Ueber das ternäre System Cu-Sn-Sb

von

Masahiro Tasaki

(Eingegangen am 23, Juli 1929)

Einleitung

Unter dem ternären Systeme haben die Kupfer-reicheren und Zinnreicheren Legierungen bisher schon mehrfache technische Anwendung gehabt. Es bleibt aber die Untersuchung hinsichtlich seines Zustandsdiagramms noch auszuführen. Um diesen Mangel abzuhelfen, habe ich dieses Thema aufgenommen, wobei zuerst die schon bekannten Zustandsdiagramme der binären Systeme mit einigen Veränderungen genau auf ihre Bewährung hier untersucht wurden. Zum Schlusse werden auch die physikalischen und mechanischen Eigenschaften des Zinn-reicheren Teils als Lagermetalle wohl berücksichtigt.

A. Experimenteller Teil

Die Mischung der Metalle im nötigen Verhältnisse wurde jedesmal im Tammannischen Rohr unter Deckung von Holz-Kohle electrisch geschmolzen. Die Zusammensetzungen der Reguli waren nach Analyse fast dieselben wie die Mischungen. Das zur Temperaturmessung gebrauchte Pt-Pt.Rh-Thermoelement wurde mittels der folgenden Metalle geeicht :

electrolytsches Kupfer	108 3 °
reines Silber	961°
Aluminium von Bureau of Standards	658.7°
Zink von Bureau of Standards	419.4°
Zinn von Bureau of Standards	231.9°

Zur Feststellung der Gleichgewichtszustände wurden überhaupt die Abkühlungskurven, und zuweilen bei den Fällen der binären Systeme die Erhitzungs- und electrischer Widerstands-Temperatur-Kurven benutzt. Der Widerstand wurde so gemessen, dass 1-2 Ampere zwischen 10 cm auf einen Zylinder von 5 mm Durchmesser geleitet und die Pontentialdifferenz zwischen 8 cm genau für alle 5° der Temperatur gelesen wurde.

Ueber die Versuchsmethode der Lagermetalle wird später am geeigneten Orte Näheres angegeben.

B. Binare Systeme

1. Kupfer-Zinn

Es gibt wie wohl bekannt mehrere Forscher über dieses System, unter denen T. Isihara das dadurch modificierte Zustandsdiagramm im Jahre 1924 veröffentlichte. Dazu glaubte ich noch einige Veränderungen nötig zuhaben; so sind meine Modificatonen wie folgt :---

1. Nach Isihara untergeht γ bei 580° einer eutektoidischen Reaktion, $\gamma = \beta + \eta$, worauf $\beta + \eta$ gleich unter der Temperatur wieder in die Verbindung Cu₄Sn übergeht. Nach meinem Resultat ist dieses aber nicht der Fall; bei 585° bildet δ sich durch die Reaktion $\gamma + \beta = \delta$, uud bei 580° zersetzt sich γ in $\eta + \delta$, wo δ die feste Lösung des Cu₄Sn mit Sn ist.

2. Die polymorphe Umwandlung im a-Gebiet ebenso wie die bei 580° auftretende Umwandlung im Gebiet $\alpha + \beta$ nach Isihara wurden auch nicht bestätigt. Die Tatsache war vielmehr dies :- die Schmelzen mit 10-25% Sn zeigen immer bei 585° einen Knick in der Abkühlungskurve. Wenn die Reguli bei 750° lange werden, aufgehalten so geben sie solchen Knick nicht mehr, obwohl die bis unter die eutektoidische Temperatur von 515° abgekühlten Reguli wieder einen

sehr schwachen Knick bei 585° zu zeigen scheinen. Gleicherweise

bemerkt man auch bei der Widerstandsmessung mit den nicht wohl ausgeglühten Reguli einen Knick zwischen 590° und 580°, welcher mit den wohl ausgeglühten bei 750° nie auftritt. Deshalb muss diese Tatsache so erläutert werden, dass das entgemischte γ mit β bei der abnehmenden Temperatur ins δ , und das bei der Reaktion, $\delta + a \rightarrow \beta$, nicht verschwundete δ bei der zunehmenden Temperatur ins $\gamma + \beta$ eingeht.

3. Der Regulus mit der Zusammensetzung von CuSn (=34.3% Cu) ist mikroskopisch nicht homogen, aber der mit 40%Cu, der erst durch Koquillguss feine Struktur erhalten hat, bekommt durch Ausglühen bei 250° für 200 Stunden eine ganz homogene Struktur. So muss der letzte, wie Haughton (1905, 1921) und Vollenbruck (1923) schon gezeigt haben, der ϵ -Phase entsprechen. Die Umwandlungstemperatur kommt aber bei mir etwas höher, als bei den anderen Forschern und zwar bei 190° heraus. Die experimentellen Daten sind in Tab. VIII zusammengestellt.

2. Zinn-Antimon

Die Mittelteile des Systems blieben bisher unsicher. Ausser der thermischen Analyse unternahm ich also die folgenden Versuche. Die Reguli zwischen 35-65%Sb, jeder mit 1%Sb Differenz, wurden in die Metallgiessform mit 10 mm Durchmesser eingegossen, um damit eine feinkörnige Struktur zu erhalten. Diese Zylinder wurden dann noch in Bezug auf ihre Struktur zwischen 200°-400° für 100 Stunden

ausgeglüht. So wurden die mit 40-60% Sb mikroskopisch als homogen beobachtet. Die Löslichkeit der Reguli war auch nicht veränderlich nach der abnehmenden Temperatur. Der Regulus mit 40.6%Sb lässt sich als Sn₃Sb₂, und der mit 60.6%Sb als Sn²Sb₃ berechnen, und so müssen diese zwei Verbindungen einer Mischkristall β' bilden. Bei den Abkühlungs- ebenso

wie bei den Widerstand-Temperatur-Kurven bemerkt man die Knicke auf

der Sn₃Sb₂-Seite bei 320°, auf der Sn₂Sb₃-Seite bei 325° und bei dem Mischkristallgebiete zwischen 320°-325°; diese Tatsache wird durch die Annahme der polymorphen Umwandlungen zweier Verbindungen wohl erklärt. Sonst bleibt das Zustandsdiagramm einwandsfrei.

3. Kupfer-Antimon

Hierzu wurde Reimann'sches Zustandsdiagramm (1920) als richtig aufgenommen.

C. Das ternäre System, Kupfer-Zinn-Antimon

Bei den Zusammensetzungen von 5-, 10-, 15-, 20-, 25-, 30-, 35-, 40-, 45-, 50-, 60- und 79-%Sb wurden zuerst die Schnittdiagramme parallel zur Cu-Sn-Seite des Dreiecks gemacht, auf deren Grund das Raumdiagramm construirt wurde. Zunächst werden hier die ternären Gleichgewichte und dann die Schnittdiagramme näher beschrieben.

1. Das Gleichgewicht zwischen der Schmelze und den festen Phasen

Wie man aus Fig. 4 ersicht, werden die Flächen der primären Kristallisation in zehn Gebiete verteilt :

230

1) Cu-AF-Cu, 2) ABFA, 3) BCO_1GFB , 4) CDO_2O_1C , 5) $GO_1O_2O_4O_3HG$, 6) HO_3J -Sb-H, 7) $DEO_6O_5O_4O_2D$ 8) $JO_3O_4O_5KJ$, 9) E-Sn-LO_6E, 10) KO_5O_6LK .

1) Fläche Cu-AF-Cu. Diese Fläche steht für die primäre Ausscheidung des ternären Mischkristalls I aus beiden α von Cu-Sn und Cu-Sb. Wenn die Schmelze bis zur Temperatur von AF abgekühlt wird, so wird sie mit dem Mischkristall I entlang der Kurve IA-IF eine monovariante peritektische Reaktion

Schmelze AF+I (entlang IA-IF), IV (entlang IV A-IVF) eingehen, aus welcher die Bildung des ternären Mischkristalls IV sich folgern lässt.

2) Fläche ABFA. Diese Fläche entspricht der primären Ausscheidung des ternären Mischkristalls IV, in dem von Cu-Su System

eine kleine Menge von Sb in Lösung enthält. Wenn die Schmelze die Temperatur von BeF bekommt, wird die Schmelze mit dem Mischkristall IV entlang IVB-IVF durch eine monovariante Reaktion (Schmelze BeF+IV \rightleftharpoons V entlang VB-e-F) das ternäre Mischkristall V (wo γ von Cu-Sn-System und γ von Cu-Sb-System in fester Lösung bleiben) entlang der Kurve VB-e-F bilden; inzwischen läuft die Reaktion für Be peritektisch und die Reaktion für eF eutektisch.

3) Fläche BCO_1GMFB . Diese Fläche, welche die primäre Ausscheidung des Mischkristalls V representiert, macht den Rücken entlang der Kurve Mce und das Thal entlang der Kurve FcO_1 ; der Punkt c bildet den Durchschnitt von Rücken und Thal, wo die Schmelze bei einer bestimmten Temperatur gleichzeitig erstarrt. Ob es entlang der Kurve FcO_1 eine eutektische Reaktion geben würde, wurde durch die thermischen Analyse nicht nachgewiesen. Ebensowenig wurde ausser dem Schnittpunkt O₁ der Kurve FcO₁ mit CO₁ oder GO₁, irgend ein nonvarianter Flüssigkeitspunkt gefunden. Aus diesem Grunde gewinnt man den Schluss, dass die Kristallart V ein ternärer Mischkristall ist; er wurde auch mit mehreren Schliffen mikroskopisch geprüft; Photo Fig. 1 gibt die homogene Struktur des bei 600° ausgeglühten und dann ins Wasser abgeschreckten Regulus mit 65% Cu, 25% Sb und 10% Sn wieder und Photo Fig. 2 die desselben Regulus, welche bei 400° für 24 Stunden ausgeglüht wurde. Ueber die Umwandluug der Kristallart V bei niedriger Temperatur in die Kristallart VI, die ein Mischkristall aus δ von Cu-Sn System und δ von Cu-Sb System ist, wird noch später die Rede sein.

Wenn die Schmelze bis zur Temperatur der Kurve CO_1 abgekühlt wird, reagiert sie mit der Kristallart V auf der Kurve VC-VO₁ um eine neue Kristallart VII zu bilden. Die letztere Kristallart besteht bei höherer Temperatur aus der Verbindung von Cu_3Sn mit kleinen Mengen von Sn und Sb in fester Lösung, während sie bei niedriger Temperatur wegen der Löslichkeitsverminderung einfach aus der Verbindung Cu_3Sn besteht.

Die Schmelze entlang der Kurve O_i G reagiert mit der Kristallart V auf der Kurve VG-VO₁, um die Verbindung Cu₂Sb zu bilden. Die Schmelze O₁ steht mit der Kristallart V auf VO₁, Cu₃Sn und Cu₂Sb im nonvariantem Gleichgewicht, so dass die Temperatur, bis entweder die Schmelze oder die Kristallart V verschwindet, konstant bleibt. 4) Fläche CDO₂O₁C. Aus dieser Fläche scheidet sich die Kristallart VII primär aus. Dazwischen kommen die Kristallarten VII (=Cu₃Sn) und VIII (=Cu₂Sb) aus der Schmelze O₁-O₂ gleichzeitig heraus. Die Schmelze auf der Kurve DaO₂ reagiert mit VII und stellt eine neue Kristallart IX her, ein Mischkristall des ε vom Cu-Sn-System mit der ternären Verbindung Cu₁₂Sn₇Sb₃, von welchem später noch die Rede sein wird. Die Schmelze O₂ bildet ein nonvariantes Gleichgewicht mit IX, VII und VIII, und daher bleibt die Temperatur konstant, bis irgend eine Phase aus dem Felde weggeht : Im Falle, dass VII verschwindet, erniedrigt sich die Temperatur von O₂ bis nach O₄; im Falle dass VIII verschwindet, lässt die Schmelze sich von O₂ bis nach *a* abkühlen.

5) Fläche $GO_1O_2O_4O_3HG$. Aus dieser Fläche tritt die Kristallart VIII (= Cu_2Sb) primär auf. Wenn die Schmelze auf der Kurve HO_3 kommt, scheiden sich die VIII- und III- Kristallarten (Sb-reicher ternärer Mischkristall bei Sb-Seite) gleichzeitig aus.

Die Schmelze O_3 steht mit den Kristallarten III-, VIII- und Xim nonvariantem Gleichgewicht: hier ist X die Kristallart, die β vom Sn-Sb-System mit einer kleinen Menge des Cu in fester Lösung ist. Aus der Schmelze O_3 - O_4 treten VIII und X gleichzeitig vor. Endlich steht die Schmelze O_4 mit VIII, IX und X im nonvariantem Gleichgewicht.

6) Fläche HO_3JSbH . Aus dieser Fläche scheidet sich der bei Sb-Seite Sb-reichere ternäre Mischkristall III aus. Wenn die Schmelze auf der Kurve JO_3 kommt, bildet die Schmelze mit III eine neue Kristallart X.

7) Fläche DEO₆O₅O₄O₂D. Aus dieser Fläche scheidet sich die Kristallart IX, die der Mischkristall des ε vom Cu-Sn-System mit der ternären Verbindung Cu₁₂ Sn₇Sb₃ ist, primär aus. Nach der thermischen Analyse erniedrigt sich die Temperatur auf der Kurve DO₂ von beiden Seiten D und O_2 , in dem sie bei dem Punkt *a* das Minimum zeigt, obwohl er keinem nonvarianten Gleichgewichtspunkt zu entsprechen scheint. Die Kurve ab entspricht einem Thal, doch lässt es sich nicht experimentell nachweisen, dass sie einer monovarianten Gleichgewichtslinie entspricht. Auch entspricht der Punkt b keinem nonvarianten Gleichwewichtspunkt. Daher muss sich aus dieser Fläche ein aus ε vom Cu-Sn-System aufspringender Mischkristall, dessen Ausscheidungstemperatur nach der Zunahme von Sb-Gehalt einmal sich erniedrigt und dann ansteigt, auskristallisieren. Weil die Linie O2a von O2 nach a herunter verläuft, muss bei O2 die Kristallart IX, die sich auf der Cu₃Sn und O2 verbindenden Linie ebenso wie in ihrem rechten Teil befindet, sich aus der Schmelze ausscheiden. Was den Bestandteil der Grenze dieses Kristallartgebietes betrifft, wurden die mikroskopischen Versuche gemacht, wie man bei den Photos, Fig. 3-6 nachsehen kann. Das Photo Fig. 5 gibt die Struktur des Regulus von 45% Cu, 5% Sb und 50% Sn, der bei 380° für 200 Stunden ausgeglüht wurde, wieder; der weisse Teil ist IX' und der dunkle Das Photo Fig. 6 gibt die Struktur des Regulus von 37% Cu, VII. 20% Sb und 43% Sn, der bei 380° für 200 Stunden ausgeglüht und

40% Cu, 60% Sn. e'

Photo Fig. 5

dann langsam abgekühlt wurde, wieder: eine kleine Menge von X' auf der Grundmasse von IX'. Im Gegensatz zu den obigen bemerkt man beim Photo Fig. 4, welches die Struktur des bei 380° für 200 Stunden ausgeglühten Regulus von 38% Cu, 18.7% Sb und 42.4% Sn wiedergibt, die ganz homogene Struktur und die grosse Aehnlichkeit mit der des Regulus von 40% Cu und 60% Sn $(=\epsilon')$, wie in Photo Fig. 3. gezeigt.

Diese Normalstrukturen sind aber nicht leicht zu erhalten, weil die Reguli, die aus der Schmelze in der Tammannschen Röhre langsam zur Solidification gebracht wurden, trotz des langen Ausglühens nie homogeniert werden können, indem das VII und II ausserhalb des IX bleiben und nicht zum Reagieren kommen. Es war daher nötig, um die Normalstrukturen zu bekommen, dass man die Schmelze in den Metallmuster giesst und den dadurch fein körnig-gemachten Regulus ausglüht. Aus der Zusammensetzung 38.9% Cu, 18.7% Sb und 42.4%Sn berechnet sich die Formel $2Cu_3Sn_3Cu_2Sb_5Sn = Cu_{12}Sn_7Sb_3$. Die ternäre Verbindung muss also die Grenze des IX-Gebietes bilden.

8) Fläche $JO_3O_4O_5KJ$. Aus dieser Fläche kommt die Kristallart X heraus. Auf der Schmelze der Raumkurve O_4O_5 werden X und IX gleichzeitig getrennt. Die Schmelze O_5K reagiert mit X, um X' zu bilden. Beim Punkt O_5 existiert das nonvariante Gleichgewicht zwischen den Schmelzen X', IX und X.

9) Fläche KO_5O_6LK . Aus diesser Fläche kristallisiert die umgewandelte Kristallart X' der X. Die Schmelze O_6L reagiert mit X' um II zu bilden.

10) Fläche ESnLO₆E. Die Kristallart II, der Sn-reiche ternäre Mischkristall, scheidet sich aus dieser Fläche aus. Die Schmelze EO_6 trennt IX und II gleichzeitig bei der Abkühlung.

Die obigen gleichgewichtszustände sind in den folgenden Tabellen zusammengestellt :---

Phasen				
Fläche der pri- mären Kristall	primären Kristallarten	Beschreibung der primären Kristallarten		
CuAFCu	I	Cu-reicherer ternärer Mischkristall		
ABFA	IV	Ternärer Mischkristall von ß des Cu-Sn-Systemsmit Sb		
BCO ₁ GFB	V	Ternärer Mischkristall von γ des Cu-Sn-Systems mit γ des Cu-Sb-Systems, der sich bei niedriger Tem- peratur in VI (ternärer Mischkristall aus δ des Cu- Sn-Systems und des Cu-Sb-Systems) umwandelt		
CDO ⁸ O ¹ C	VII	Cu _s Sn mit kleinen Mengen von Sn und Sb bei höherer Temperatur		
GO1O2O4O3HG	VIII	Cu ₂ Sb		
HO ₃ JSbH	III	Sb-reicherer ternärer Mischkristall		
JO3O4O2KI	x	Ternärer Mischkristal von β des Sb-Sn-Systems mit kleiner Menge von Cu		
KO ₅ O ₆ LK	X'	Umgewandlte Form vou X bei niedriger Temperatur		
$\mathrm{DO}_2\mathrm{O}_4\mathrm{O}_5\mathrm{O}_6\mathrm{ED}$	IX	e des Cu-Sn-Systems mit grosser Menge von Sb, das sich bei niedriger Temperatur in IX' umwandelt		
ESnLO _e E	II	Sn-reicherer ternärer Mischkristall		

Tab. I: Zweivariante Gleichgewichte

Tab. II: Monovariante (Gleichgewichte
-------------------------	----------------

		Phasen	
IN r.	Schmelze	Kristallart	Kristallart
1 2 3 4 5 6 7 8 9 10 11 12 13	$A - F$ $B - F$ $C - O_{1}$ $G - O_{2}$ $D - O_{2}$ $O_{2} - O_{4}$ $H - O_{3}$ $O_{3} - O_{4}$ $J - O_{3}$ $O - O_{5}$ $K - O_{5}$ $O_{5} - O_{6}$	$ \begin{array}{c} I(IA-IF) \\ IV(IVB-IVF) \\ V(VC-VO_{1}) \\ V(VG-VO_{1}) \\ VII \\ VII \\ VIII \\ VIII \\ IIII \\ III(IIJ-IIIO_{3}) \\ IX(IXO_{4}-IXO_{5}) \\ X'(X'O_{5}-X'O_{5}) \\ Y'(Y'U \\ Y \\ Y \\ Y'Y \\ Y'U \\ Y'U$	$IV(IVA-IVF)$ $V(VB-e-F)$ VII $VIII$ $IX(IXD-XO_2)$ $IX(IXO_2-IXO_4)$ $III(IIIH-IIIO_3)$ $X(XO_4-XO_4)$ $X(XO_4-XO_4)$ $X(XO_4-XO_5)$ $IX(IXO_5-IXO_6)$ $IX(IXO_5-IXO_6)$
14	$D_{\mathfrak{s}} - D_{\mathfrak{s}}$	$\begin{array}{c} \mathbf{X} (\mathbf{X} \mathbf{L} - \mathbf{X} \mathbf{O}_{\mathbf{s}}) \\ \mathbf{II} (\mathbf{IIO}_{\mathbf{s}} - \mathbf{IIE}) \end{array}$	$\frac{\Pi(\Pi L - \Pi O_{6})}{IX(IXO_{6}IXE)}$

Tab.	III:	Nonvariante	Gleichgewichte
------	------	-------------	----------------

Nr.	Gleichgewichts-Temperatur in °C	Phasen
I 2 3 4 5 6	643 470 405 386 372 319	Schmelze (F), I(IF), V(F), IV(IVF) , $(O_1)V(VO_1)$, VII, VIII , (O_2) , VII, VIII, IX(IXO_2) , (O_3) , III(IIIO_3), VIII, X(XO_3) , (O_4) , VIII, X(XO), IX(IXO) , (O_6) , IX(IXO_5), X(XO_5), X'(X'O_5)
7	242	$,, (O_{3}), IX(IXO_{6}), X'(XO_{6}), II(IIO_{6})$

Masahiro Tasaki

2. Gleichgewichte zwischen den festen Phasen

i. Die Temperatur der eutektoidalen Reaktion des Cu-Sn-Systems bei 515° betreffend β wird durch Zusatz von Sb immer mehr erhöht. Die Reaktion wird durch die folgende Gleichung repräsentiert : $-IV \gtrsim$ VI+I, so dass IV auf der Linie IVd-IVx mit I auf der Kurve Id-Ix und VI auf der Kurve VId-VIx im Gleichgewicht stent. Das nonvariante Gleichgewicht bei 550° besteht aus vier Phasen ; nämlich IV (beim Punkt IVx), V (beim Punkt VIx) VI (beim Punkt VIx). und I (beim

Punkt Ix). Nachdem die Umwandlung von VI in VI sich vollendet hat, wird die Temperatur wieder steigen, um im Gleichgewicht des IV auf der Kurve IVx-IVF gegen V auf der Kurve Vx-F und I auf der Kurve Ix-IF zu beharren, bis zuletzt bei 643° die Schmelze sich hinzusetzt, um das nonvariante Gleichgewicht entstehen zu lassen.

ii. Die Umwandlung von V in VI wird durch die Berührungsfläche zwischen der Fläche Vh-Vi-Vy-Vg-Vf-Vx-Vh und der Fläche VIh-VIi-Vfy-VJg-VIf-VIx-VIh repräsentiert. Was das monovariante Gleichgewicht betrifft, so ist es wie folgendes:

Die V-Kristallart auf der Kurve Vf-Vx steht mit VI auf der Kurve

Fig. 8 Parallelschnitt 10% Sb

Fig. 10 Parallelschnitt 20%Sb 800 700 . ۳ 600 ۷ CV50 MtVI H+VE+VI ñ au u H+11 Va+izer 5 1 ff X FIX+X* 1**x** +X WE var+π VE +IX X 200 1+11+ m HVI 1+X' 3+1 1.+11 X VI 100 ٢ SX'+ K Cu %.

le

Cu %,

...

Cu %

240

10

Cu %

VIf-VIx und I auf der Kurve If-Ix im Gleichgewicht, während V auf der Kurve Vx-Vh mit VI entlang der Kurve VIx-VIh und IV entlang der Kurve IVx-IVh im Gleichgewicht steht. Ausserdem hält V der Vi-Vy das Gleichgewicht mit VI entlang der Kurve VIi-VIy und VII, V der Vy-Vg mit VI der VIy-VIg und VIII, und auch V der Vo₁-Vy mit VII und VIII. Zuletzt existieren nonvariante ternäre Gleichgewichte zwichen V (des Punktes Vx), IV (von IVx), I (von Ix) und VI (von VIx) bei 550°, und auch zwischen V (von Vy), VI (von VIy), VII und VIII bei 455°.

iii. Die Kristallart IX wandelt sich in IX' bei niedriger Temperatur um. Obwohl diess Umwandlung im Cu-Sn-System bei 190° geschieht, erhöht sich die Temperatur almählich mit der Zunahme von Sb, bis sie zuletzt ungefähr 200° erreicht.

Also ist der normale Gleichgewichtszustand bei der Raumtemperatur so wie in Fig. 6 wiedergegeben. Wegen der Reschabkühlung ist solch ein Zustand gewöhnlich nur sehr selten zu erhalten. Bei Photo Fig. 8, wo die normale Struktur des 24 Stunden lang bei 400° ausgeglühten Regulus mit 65% Cu, 10% Sb und 25% Sn wiedergegeben wird, bemerkt man leicht im Grund von VI eine sehr kleine Menge von VII zerstreut. Bei Photo Fig. 9, wo die Struktur des 4 Stunden lang bei 400° ausgeglühten Regulus mit 60% Cu. 30% Sb und 10% Sn wiedergegeben wird, bemerkt man VIII im Grund von VI. Das Photo Fig. 10 steht für die Struktur des bei 400° ausgeglühten Regulus mit 50% Cu, 20% Sb und 30% Sn, die deutlich aus 3 Phasen von

Rcg. mit 65%Cu, 10%Sb und 25%Sn, bei 400° geglüht : VI+VII. 100 Verg.

Reg. mit 60%Cu, 30%Sb und 10%Sn, bei 400° geglüht: VI+VIII+VII. 100 Verg.

VII, VIII und IX' besteht. Das Photo Fig. 11-ist für den von 500° langsam abgekühlten Regulus mit 30% Cu, 40% Sb und 30% Sn, der aus VIII, IX' und X' bestent. Schliesslich ist das Photo Fig. 12 für den aus der Schmelze langsam abgekühlten Regulus mit 80% Cu, 10% Sb und 10% Sn, der aus I und VI besteht.

Reg. mit 50%Cu, 20%Sb und 30%Sn, bei 400° geglüht: der oberste Pfeil für VII, der Mittelpfeil für IX', und der unterste Pfeil für VIII. 100 Verg.

Reg. mit 30%Cu, 40%Sb und 30%Sn; von 500° langsam abgekühlt: Der * oberste Pfeil für VIII, der Mittel-Pfeil für IX', und der unterste Pfeil für X'. 100 Verg.

Photo Fig. 11

Reg. mit 80%Cu, 10%Sb und 10%Sn, aus der Schmelze langsam abgekühlt: Weiss für VI, Dunkel für I. 100 Verg

3. Schnittdiagramme

Die Schnittdiagramme parallel durch 5,10,15,20,25,30,35,40,45,50,60 und 70% Sb, die in der Darstellung des ternären Gleichgewichtsdiagramms Grund legten, werden in den Figuren, Nr. 7-Nr. 18, wieder-Darin steht das Zeichen M für die Schmelze, gegeben. Die mit M und einer anderen Phase bezeichneten Gebiete entsprechen den im zwei-varianten Gleichgewichte, wo die Schmelze bei ber Abkühlung auf der primären Kristallisationsfläche fliesst. Die mit M und noch zwei anderen Phasen bezeichneten Gebiete entsprechen den im monovarianten Gleichgewichte, wo die Schmelze bei der Abkühlung auf dem monovarianten Liquidus fliesst. Auf den horizontalen Linien existieren die nonvariante Gleichgewichte, wo die im Gleichgewichte teilnehmenden Phase einfachheitswegen nicht bezeichnet werden. Trotzden sind sie nicht schwer zu verstehen.

D. Eigenschften der Legierungen auf der Zinnseite, d. h. der Weissguss-Lagermetalle

Die ternären Legierungen dieses Systems bei der Zinnseite wurden bisher schon als Lagermetalle gebraucht. Sie haben gewöhnlich die Zusammensetzung von 2-8% Cu und 3-15% Sb ausser Zinn und einer kleinen Menge von Blei. Auf Grund unserer strukturlichen Untersuchung wurden einige Legierungen unter diesen zu Versuchen ausgewählt, und

Nr. dor Proben		Zusamm	enzetzung	
NI. der 1700en	Sb%	Cu%	Sn%	Pb%
I	о	3	97	
2	0	5	95	
3	0	7	93	
4	0	10	90	
5	4	0	96	
6	4	3	93	
7	4	5	91	
8	4	7	89	·
9	7	o .	93	
10	7	3	90	
II	7	5	88	
12	7	5	. 87	I
13	7	7	86	
, 14	10	0	90	
15	10	3	97	
16	ΙΟ .	5	85	
17	10	5	84	I
18	10	7	83	
- 19	13	0	87	
20	13	3	· 84	

Tab. IV

als Resultat konnten die vorzüglihsten Zusammensetzungen nachgewiesen werden.

1. Zusammensetzungen der Proben und ihre mikroskopischen Strukturen

Die Zusammensetzungen von 20 Proben sind in Tab. IV zusammengestellt.

Wie aus Fig. 19 ersichtlich, scheiden die Schmelzen mit < 7%Sb und $_{3-7}\%$ Cu ausser Sn den sehr harten und spröden Mischkristall IX primär und dann zusammen mit II sekundär aus. Mit der Vermehrung

7%Cu, 4%Sb und 89%Sn

von Sb wachsen hier die Festigkeit und die Härte bei II ebensowie bei IX, während mit der Vermehrung von Cu derselbe Erfolg sich zeigt, weil die Menge von IX zunimmt, es sei denn, dass im letzten Fall der Einflus viel bedeutender ist : sie wird dann fest, aber gleichzeitig spröde.

Im Bereich von über 8% Sb und unter 10% Cu scheidet sich X' aus, und in dem Masse der Vermehrung von Sb wächst auf die

Phot Fig. 13

7%Cu, 7%Sb und 86%Sn

Photo 14. 7%Cu, 10%Sb und 83%Sn

Photo 16. 5%Cu, 7%Sb und 88Sn

Photo 18. 3%Cu, 4%Sb und 93%Sn

Photo 15. 5%Cu, 4%Sb und 91%Sn

Photo 17. 5%Cu, 10%Sb, 1%Pb und 84%Sn

Photo 19. 3%Cu, 7%Sb und 90%Sn

Masahiro Tasaki

Photo 20. 3%Cu, 10%Sb und 87%Sn

Menge von X'. Da X' so hart ist wie IX', so verändert sich die Legierung dadurch zur Sprödigkeit.

Die Photos Fig. 12–20 geben die Strukturen dieser Legierungen wieder, die bei 100° über dem Schmelzpunkt in die Metallgissform eingegossen werden.

2. Giesserei

Um sich vor der Oxydation des Zinns zu schützen, wird die zu lange Erhitzung der Schmelze versagt. Die mit Kohle bedeckten Schmelzen wurden, wie schon gesagt, auf 100° über den Schmelzpunkten erhitzt und in die Metallgiessform von 250° eingegossen. Erhitzt man die Giessform über 200°, so wird die primäre IX'-Kristallart beim Fall der Legierungen aus IX' und II ziemlich gross anwachsen; wenn aber die Form nur bei 100° ist, so wird die Struktur sehr klein gefügt. Beim Fall der Legierugen aus X', IX' und II wird dagegen X'

m	-	TT
1 2	h	V
Jυ		v

Zusammensetzung.				Länge der Würfelsoite bei	Bemerkungen
Sn%	Cu%	Sb%	Pb%	X' in mm	Demerkungen
87	3	IO		0.05	Cionfann
85	5	IO		0.05	bei 100°
83	7	10		0.05	DCI 100 .
· 87	3	10		0.03	
85 -	5	IO		0.03	Giessform
84	5	10	I	0.07	bei 250°.
83	7	IO	· · · · · · · · · · · · · · · · · · ·	0.032	

einiger massen grösser als IX', wenn die Temperatur der Form bei

246

100 ist; überhaupt war der Einfluss der Formtemperatur auf die Struktur klein. Die exakte Grösse des IX'-Körnchens war schwer zu messen; statt dessen wurde die Länge einer Seite beim Quadratwürfel unter X'-Kristallarten gemessen wie in Tab. V.

Bemerkenswert ist, dass die Kristallgrösse von X' bei der Legierung mit 1% Pb ausserordentlich gross ist. Dagegen wird die Grösse von IX' durch Zusatz von Blei nicht sehr beeinflusst.

3. Zugfestigkeit

Die Versuche wurden nur über die blnären Legierungen gemacht. Die Resultate der Messungen sind wie folgt :-

Zusammensetzung		Zugfestigkeit	Ausdehnung	ng Querschnitt-	
Sn%	Cu%	Sb%	Kg/mm ²	%	%
97	3	-	4.21	39.7	36.3
9 5 ·	5	l — I	4.91	29.5	25.0
9 3	7		5.56	22.2	10.2
90	10		5.64	6.7	- 6.5
96		4	4.18	38.8	85.0
io		10	6.12	30.0	50.2
9 3	-	7	5.55	15.8	43.0

Tab. VI

Wie aus der Tabelle ersichtlich, haben die Legierungen des Cu-Sn-Systems bei der Zunahme der Cu-Menge die Festikeit vermehrt. aber die Ausdehnung bald verloren. Ganz ähnlich werden die Legierungen des Sn-Sb-Systems bei Vermehrung von Sb sich in der Festigkeit vermehren und in der Ausdehnung vermindern; es ist aber bemer-

kenswert, dass die Festigkeit ebenso wie die Ausdehnung bei der 10%-Sb-Legierung besonders gross sind.

4. Härte

Auf dem Fusse eines Probezylinders, 30 mm in Diameter und 15 mm hoch, wurden die Brinellwerte, wo der Kugelsdiameter 10 mm und die Last 500 g war, bestimmt : die Resultate sind wie in Fig. 20 gezeigt.

5. Druckversuch

Jedes Probestück. 14.3256 mm in Diameter und 20.8 mm hoch in der Zylinderform, wurde im Verhältniss von 100 kg. pro. 30 Sekunden, d. h. 0.62 Kg/mm², mehr und mehr belastet, und für die Kompressivilität in der Genauigkeit von 1/1000 mm gemessen. Diese Daten werden als Kraft-Deformations-Kurven in Fig. 21 und 22 gezeigt.

Wie aus den obigen Untersuchungen ersichtlich, sind die Legierungen mit 3-5%Cu und 7-8.5%Sb die vorzüglichsten. Sie zeigten keine Tendenz zur Seigerung, weil sie den leichteren Mischkristall X' nicht enthalten, so dass sie für grosse ebenso wie für kleine Belastung ohne Befürchtung von Rissebildung wohl gebraucht werden können.

6. Numerische Angabe

In den folgenden Tabellen werden die durch die thermischen Analyse und Elektrowiderstandsbestimmung bekommenen Angabe für die allen Zustandsdiagram ordentlich gestellt.

Zusamm	ensetzung		V niele	J ITaltanu let	:- 90	
%Cu	%Sn		KINCK U	па глаперинкі		
95	5	1052				
<u>ço</u>	10	996				
85	15	947	79 1			
80	20	883	79 1	511		
78	22	851	79 0	512		
75	25	806	790	510		
73	27	786	512			
72	28	775	745	518		
7 I	29	765	745	640	542	515
70	30	758	746	635	576	515
69	31	743		640	590	515
67	33	739		580		
66	34	737		578		
65	35	735		648	580	
6ŏ	40	721	675	•	-	
55	45	702	636	300		
šõ	50	674	635	208		
48	52	666	636	400		
47	53	662	625	400		
45	55	640	624	300	101	
40	60	624	400	399	-)-	
37	62	615	200	227	100	
35	65	604	208	227	100	
33	70	r84	3.90	227	100	
25	75	504	400	227	100	
20	/ 3 80	554 5 FIF	400	227	190	
15	81	515	400	227	190	
13	03	4/3	400	44/	190	
10 ~	90	420	227	190		
4	93	3/4	227	190		
5	95	351	227	190		
	97.5	207				
1) at	e Eigebnisse	dei Elektrizitäts	widerstands	messungen.		
		Tab. IX	: Antim	on-Zinn ^a		·
Zusamm	ensetzung		Kniele .	nd Haltonunk	t in °C	
%Sb	%Sn	<u> </u>	ISINCK (та типеритк		
5	95	242	227			
10	- 90	253	246			
15	85	299	246			
20	80	315	246			
25	75	340	320	246		
30	70	360	0	246		
35	65	375		246		
38	62	388	321	245		
40	60	391	320	246		
42	58	40	310	246		
45	55	410	320	205		
50	50	416	344	322		
55	45	428	423	285	200	
60	40	470	423	505	525	
65	35	503	423	3-3		
70	30	527	122	3~3		
75	25	552	422			
80	20	572	422			
85	15	3/3 #CO	440			
60 0	-5	606	152			
05		617	CCF			
~7 ~	,)	1 01/				

Tab. VIII: Kupfer-Zinn¹

2) die Ergebnisse der Elektrizitätswiderstandsmessungen.

Zusamm	Zusammensetzung		Kniels w	nd Haltanunkt in 90	
%Cu	%Sb				
95	5	1060	643		
90	10	1001	643		
85	15	947	642	462	
80	20	867	643	462	
75	25	784	642	460	
73	27	730	643	458	
70	30	698	643	462	
68	32	644	643	462	
65	35	656	441		
62	38	672	422		
60	40	674	420		
58	42	678	450	420	
57	43	680	455	420	
55	45	674	525	422	
53	47	672	5 ⁸ 3	420	
50	50	658	583	523	
45	55	615	583	523	
40	60	584	583	521	
38	62	579	525		
37	63	569	525		
35	65	559	521		
30	70	545	524		
25	75	528	523		
20	80	538	524		
15	85	553	523		
10	90	573	522		
5	95	594	521		
3	97	607	523		

Tab. X : Kupfer-Antimon¹

1) die Ergebnisse der Elektrizitätswiderstandsmessungen.

Zus	Zusammensetzung			Knish u	nd Holtonunle		
%Sb	%Sn	%Cu					
5	95	o	242	227			
"	92.5	2.5	290	236			
"	90	5	356	238			
"	87.5	7.5	402	238			
"	85	IO	433	392	24 I		
"	80	15	484	388	238		
,,	75	20	523	389	239		
,,	70	25	551	385	239		
"	65	30	578	38 <i>2</i>	240		
"	60	35	599	382	242		
"	55	40	622	383	242		
"	50	45	644.5	635	3 89		
"	45	50	670	635	391		
"	40	55	690	634	400		
"	35	60	709	634	470		
"	30	65	720				
"	27.5	67.5	725	515			
"	25	70	740	720	555	530	
"	20	75	795	774	550		
"	15	80	890	769			
"	10	85	954	736	5 ⁸ 5	500	
"	5	90	1020	667	610	475	
"	0	95	1060	643	460		
						·····	

Tab. XI: Parallelschnitt 5% Sb

Zus	Zusammensetzung		Knick und Haltenunkt in °C								
%Sb	%Sn	%Cu	· · · · · · · · · · · · · · · · · · ·								
10	90	0	253	246							
"	87.5	2.5	292	242							
"	85	5	353	258	242						
"	82.5	7.5	397	260	242						
,,	80	10	428	385	264	242					
"	75	15	482	382	270	242					
,,	70	20	521	382	280	242					
,,	65	25	545	381	285	242					
,,	60	30	573	382	290	242					
"	55	35	595	382	303	242					
"	50	40	617	384	313	•					
,,	45	45	641	633	383	327					
"	40	50	662	632	424	405					
,,	35	55	680	623	470	401					
,,	30	60	697	612	470						
,,	25	65	706	585	508						
,,	22.5	67.5	710		v						
,,	20	70	726	707	550	530					
.,,	15	75	784	733	\$58	520					
,,	10	80	885	720	ššo	480					
,,	5	85	954	672	475	•					
"	0	90	1001	643	460						

Tab. XII : Parallelschnitt 10% Sb

Tab. XIII: Parallelschnitt 15% Sb

Zusammensetzung			Knick ur	d Haltonusla	in °C						
%Sb	%Sn	%Cu	Know and Hantepunkt in "C								
15	85 82 r	0	299 200	246							
"	80	5	349	288	242 242						
"	77.5 75	7.5 10	385 421	292 381	242 294	242					
,,	70 65	15	473	380	301	242					
" "	60 60	20 25	536	381	307 316	242 242					
"	55 50	30 35	562 585	384 385	323 333	319	242 242				
"	45 40	40	608 620	389	347	J- J	- 1				
" "	35	45 50	651	617	400 470	354 405					
"	30 25	55 60	671 683	585	470 470	405					
**	20 17 5	65 67 5	688 600	670	555	485					
"	15	70	709	690	600	517					
37 27	10 5	75 80	779 880	707 657	599 620	488					
,,	o	85	947	643	460						

,

Masahiro Tasaki

Zus	ammenset	zung	Knick und Haltepunkt in °C						
%Sb	%Sn	%Cu		ixinen ui	a matepuna				
20	80	0	315	246					
"	77.5	2.5	313	242					
,,	75	5	343	312	242				
,,	72.5	7.5	381	313	242				
"	70	10	412	3 79	316	242			
,,	65	15	462	381	324	319	242		
"	60	20	502	38 <i>2</i>	330	319	242		
"	55	25	526	384	339	319	242		
"	50	30	551	388	348	319	242		
"	45	34	574	405	354	323	242		
"	40	40	594	585	445	405	364		
,,	35	45	618	552	470	405	372		
"	30	50	640	530	470	405			
"	25	55	662	510	470	405			
"	20	60	67 I	543	453				
"	15	65	672	525					
"	12.5	67.5	675						
	10	70	693	670	480				
,,	5	75	773	657	630	471			
"	ō	80	867	643	460	.,			

Tab. XIV: Parallelschnitt 20% Sb

Zusammensetzung		tzung		Knie	dr und Hal	toopplet in	٥ <u>८</u>	
%Sb	%Sn	%Cu		Kin	s und Hai	tepunkt m	C	
25	75	0	340	320	246			
"	72.5	2.5	330	3 19	242			
"	70	5	343	330	319	242		
,,	67.5	7.5	376	332	319	242		
"	65	10	403	382	334	319	242	
"	60	15	452	283	343	319	242	
"	55	20	492	387	349	319	242	
"	50	25	516	393	356	319	242	
"	45	30	539	405	365	323	242	
"	40	35	559	550	440	405	370	323
"	35	40	585	530	470	405	372	
"	30	45	609	500	470	405		
"	25	50	631	475	470	405		
,,	20	55	655	476	470	405		
,,	15	60	665	490	450			
,,	10	65	662	495				
,,	7.5	67.5	660	603				
,,	5	70	677	666	490			
	ŏ	75	784	642	460			

Tab. XV: Parallelschnitt 25% Sb

Zas	ammense	tzung		Vaio	le com di TTelle					
%Sb	%Sn	%Cu		Knic	k und Halt	epunkt in v	°C			
30	70	0	360	320	246					
,	67.5	2.5	355	338	310	242				
	65	5	349	319	242					
,,	62.5	7.5	373	350	319	242				
"	60 [×]	10	397	383	351	319	242			
,,	55	15	435	393	354	319	242			
"	50	20	478	399	363	320	242			
"	45	25	500	410	405	370	323			
"	40	30	523	510	451	405	372	323		
,,	35	35	545	486	470	405	372			
"	30	40	576		405	372				
"	25	45	603	477	470	405	372			
"	20	50	626	479	470	405				
"	15	55	652	492	453					
"	10	60	661	460	435					
"	5	65	652	455						
**	2.5	67.5	672	C						
**	· 0	70	700	643	462					
Tab. XVII: Parallelschnitt 35% Sb										
Zu	ammense	tzung		Kni	ek und Hal	tepunkt in '	•C			
<u>%Sb</u>	_%Sn	%Cu		17110			·			
35	65	0	375	320	246					
"	62.5	2.5	368	356	316	242				
"	60	5	360	319	242					
"	57.5	7.5	375	361	319	242				
,,	55	10	391	362	319	242				
"	50	15	422	405	365	320	242			
"	45	20	450	405	372	323	242			
"	40	25	481	47 I	405	372	323			
"	35	30	508		470	405	372	323		
"	30	35	540		470	405	372			
"	25	40	570		470	405	372			
"	20	45	598		470	405	372			
. "	15	50	675	409	470	405	372			
"	10	55	662	498	440					
"	3	65	6-6	420						
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		~>	<u> </u>	445						
		Ta	ıb. XVII	I: Paralle	elschnitt	40% Sb				
Zu	sammenso	etzung			ale und Hal	tonuultt in	۰ <u>۲</u>			
%Sb	%Sn	%Cu	 -	<u></u> Kni	ck und Hal	tepunkt in	-U			
40	60	0	391	320	246					
,,	57.5	2.5	384	337	319	242				
"	55	5	374	360	319	242				
"	52.5	7.5	372	319	242	•				
,,	50	10	397	372	320	242				
"	45	15	433	372	365	323				
"	40	20	467	372	323					
**	35	25	487	402	372	323				
"	30	30	512	505	425	405	372	323		
"	25	35	541	514	470	405	372			
"	20	40	573	522	470	405	372			
"	15	45	599	529	470	405	372			
**	10	50	031	536	470	405				
"	5	55	002	510	440					
"	0	00	074	420						

Tab. XVI: Parallelschnitt 30% Sb

Zusammensetzung		Knick und Haltepunkt in °C									
%Sb	%Sn	%Cu		Kinck und Hantepunkt in C							
45	55	0	410	320	295			•			
"	52.5	2.5	3 98	350	319						
"	50	5	38 9	366	323						
"	47.5	7.5	385	372							
"	45	10	400	384	372	323					
"	40	- 15	440	38 <i>2</i>	372	323					
"	35	20	474	381	372	323					
"	30	25	496	380	372	323					
"	25	30	520	380	372	323					
"	20	35	538	534	380	372	323				
"	15	40	574	540	375	372					
,,	10	45	603	548	405	372					
,,	5	50	642	563	470	405					
"	ō	55	678	583	425						

Tab. XIX: Parallelschnitt 45% Sb

Tab. XX: Parallelschnitt 50% Sb

Zusammensetzung			Kni	k und Halt	oounkt in ⁰	c				
%Sb	%Sn	%Cu	Kinck and Haltepunkt in "C							
50	50	0	416	344	322					
"	45	5	407	395	385	372	365			
,,	40	10	410	402	384.5	372	36 <i>2</i>			
"	35	15	444	403	386	372	364			
,,	30	20	479	417	386.5	372				
,,	25	25	502	414	385.5	372				
,, 1	20	30	529	423	388	372				
"	15	35	545	430	386	372				
,,	10	40	576	559	450	387.5	372			
,,	5	45	609	568	467	386	372			
"	Ô .	50	651	581						

Tab. XXI: Parallelschnitt 60% Sb

Zusammensetzung		Knick und Haltenunkt in °C										
%Sb	%Sn	%Cu		ixate and matepaint in C								
60	40	0	470	423								
"	35	5	463	386	385	372						
,,	30	10	459	429	384.5	372						
"	25	15	458	386	372							
"	20	20	489	466	387							
,, (15	25	516	472	385.5							
"	10	30	543	487	388.5	372						
"	5	35	557	504	388							
"	0	40	584	521								

Zusammensetzung		Knick und Haltenunkt in °C								
%Sb	%Sn	%Cu								
70 "	30 25	0 5	527 510	423 404	385	372				
"	20 15	10	507 501	453 481	385.5 386.5	372 372				
"	ıö 5	20 25	502 522.5	496 508	386 5 385	31-				
"	0	30	545	524	J-J					

Tab. XXII: Parallelschnitt 70% Sb

Zusammenfassung

1) Beim Cu-Sn-System wurde das Gebiet von 60-80%Cu, und beim Sn-Sb-System das Gebiet von 40-60% Sb genau untersucht.

2) Das ternäre Gleichgewicht zwischen Cu, Sn und Sb wurde untersucht : γ und δ des Cu-Sn-Systems bilden die ternären Mischkristalle mit γ und δ des Cu-Sb-Systems ; ϵ des Cu-Sn-Systems geht im ternären System mit Sb eine Verbindung Cu₁₂ Sb₃ Sn₇ ein.

3) Für die Untersuchung der Lagermetalle ist das Zustandsdiagramm von Nutzen.

4) Die Eigenschaften der Sn-reicheren Lagermetalle wurden erörtert.

Meinen herzlichsten Dank spreche ich Herrn Prof. Dr. Chikashige für seinen wertvollen Rat und auch Herrn Masao Kisigami für seine eifrige Hilfe im Laufe der Untersuchung aus.