e~ 
and the coefficient of preservation is the same as the coefficient of 
reflection; but if the body is a screen, e2 = e: + e~' and the coefficient 
of preservation is equal to the sum of the coefficient of reflection and 
that of transmission; while, if the screen last mentioned were used as a 
door, it is clear that we have e2 =e~. 

Let T represent the mean value of the time-intervals between suc­
cessive incidences of the sound energy on all the bodies in the room, 
and € the rate of emission, assumed constant, of a continuous sound 
source in the room. 

I.et the source start emitting in the previously soundless room at 
the time t=o and cease to sound at the time t =mT, then let us obtain 
the sound energy in the room at the time t=(m+n)T, where 1n is a. 
positive integer and n a positive integer or zero. 

Divide the time-interval from t = o to t = mT into 1n equal short 
interva!s and consider the sound energy emitted in the z~th short interval 
from the beginning, assuming that it strikes the bodies ( 1n + n - z") times 
by the time t=(m+n)T. 

I I 
t=o 

Fig. 3. 
z 

I I I 
t=mT t=(m+ n)T 

First, consider the simplest case where the coefficient of preservation 
j> is constant for all incidences. An empty room made of a single 
material, with neither windows nor entrances is an example. In this 
case the sound energy under consideration will be reduced to 

.,;.m+n-i ( ') €Ty ................................................... 2, 2 

by t = ( 11t + n )T after (m + n - i) incidences. Therefore, the sound energy 
E in the room at t=(m+n)T is given by 

m 

E = >= apm+n-i 
i=l . 

I -j>m n = ET ~~-p .................................... (2. 31) 
1-p 
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Next, consider a more general case which would occur ordinarily; 
the room and the furniture are made of v different kinds of material 
whose coefficients of preservation are jJ1, jJ2, •••••• }, and whose respective 
surface areas are 51, S 2, ...... S,. 

The sound energy e:, emitted by the source in the z:.th short interval 
is to strike the bodies once in the next interval. Dy assumption (B) we 
have 

S1P1 +S2P2+ ...... +S,p, 
€?' -~--~------

s 
as the reduced sound energy of €?' at t = ( i + 1 ), , where 

S=S1 + S 2 + ...... + S,. 

This sound energy will again be reduced to 

er (-_':~1P1 -f-S2P2;•····· +s,p, y 
by t=(z·-1-2),, and to 

( 
S1P1-+-S2P:1+ ...... +S,p~)m+n-i ( 

2
) 

€?' -~--~~---~ ··•·•··•·•••·•• 2. s 
by t=(m+n),. Hence the sound energy E<m) in the room at 
t=(m+n), is given by 

where 

E<m) = £ €?' ( S1P1 -f-S2P2+ ...... +S,p, )m+n-i 
i-1 -~ 

m = ~ e, pm+n-i 
,-1 

_ 1-Pmpn 
-€?'--- ' 

1-P 

p = S1P1 + S2P2 + ...... + S,p" 
s 

The sound energy E5m) in the room, just when the source is stop­

ped, is given by putting n=o in (2. 3), namely 

E(m) - I -pm 
u -e,---, ................................... (2.4) 

1-P 

which is exactly the same as obtained by W. C. Sabine.1 

The sound energy in the room, when the state becomes steady by 
prolonged use of the source, may be given by the limiting value of 
(2. 4) when m tends to infinity, namely 

I ,v. C. Sabine, op. c,r., p. 44. 
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ES"") = a ~~I~ ....................................... (2. 5) 
1-P 

This may be used to give the sound energy in the room even a few 

seconds after the source has started, when P is very small. 

By (2. 3) and (2. 4), we have 

E(m) = Ea"')pn ....................................... (2. 3• 1) 

This expression or ( 2. 3) gives the sound energy in the 

time of an integral multiple of r, and not at any other time. 

n and t there exists a relation 

t= (m + n)r. 

Hence by puting 

T= t- mr, 

we have 

or 

room at the 
But between 

T represents the time measured from the instant when the source is 

stopped. Therefore we may write (2. 3. 1) as 
'I 

E(m) = E&m)jJ~ •••••••••••••••••••••••••••••••••••••••(2. 3. 2) 

Now, let us assume that this represents the sound energy in the 

room at any instant T, which may be considered as a continuous 
variable. 

Differentiating (2. 3. 2), ,ye get 

where 

r 

= - AEC"'\ 

A=- !°'; P . }·································('. 6) 

It follO\vs from this that the rate of decay of the sound energy in 
the room at any instant after the emission has ceased is proportional to 

the sound energy in tne room at that instant. This was experimentally 
found by \V. C. Sabine1. 

By a similar reasoning it may be assumed that the sound energy 

in the room at any instant when the source is sounding is given by 
the following continuous function of t : 

I w·. C. Sabine, op. cit., pp. 34-37. 
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t 

I-P~ 

1-P 
, ............ , ................. . 

,vhich is obtained from (2. 4) by replacing m by 

this, we get 

t Differentiating 

dE~ f) = _ e: log P t 

-"'---- p--;:;: ••••••·•··••·••··•·••••• (2. 7) dt 1-P 

This gives the rate of growth of the sound energy in the room when 
the source is sounding. 

Let D be the sound energy which is lost from the room in unit 
time in the steady state. Since in the steady state the loss of sound 
energy just balances the emission of the source, we must have 

D=e:. 

Hence, eliminating e: from this and ( 2. 5 ), we get 

where 

D= I -P E(co) 
0 

T 

AH= A:•~~"'•.) ...................................... (,. 8) 

Thus we see that in the steady state the loss of sound energy from 
the room in unit time is proportional to the sound energy in the room. 
This has been already obtained in Part I. 

It is important to notice that A in ( 2. 6) is not equal to A<"") in 
( 2. 8 ), but they are approximately equal only when P takes a value 
sufficiently near to 1 ; and in such a case ( 2. 7) may be reduced to 

t 
.. e:P-;, 

dEoU-) 
Since ---- is the rate of growth of the sound energy in the room 

dt 
and € is the emission of sound energy from the source in unit time, A<"") E~"°) 
represents the rate of the loss of sound energy from the room. Hence, if P 
takes a value near to 1 , the loss of sound energy fro:11 the room in unit time, 
when the source is sounding, is proportional to the sound energy in the room. 

From these it follows that both when the sound energy in the 
room is increasing a!1d decreasing, the loss of sound energy from the 
room in unit time may be approximately given by the produce of Ace,,) 
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and the sound energy in the room, provided that P takes a value suffi­

ciently near to 1 • 

Let T 2 represent the time-interval required to reduce the sound 

energy in the room, after the emission is stopped, to one half of its 

initial value, then from ( 2. 3. 2) we get 

T, 
_ l E(m) _ E(m) p~ 

. -- 0 - ..Jf) ' 

2 

log 2 z- ....................................... ( 2 • g) 
-logP 

or 7;= 

Thus we see that, if P remains constant, 7; is proportional to r. This 
shows the reason why the reverberation is strong in large rooms. 

Let Ti be the time when E<m) in (2. 3. 2) becomes a given value 
Ei, then we have 

T, 
Ei = ES"') ( S1:Pi + .S"'z..t\+ ...... + S,P,_)~ 

s . 
Keeping E 1 and E8m) as fixed values, let S'i be increased by S 1,2 and 

S 2 be decreased by S 1,2, then we have 

E
1 
= E5m) {p + _ip_1~12)i1,2 }, 

and, therefore, 

rlog 

If I (Pt - P2)Si,2 I be sufficiently small compared with 1, this may be 
PS' 

written 

~ !of!" Ei,m) . . rri {-P_2_-_Pt_ S' 1 P} ( ) • ~ .L, , 1,2 - og . ., ... 2. I 0 
Ei PS 

This shows that there exists between S'1,2 a:1d Ti a relation of a rectan­
gular hyperbola, which was found by W. C. Sabine1 by experiments 
with cushions and open windows. 

Part III 

Let there be two adjacent rooms I a:1d II which are in acoustic 
communication only through an incompletely soundproof panel TV, which 
is set up as a part of the otherwise soundproof partition between the 

l ,v. C. Sabine, op. cit., p. 20 
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rooms; and let the two rooms have the same acoustic properties, i.e. 
let P,S, and , defined in Part II be the same for the two rooms. 

Let us assume that the coefficient of transmission 

Fig. 4. q=£, ..................... (3.1) 
el 

.SOURCE: 
where e1 is the incident sound energy and e/ 
the part of the energy which passes through 
the body, is a constant independent of e1• The 
coefficient of transmission q takes, of course, 
different values for different bodies. 

• 

I 1! 

Let a uniform and continuous sound source be started at the time 
t=o to emit the energy at the rate e in room I and the emission be 
stopped at the time t=m,. And let it be required to obtain the respec­
tive sound energies in the two rooms at the time t=(m+n) ,, where 
-m is a positive integer and n a positive integer or zero. 

Dividing the time-interval from t= o to t= (m + n), into (m + n) 
equal short intervals, we shall calculate what amount of sound energy 
emitted by the source in the z~~h [z"-<m] short interval would exist in 
room I at t=(nz+n) ,. 

The sound energy er, which was emitted by the source in the z~th 
short interval and has never been in room II, reduces to 

e1' pm+n-i 

by t=(m+n), after (m+n-1') incidences in room I. 
The sound energy, which went out into room II and came back 

again into room I passing through the panel twice, will undergo (m+n 
-z"-2) reflections in the time interval (m+n-1'),. So the part of 
sound energy e1', which was emitted by the source in the z~th short 
interval and passed through the panel twice, reduces to 

e1' ( ~v q y pm+n-i-2, 

where Sv is the area of the panel TV and q its coefficient of transmis­
sion. Hence 

e- . C (~ q) 2 
pm+n-i-2 

"'m+n-i 2 S , 

where m+n-iC shows the combination of 2 among (11z+n-1'), gives the 
part of the sound energy \vhich exists in room I at t=(m+n), having 

passed through the panel twice. 

For the same reason, 
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( 
S. )r; m+n-i-~ 

€<m+n-iC6 Sq P , • ... •• ••• 

give the parts of energy which are present in room I at t=(m+n) r 
having passed through the panel four times, six times, etc. respectively. 

Therefore, the sound energy which was emitted by the source in the 
i:th short interval and exists in room I at t = ( m + n) r is 

~,{pm+n-i+ -c(S• q)
2

pm+n-1-2+ -C(S• q)4
pm+•-i-4 

1;;, m+n-l 2 S 1n.+n-l J S 

+ C ( S. )
6
pm+n-i-6+ } ( ) m+,i-i 6 S q • • • , • • • • • •, • • • • • 3• 2 

where r,C;,_=o whenµ<).. 
Summing up (3. 2) from z·= 1 to z·=m, the sound energy Er_m) in 

room I at t=(m+n) r is given by 

{

m m 
E,m) = €!" ""' pm+n-i + Q2 ""' C pm+n--i-2 

I ~ /___:,,. m+n-i 2 
i~l i~l 

m+n- i-4 m+n-i-6 m ,,. } + Q4 B m+,.-ic p + Q6 b m+n-icG p + ..... . 

= €!" I - P" + Q~ L -C pi-2 + Q4 L C pH { 
P m m+n-1 m+n-l 

I _ p j=-;1, 1 2 j:::i J 4 

where 

From this we can easily obtain the sound energy Eir:') in room I 
when the emission of the sound energy is stopped, and the sound energy 
Ef.i•) in room I when the source has sounded long enough to establish 
a steady state in both rooms as follows : 

+ Q6 ~\cG pi-6 + • •••••}, • ••• • • • ••••• ••• ••• ••• (3. 4) 
i-6 

E}~) = €!" {--I __ + Q2 + Q' + Q6 
I - p ( I - PY ( I - P)5 

( I - P)7 

+ ............... } 

1-P ( = er~-~~~........................... 3. s) 
(1 -P)2-Q2 

Similarly we obtain Err\ Eii?i, and Eiil, the corresponding energy 



On the Theory of Reverberatz'on. 

amounts in room II, as follows : 

{ 

m.+n-1 m+n-1 m+n-1 

Eii) = €, QI: icl pi-I+ r:? I: ;C. pH+ Q5 I: ;C;Pj-s 
i=n i-n i-n 

+ ..................... }, .................. (3. 6) 
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I£ the emission of the source be cut off after the soun'.l energies 
in the two rooms have reached the steady values .If{":/, Ef16 respectively, 
then the sound energies Ei"'\ Ei_'[') in the two rooms after the time n, 
are given by 

Er~°')=€!' _____ I_=-P ___ {pn + C,Qzpn-2 + C.Q'P"-4 
( I - P)2 - Q2 

" • " • 

+ C O•pn-6+ } + Q { C Qpn-1 n (i c:... • • • • • • €r \<) " n 1 

(1 -Pr-(! 

+ ,.C3 (?pn-3 + ,.C,;Q5pn-5 + ...... }, ......... (3. g) 

E"°') - Q {P" -1- C ,p. pn-2 + C Q'P"-4 
JI - €?' ( ,\2 ,{l. ' n 2~ n -t 

I -Pi-~ 

+ C Q6pn-6 + } + I - P { C Qpn-1 
" 6 - ".... €!' ( I - Pf- Q2 n I 

+ ,.C3(?pn-3 + ,.C;Q5pn-5 + ..... .}, ...... (3. 10) 

which are obtained by the same method as (3. 3), (3. 6). 
I£ Q be so small that we may neglect the terms containing its 

higher powers, we get 
pn 

Ef°') .. €!' --- ' ................................. (3. g. 1 ) 
1-P 
{P+n(r -P)}pn-l ) 

( 
,\2 Q ............ (3. IO. I 

1-P1 

In these expressions n denotes a positive integer or zero, but, by 
th-.:: same reasoning as we obtained (2. 3. 2) and (2. 4. 1), it may be 
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assumed that ( 3. 9. 1) and ( 3. 1 o. 1) are transformed into the following 
continuous functions of T: 

T 

Bf"') ~--'-a p~ 
1-P 

, ........... , .................... . 

{P+ Le l - P>} ~ -l 
F;,"')-----'- €?" ---'-~~-- Q II -0---- ( l - Pi ........... . 

(3. 9. 2 ) 

The decay of sound energy in two adjacent rooms was studied 
by E. Buckingham1 and A. H. Davis2 on the assumption that the sound 
energy in each room was uniformly distributed throughout the room, 

both with regard to positio:1 and direction. 
We shall now propose a method of measuring the coefficients of 

preservation and transmission using two adjacent rooms. 
Keeping P in (3. 5) as a fixed value, let Q become zero and let 

Eu"') denote the value of E{r;;) in this case, then we get 

I Eu"')= €T ---, .................. , ................ (3. l 1) 
1-P 

which is identical with (2. 5). 
From (3. 5), (3. 8) we get 

E (oo) 
I 0 1-P 

--- ' ................................. (3. 12) 
Q 

and 

1/{ V<r"'o)}:l - { Tj<.1"'1 ti,}:i --.i.:,r 1:.,, c:r; .... , , , ... , ...........•• 

from (3. r r ), (3. r 3) 
✓{E("')}:l { z::<.=)}2 

I _ p = JI o - DjJ o 

and from (3. 12), (3. 14) 
rloo) 

Q =k Bj10 

.Ej_'J/ 

er =k; ............ (3.14) 

(3. l 5) 

Since El~), E'i1°6. a!Kl Eu"') arc all values in stea•ly states, they and 
their ratios are measurable quantities ; and, therefore, if they or their 
ratios arc measured, P and Q may be ob~ained by (3. 14), (3. 15). 

Let S 1 in each ro'.)m k increased by .5\, and S 2 be decreased by 
S 1,2, then we get 

I E. Bt1ckingham, lac. cit. 

2 A. H. Davis, Phil. Mag., 50, 75 (1925). 
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I - P- (pl - p2)S1,2 
s =k'. 
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// can be measured by the same method as k. Eliminating 1 - P from 
this and (3. 14), we get 

or 

(A - P2)S1,2 = k' _ k, 
s 

Pi - PJ = (k' - k) _§__ ........................... (3. 16) 
S1,2 

If either :Pi or p2 is known, the other may be obtained by ( 3. 1 6). If 
S 2 is the area of a!1 open window, and if its coefficient of preservation 
is assumed to be zero, (3. 16) becomes 

Pi = (k' - k) -~ ....... "' ........................ (3. I7) 
S1,2 

From (3. 1 5) we get 

q = -5__ Q = k -5__ 
s~ s~ 

E,=) 
~ll u • • • • • • • • • • ••••••••• • • ( 3 • I 8) 

T,'(=) 
Lj U 

The coefficient of preservation and that of transmission may be 
obtained by (3. 17) and (3. 18). 

In the course of this experiment it is necessary to make Q become 
zero without changing the value of P. This will be done, if the windows 
of room II are all opened, so that the sound energy may pass through 
the panel from room I to room II, but not back from room II to room 
I; or if a substance whose coefficient of preservation is very small is 
placed near the panel T¥ in room II. There is another method. The 

Fig. 5. 

I l[ 

rooms I and II are each provided with 
soundproof windows T,Vj_ and Wi1 as shown 
in Fig. 5, which have the same areas as 
W. After the values of Bio\ .Ef-t'J have 
been obtained we measure Eo00

) by inter­
changing the material of the window W 
with that of T½. 

Part IV 

Let there be two adjacent rooms I and II which are in acoustic 
communication only through a window vV built in the partition between 
the rooms. Let F, EI represent the respective average intensities in the 
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Fig. 6. 

Ji: 

Kei;i' Yamashita. 

two rooms, with the window open when 
a uniform and continuous source in 
room I has sounded long enough to 
establish a steady state in both rooms. 
If an incompletely soundproof panel is 
fitted in the window w; the value of F 
is increased, say, to F + ./, and that of 

H decreased, say, to H-h. If the average intensity were F + .f in room 
I with the window open, the average intensity in room II would be 

H F+/' H · · . II. ---- . ere we see that the average intensity m room 1s 
F 

reduced by the panel from H F + .f 
F 

to H-h. 

L Chrisler1 called the ratio of H-li to EI F+.f 
F 

F 

E. A. Eckhardt and V. 

, or 

EI-h 
H 

--- ...................................... . 
F+f' 

the " reduction factor " of the panel a,1d they observed this value for 
many kinds of building material. 

Is the "reduction factor" which is defined by E. A. Eckhardt and 
V. L. Chrisler a constant depending only on the panel, but not on the 
rooms where the observations are made? In order to denote an acoustic 
property of the panel by the "reduction factor," it is necessary that the 
" reduction factor '' be such a constant. The object of Part IV is to 
examine whether it is such a consta!1t or not, under the same assump­
tion as we have made before. 

Let 'I• Pr, 01, and , 11 , Pu, On be the values of ,, P, Q for rooms 
I and II. 

If Ei, E11 be the sound energies in the two rooms with the panel 
in place in the steady state, then the sound energies lost in unit time 
from room I and room II are 

'I 'II 

respectively ; and the sound energy received in unit time by room I from 
room II through the panel and that received by room II from room I arc 

'II 

Since the state is steady in both rooms, we must have the following two 

I E. A. Eckhardt & V. L. Chrisler, !oc. ed. 
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equations: 

Tr 'II 

where e is the rate of emissioa of the source. Solving these equations, 
we get 

, ................. . 

These expressions give the sound energies in rooms I and II with the 
panel in place. (4. 2) and (4. 3) are the generalized forms of (3. 5) and 
(3. 8). 

Next, let E;, Ei1 be the sound energies in rooms I and II with 

the window open ; and Pi, Qi, Fir, Qi1 be the values of Pi, Qr, Pn, Qu 
in this case. Then we have 

E; = e'-r1(1 - P{1) 
(1 -Pi)(1 -A1)-QiQi1 

, ................. . 

' e'-ruQ; Eu = --------'-'-"'--''----- ' ................. . 
(1 -P;)(1 -P{1)- QiQi1 

as the expressions corresponding to (4. 2), (4. 3); where e' is the rate 
of emission of the source which is adjusted to satisfy the condition 

E1 = E{ ................................................... (4. 6) 

It is clear that the " reduction factor " defined by E. A. Eckhardt 

and V. L. Chrisler is equal to En 
E;I . 

From (4. 3), (4. 5) we get 

E 11 _ e (1-A)(1-P{1)-QiQi1 Q1 . (
4 7

) 
E{1 - i (1 -P1)(1 -Pi1)-Q1Qu o;;' ... . 

and from (4. 2), (4. 4), (4. 6) 

or 

(1 - P 1)(1 -Pu)- Q1Qn 

e (1 -Pi)(1 -P{1)-QiQi1 
7 (1-P1)(1 -Pu)-Q1Qn 

Substituting this in (4. 7) we get 

(1 - Pi)( I -Pii)- QiQi1 

I -P{r 
1-Pn 
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Eu = 1-P{1 

E{1 1 -Pu 
01 -,- ............................. . 
01 

For the values of 1 - Pu and Q! we have 

1 -Pu= ( I -ft1)S1 + ...... +(1 -ftv-1)Sv-1+(1 -p.)s. 
Sn 

.. · · .. · · .. · .... · · .. · · · .................... (4. 9) 

s Or= s: q; .......................................... (4. 10) 

where Sr, Su are the surface areas of rooms I and II, and Pv, q the 
coefficients of preservation and of transmission of the panel. Since for 

the open window we may assume that its coefficients of preservation 
and of transmission are zero and unity respectively, we have 

(1 -.P1)S1 + ...... +(1 -ftv-1)Sv-1 +Sv 
Sn 

.............. : ....... • .......... •• • ...... (4. I I) 

Qi= s • ............................................. (4. 12) 
Sr 

Comparing (4. n) with (4. 9) we get 

I - Prr = (1 - Ar) + Pv S.• .... • • • .... • • •· (4. I 3) 
.Sn 

Substituting ( 4. 10 ), ( 4. 1 2) into the expression ( 4. 8) we get 

Eu = 1-P{1 q .................................... (4. 13) 
.Eir I -Pn 

If 1 - Pu were equal to 1 - P{i, the " reductio:i factor " is the same 
. as the coefficient of transmission. Bat, as (4. 13) shows, I - P{1 differs 

from 1 -Pu by 

s 
P V • 

v Su ' 

and since Pn and .Pv will often take values near to 1 , we can in genera.I 
not neglect this difference compared with r - Pn. 

Therefore, we may conclude that the "reduction factor" defined by 
E. A. Eckhardt and V. L. Chrisler depends generally on the values of 

P{1 and - 5 • , z: e. on the rooms where the observations are made. 
Sn 

The writer wishes to express his sincere tha:1ks to Profess)r K .. 
Tamaki by whose suggestion this investigation was undertaken. 


