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According to the definition given by Hausdorff', if the distance
between two point sets in a metric space £ be zero, then they have
the same closed cover (abgeschlossene Hiille).  Thercfore, for the
closed bounded point sets, namely the greatest point sets which have
the same closed cover, the space whose elements are such point sots
is a metric space, and it is compact in itself when the space Z is
compact in itself.

In this paper, I modify Hausdorff’s definition of the distance
between two point sets, such that the two point sets between which
the distance is zero, have not only the same closed cover hbut also the
same open nucleus (offene Kern).  Then all such point sets may be
considered as identical with respect to the distance, and I say that the
aggregate of all such point sets forms a class. I prove that the space
of such classes is metric, and compact in itself when the space £ is
compact in itself, and also that it is dense-in-itself, when the space Z£
is dense-in-itsclf. ;

Next I classify these classes of point sets in the Euclidian space
into two kinds; onc is the quadrable classes in which all the point
sets are quadrable and of the same measure, the other is the non-
quadrable classes in which the point sets are measurable or non-
measurable in the I.ebesgue sense, and their exterior and interior
measure can be of any values between the measure of the closed cover
and that of the open nucleus.  And I find that the set of quadrable
classes and that of non-gquadrable classes arc both dense in the space
of all classes.

1. Hausdorfi: Mengenlehre, zweite Aufl. (1927), p. 145—150.
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From any set function in the space of point sets, we can deduce
a point function in the space of classes, such that the values of this
point function at a class are the same as the values of that set function
of all the point sets which belong to the class. I consider the case
in which the set function is the measure of point sets, and I conclude
that the point functions which correspond to the exterior and interior
Peano-Jordan measure are both semi-continuous, and the point function
which corresponds to the I.ebesgue measure is the function obtained
by extension of the point function which corresponds to the Peano-
Jordan measure in the set of quadrable classes.

1. In a metric space %, I consider a point set 4. Tet @ be any
point contained in the set .4, then for a point 4 in the space Z, we
denote the lower bound of the distance between the two points @ and
b by, 0(A4, &). Then the neighbourhood of « with radius p may be
defined as the set of points & which satisfy

0(d, 6) < p.
We denote it by the symbol U7 (, p).!
T.et B be any other point sct in the space Z.  We denote the
lower bound of p which satisfics
BEU(A, p)
by the symbol p(4, B), and similarily the lower bound of p which
satisfies
BEU (A, p)
by the symbol p(A, 75.), where .1, and 2, denote the complementary

sets of 4 and & respectively in the space £ We denote the greater
of p(A4, B) and p(A,, B.) by the symbol s(, B).

When s(A4, B)=o, it must follow that
BE A, and
B Ao, that is b2,

where 4, and 4; mean respectively the closed cover and open nucleus
of 4. Therefore

AS B ..
Conversely, if A, BE A, it is obvious that

s(d, B) = o.

1, I use mostly the terminology and the symbols of Hausdorfl.
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Since, in general s (A, B) is not equal to s (5, A), 1 define e
distance between the pornt sets A and B as the greater of s(d, B)
and s(B, A), and denote it by the symbol 7(A, B) Thea
A, B)=nB, A

When #{(A, B)=o, it must follow that

A BE A and BE BS A,
therefore Ay = Ba and A = B
Conversely, if 4 and 2 have the same closed cover and open nucleus,
it is obvious that #(.4, B)=o0, and in other cases 74, B)=*o.

2. When A, A and C are any point sets in the space Z, then

p(Ad, B)+p(B C)z=p(d, O),
for, if B=UA, p) ard C=U(B, o) thea C=U(A, p+oa).
Similarily - p(d, B.)+p (B, Cl=p(d, C).
Then from the definition of s (A, 5),

s(A B+ s(B O =s(A C);

similarily s(C B)+ (B A)z=s( C, ).
Therefore from the definition of #(A, 5)
r(A, B)+r(B, C)=r(d, C). (1)

If #l, B and C be such that #{Ad, B)=o0 and »B, C)=o, then
from (1) #(<1, C)=o0; that is, the distance between two point sets which
are at zero-distance from a point set, is also zero.

If B and C be such shat »(5, C)=o, then from (1)

r(A, B)=r(4, C),
and since

r{d, C)+r(C, By=r(A, B),
we have also

o (d C)z=r (A, B),

therefore r(d, B) =»(d, C);
that is, two point sets between which the distance is zero are at the
same distance from any other point set.
\ From these properties, any two point sets between wh:ch the
distance is zero can be considered as identical with respect to the
distance. Therefore 1 say that #ic aggregate of all pornt scts, between
any two of which the distance 15 sero, forms a class. Since no point
set ever belongs to two different classes, any class is uniquely determined
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by a point set which belongs to it. Thercfore I denote the class
determined by a point set .4 by the symbol [A].

. Since the distance between two point sets .4 and /& which belono
respectively to the classes [4] and [Z], is invariable for any point
set A in [A] and B in [B)], we define #ie distance between two classes
[A4] and [Z] as the distance between two point sets .1 and 5, that is

r([4), [B]) =»(4, B),
which is always finite when A4 and B are bounded in the space Z.
Now we_ consider the space whose clements are the classes of
bounded point sets in the metric space /Z, and denote it by the symbol
{£}. Then the space { L} is also a metric space, since the real number
#[A], [B]) satisty the following axioms of the distance:
() 74l [4]) = o,
B (4] [(B]) =»((B] [4]) >0 when [d]=*[5],
() (4] [BY) + (8] [C) = {4, [CD;

where (y) follows from (1).

3. In §1, we have scen that when 7, B)=o, A and 5 have
the same closed cover and open nucleus, and conversely. Thercfore,
the class may also be defined as an aggregate of all pownt sets which
have the same closcd cover and open rnuclews. Therefore all point sets
in [A] have the same frontier A,=A,—.,

When the space 10 s scparable, to any closcd sct I and any open
set O 7(,'/11.'/'(: E>0, there corvesponds o class [A] swuch that A, =1
and A;= 0

To prove this, we consider the following point sct

A=0+D+ Ou(& — O),

where /) is a subset of the open set (#—0), such that 72 and
(F—O0);— D arc both densc in (#—0),. (#— 0), means the frontier of
the closed sct /#— O, and Oy the complementary sct of Oy in £
We must prove first that such a point set /) exists. Since the
space & is separable, we may usc the cnumerable set of special
neighbourhoods® 17, Vi, «.ev.. R . Let us denote by Vi (p=p,
Dar wrenes 2 Dy evenen ) the special nuohbourhoods V, which contain points
of the set (F—0). We pick out from V,(F— Q), two different points

a, and a,. Siace V,(F—0O): contains infinitely many points, we can

1. Hausdorff: op. cit. p. 94.
2, op. cit. p. 126,
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choose @, and a, such that a, #a, for any value of 7 and 7.

Therefore, we have two different sets D and /Y of the points @, and
a, respectively, which are hoth dense in (#— 0);. For, let x be any
point of (#F— 0);, and U, any neighbourhood of x; then we can find
a special neighbourhood V7, such that I, U/,. But I, contains a point
ap of the set. /), then U/, contains a,; consequently /) is dense .in
(F=0), Similarily 7 is so also. But (F—0),-D20, therefore
(F—0),— D is dense in (F— 0), Q.E. D.

To prove Ay = F and A, = O,

first consider A,
Aa = Orx + Da + {Odc (F — 0)0}‘"

hut Dy = (F— O,
and since (F— O)y= 0, (F — 0),+ O, (F— 0),
(F= 0= {0u(F = O)be & {0u(F = O)}u
then (77— 0), S O 4 {O0u(F = 0),}a,
thercfore, Ae 2 OO0 + (F= O)u + (F— 0),
that is, Ay 2 77
But since AR therefore A& 77

conscquently  Ay= /7

Next consider the inner points of /. All points of the set O are
obviously inner points of 4. But any point of 70 and O (F— 0), is
not an inner point of 4, since in any neighbourhood of a point of /),
there exist points of (/— 0);— /72 which do not belong to A ; and in
any neighbourhood of the point of O/ —0), there exist points of
7% or (/7= 0), but the points of 7, do not belong to 4, and in any
neighbourhood of a point of (77— 0), there exist points of (77— 0);— 7).
Consequently the points of O are the only inner points of ; that is

A= 0.
Therefore the class [A] is the onc required which corresponds to
the given closed set / and the open set O,
~ 4. Since the space {Z} of classes is a metric space, we can use
the same terminology and symbols as in the case of the metric space of
point sets by changing the term point into class. A sequence of classes
in the space {5, [A], [l oo, L) coennn is said to have the limiting
class [A], if lim #([A], [4.])=0, and we denote it by [A]=1im [1,].
n-ren

WUPC
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IF lim [A)=[A), then the closed Lt Fld, is Ao and the open

NP

it GLAY o5 A, where A, and A are any point scts whicl bclong
to the classes [A,) and (A} respectioety.
Proof, THausdorff* proves that

when p (4, X)—o, then Xs A, and
when . p (X, 4,)— o, then X2 74,
where X is a closed point set.  Now lim[A4,]=[A] then, since
(A, A)=p(A,, A.) etc, "
p (A, As)— o, p(As, A,)— o,
P (Ao Aos) = 0, p (Aew, o) = o0.
Therefore A. = Fld,, Ay 2 7,

A & Fld, that is A 2 Gld,

A2 A, thatis A< Gld,
But A, = 7iA,  and Gid, = GidA,,
therefore Ae = FlA, and A, = Gid,,

which is as required.
Since A, = Fld,: and GlA, = Gld,,.

then A = FlAd,. and A= Gld,,;,

that is, when the scquence of classes [Ay), [As), ... R IV T R fas
the limiting class [Al, then the closcd lint of the scquence of
corresponding closed scts Ay, Asa, ... R P 15 the corresponding
closed sct As, and sondlaridy for the open Linut of the sequcnce of open
sets Ay, Asiy oovees s Aty cvene .

5. When the space I s compact in itself, the converse theorem
is true, that is, when the closed lonitt FlA, and the open lenit GlA,
exist, then the sequence of classes Ay, [Asl, ...... , LA, ... has the
limiting class [A), and /

Ao = FlA, and A = GlA,.

When /Z is compact in itself, it is also separable!, then by § 3 we
can always find a point set 4 such that its closed cover Iy and open
nucleus A, arc the given closed set /A, and the open set /1,

Hausdoifl: op cit. p. 146.

op. cit. p. 149 ; this proof holds when the point sets are not hounded,
op. cit. p. 148,

4. op. cit. p. 126 and p. 107,

bJ.N:-'
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respectively. Therefore we have only to prove that lim [4,]=[A].
ki dcd
Since A, = A,

then p (s, As)—>o0 and p (As, A,)— 04
from Gld, = A, that is FlA e = Ag,
we have p (Ao Aow)— o0 and p (A, Au) — 0.

But  p(d,, A)=p(d,, <) etc., from these we have
lim [A,] = [4].
From this tvllfc;)rem we have the following theorem: Jf fhe space
L2 05 compact in itself, then the space {E} is also compact n itself.
Tor, let [A,], [A4.], ...... R N R be any sequence of classes.
Since /7 is compact in itsclf, it is separable; therefore the sequence of

point sets Ay, A, ..., N NN contain a sequence A, Ap, ...... )
¥ it}

Ay sernin for which both the closed limit /774, and the open limit

2

(i, exist®.  Then by the above theorem, there is a point set » such
that lim [, ]=[A], that is, the space {Z} is compact in itself.
NP

6. If the space I is densc-in-itself, then the space {E} is also
densc-rri-itsclf.

To prove this, I construct a point set A which does not belong to
any given class [A], such that (4, B)=p for any positive value of p.

Tet B =AU (A, p)+ AU (A, p), (1)
where UJ(A,, p) means the complementary set in Z of the neighbour-
hood [A(A, p) of the frontier of the set .« ; the point set B always
exists, for the space /£ is dense-in-itself. Since A is bounded, in
A,U(A,, p) there is a point x such that 6(A4, x)>p’ where o<p/'<p;
therefore #(, B)==o0, that is 3 does not belong to the class [«].

TFrom (1) we have :

Bo= s+ Udy S {d + U(A, o)b. (2)
But, since U(A, p)=A+ U(A, p)
then BS U(A p); V (3)
and since Ul(A, p) = A. + U(A, p),
then B, < U(A, p). (1)

Divide A4 into two parts AU (A, p) and AU(A, p); from (1)
AULA, p) B, and AU, p)is in the p-neighbourhood of /1,111, p),

1. Hausdorff : op. cit. p. 150.
2, op, cit, p. 147 ; this theorem is applied twice,
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therefore
ASU(B o). (s)
From (2) By = AU(A, p) + A, U, (A, n); (6)
divide A; into two parts /ICUC(ZIW p) and AU(A, p), then

AU (A, p) B, and A.U(A, p) is in the p-neighbourhood of
AU(A, p), therefore

A, SU(Bo p).
From (3), (4). (5) and (3), we have 7(4, B)=p. Q.]

it

N
=z

< D.

7. In the above, I have looked at the general propertics of the
space {£} of the classcs of the bounded point sets in the metric space
L. If there & giwen a sct function f(A) i the space F, then we can
alwoays deduce from this a point function o([A]) e the space {E},
such that ¢([A]) signifies all values of f(A), A being all sets which
belong to the class [A], and hence in general ¢([A4]) is a many-valued
function.

Next I consider, for example, the measure of point sets in the
Euclidian space £, of 2 dimensions, and I will ind a point function
which corresponds to it. ,

Tor this purpose, I investigate first the space {Z,} more in detail.
In §3 I have noted that all point sets in the class [«1] have the same
frontier A, If the Lebesgue measure of 4, is zero, all point sets in
[A] are guadrable, and have the same measure as ; and .. In
this case I say it is @ guadrabdle class, and the others are non-guadradle
classes. 1 denote the set of all quadrable classes hy the symbol {77},
and that of all non-quadrable classes by the symbol {Z7*}.

8. The sct {EE} of all quadrable classes is dense tn the space
{£,}; that is, in any neighbourhood of a class [A] there is a quadrable
class.

Proof. Since the point set 4 is bounded, there is a closed cell
which contains 4. Divide this cell by »-1 dimensional planes parallcl
to the coordinate planes into smaller cells, the length of the diagonals
of which is less than p, where p is any given number. We call the
aggregate of these small cells a net, and these cells the meshes of it".
Let us denote the sum of the closed meshes which contain a point of
A, by .S, and the sum of the open meshes which are contained in
.7 by Se; then .§,—.5% is a set of points on the boundary of the meshos

1. Carathéodory: Vorlesungen iiber reclle Funktionen, zweite Aufl. (1927), p. 290.
2. Tlobson:  The theory of functions of a real variable, T, third ed. (1927), pp.064—60.
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which are contained in .5, therefore the measure of .57—.5, is zoro,
Consider the point sct
A* = (A — ASY) + (S — S, (1)
then it follows that r (A, A%) < p.
For, since U (A, p) =4+ U(A, p),

and A — A5 T A, Sy = S, U(A, p),
tharefore AFU(A, p). (2)
From (1) AF = (As + AS) (S +.50) = A5 + .Sy (3)
since Ul p)y= A, + U(A, p),
and A S < A, Sy U (A, p),
therefore AF U (A, p). (1)
To prove A U(A% p), : (s)
divide #1 into two parts A —LS, and .5,
but A — A8 A from (1),
and AS S UA(S — 5, pb
therefore by (1) we have (5).
To prove A, U(AE, p), (6)
divide A, into two parts A.5, and A9, ‘
hut Ay S, < AE from (3),
and A Sy USs, p),

therefore by (3) we have (6).
From (2), (4), (5) and (6) we conclude that
r (A, AF) T p.

Next consider the frontier of A% TFrom (1),

Ay = A% and A¥F = A — A5y,
then Ax = A — AF = .5 — .S,

therefore the measure of /Ij‘ is zero, that is A% is quadrable. -

Therefore the quadrable class [A*] is in the p-neighbourhood of
the class [A]. Q.E.D.

From the above proof, when the class [/1] is quadrable, it also
follows that the set {EF} is densc-in=itself, since it is obvious that A
docs not belong to the class [A]. W

9. The sct {EFFY of all non-guadrable classcs is dense i the
space {2, that is, in any neighbourhood of a class [A], there is a
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non-quadrable class.
To prove this, we use instead of ({4, p) in
B =AU (A, p) + AU (A, p)
of §6, the set (A, p) of rational points' which are contained in
U(/.I,J, p), and construct
A = AV, (A, p) + AT (A, o), (r)
then #{(A, A**)=p; the proof is almost the same as that of §6, hence
I omit it.
Next consider the frontier of A**, from (1)
AF* kAu + AUy (A, p)?
since A¥r = AV (A, p) + A5 (A, p)
as in (6) of §6, then
A= A, Ue (A, p) + 2,
therefore AF* = AFFAEF S U, (A, p). (2)

To show that A, 2 U (A, p), (3)
divide U4, p) into two parts AU(A, p) and AU, p). In any
neighbourhood of a point of AU.(A, p), there arce points of
AV(A, p) and AT7A,, p), that is, the points of A** and A¥*. Hence

AFF2AU(A,, p). Similarily AX* 2.,U(A, p); thercfore we have (3).

L()nsoqumltly from (2) and (3)

1§ = (e, 1),
but the measure of UJA, p) is not zero, and ~
~ Therefore in the p-neighbourhood of the class [A] there is a non-
quadrable class [A%%]. Q.E.D.

Trom the above proof, asin §8, it also follows that /e sef {F75
w5 dense=tn-rtsclf.

10. 1In §7, I have said that to any set function /(1) in the space
7z, there corresponds a point function ¢([]) in the space {Z}. Here
I shall consider first the Peano-Jordan measure of point sets.

We denote the exterior and interior Peano-Jordan measure of the
set A by the symbols ji(A) and j{) respectively.  Since

Je () = 2 (Ay) and 7 (A) = wm (A

where 77(A) means the Lebesgue measure of A, all point sels which

(%)

% i3 not quadrable,

1. That is, the points all coordinates of which arc rational numbers.
2. Since (A+4Ble =de F-Lo and (AB)e Sda Dy
3. Schlesinger u, Plessoer:  Lebesgueshe Tntegrale und Foudersche Reihen, (1926), p. 63.
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belong to the same class lhave the same cxteror and mitcrior Prano-
Jordan wmcasure.  Therefore the point functions which correspond to
them, which we denote by the symbols ¢([A]) and ¢([A4]) respectively,
are onec-valued in {E,}.

Consider any sequence of classes [Ay), L], ...... N ) R which

has the limiting class [A], thatis, im[A,]=[A4]. Then for any given
n-pon

number p there exists a number 2/, such that A, U(A, p) for all

values of 7>7'. If we take a sequence o1 gz ...v.. s Py veres , with

zero as its limit, then
Lim U (A, p,) = .,

e 4

therefore lim 7, (A,) = m (),
that is, lime, ([4,]) = ¢, ([A1)). (1)

‘Therefore ¢([A)) /s upper scmi-continuons in {,} at the class [AF.
Similarily from Ao U (A, p),

we have lim z; (A.,) = w2 (Ay),
that is lim &; ([1,]) = & ([A1]). (2)

Therefore ¢([A]) s lower senii-continuouns in {,} at the class [A].
If the class [«1] is quadrable, then g([A]) =¢([<1]), and from (2),
since &[4, =c{l4.]), V

lim &, ([4,)) = ¢ ([A)),

n-pen

therefore with (1),
tim €. (1) = CAD
Simitarily lim ¢, ([4,])) = ¢ ([A]). }

Therefore ¢{[A)) and ¢{{A]) arc continuous i {2} al the guadradle
class [A].

Since the set {#£}} of the quadrable classes is dense in the space
172}, LA and E{LA) are pointvise discontinuons e {10}

Tt is obvious that &([1)) and ¢([A)) are discontinmous i {1} at
the non-quadrable classes, for, it not, they must have the same values
at the classes of {Z}"}, since they are continuous in {7,} and have
the same values at the set {Z%}; which is densein {7} Therefore,

1. Hahn: ‘Theorie der reellen Funktiouen, 1, (rg21), p. 152,
2., op. cit. p. 203,
3. op. cit. p. 133,
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the st {EE5Y of non-quadrable classes is of the first catcgory in {L5,}".

The point function which corresponds to the Peano-Jordan measure
7(A%), is defined only in the set {Z}} of quadrable classes, and when
we denote it by ¢({A%]),

¢ (LA*]) = & ([4%]) = & ([A*])
at the quadrable class [A4*].  Since (3) holds when all sets A4, are
quadrable, &([A*]) &5 continuous v {FF}. It will be seen in § I's that
€A and ¢{[A]) arc the upper and the lower houndery function
respectively of g([A¥]) in {Z&}*

11. Next we consider the I.cbesgue measure, All point sets
which belong to the quadrable class are measurable and have the same
measure. But for the non-quadrable classes it is complicated.

D the non-guadrable class [A*F), there exist ancaswrable or non-
wcasurable pont scts whose extorior and iteror neasire are any
calies between m(AZ®)y and w{ AFF), ducluding these two values.

To prove this, for brevity, let #[** be a point set in the space /5,
of two dimensions. Consider the frontier AF* of A'* and divide it
“and its rand A2¥, such that

hY

AFE = A

then A%* is a non-dense closed plane point set.  Therefore there exists
an enumerable sct .S of roctahg]os which is dense in /%, such that all
points of A" are classified into three kinds :

(1) points on a boundary of one or more of the rectangles,

(2) points of accumulation of the set of such points,

(3) points which lic in a linear interval which is the limit of a
sequence of the rectangles’.

But the points of the third kind can be put into the fArst two kinds
by the following modification of the set .5 of rectangles.  If there exists
a linear interval, such that all points & of A4%* on it arc not the points
of accumulation of the set of the points of the first kind, then there is
a neighbourhood of the linear interval in which no point of A%¥ exists
except the points on the linear interval. Therefore a rectangle /X can
bhe constructed which has the linear interval as one side, and in its
interior no point of A%* exists. Then some rectangles of the set .S,

Hahn: op. cit. p. 204,
op. cit. p. 121,
Hausdorff':  op. cit. p. 110.

S W N o=

Hobson: op. cit. p. 127,
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which have common points with the rectangle & are divided into
smaller rectangles by the sides of the rectangle R and its elongations.
Now by using the rectangle & instead of such rectangles as are in &,
and other rectangles which are outside of &, we obtain a new set of
rectangles, for which the points x are of the first kind.

By this process, all points of the third kind can be put into the
first or second kind, that is, there exists an enumerable set .S7 of
rectangles which is dense in /5, such that every point of AX* bhelongs
to one of the two kinds:

(1) points on a boundary of one or more of the rectangles, and

(2) the other points which arc the points of accunmulation of the
set of the points of the first kind.

We denote the sets of all points of the first kind in #5* by the
symbol A%%, and that of the second kind by 5, then
+ ARE.

12. Now we construct a point set which belongs to the class
[4**].  Consider the point set

A= AF + DA + P, ALy + TAsE,
where /) is a point set which is with its complementary set /), densce
in /Z,, and £ is the sum of the closed rectangles of the set .S7 which
contain the points of the open set AF¥, and 7" is any point sct, such -
that 7A%F denotes any part of AA7F.

A = A3

Then o= clFF F (DL e (Zocliie + (Ll
e (D)o = <A,
and since Ay F = LoAkE 4 /’Hl;}:};f,‘
Aty = (LAb e F (Lo ASE e
that is AFE AR (Pl for /%S X,
thercfore Ao 2 AES FARE L
that is oy 2 AEE -
but since o < AEE,
e & A
therefore Ay = AFF

Next cons'der the inner point of «.  Obviously the points of Af*
are the inner points of A ; but any point of DA, , 2ARE and 7ALE
is not the inner point of A, since in any neighbourhood of the point
of DAZ®, there exist points of 2.5 ; and in any neighbourhood of

i
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the point of /% .4 there exist points of a rectangle which docs not
belong to 2, that is the points of A%* or AE*, hence there exist points
which do not belong to . Tinally in any neighbourhood of Z15%
there cxists a point of PA%E or P Aji but a point of 2Ax¥:does
not belong to A, and in any neighbourhood of 2, Ay, we have scen
that therc is a point which does not helong to 4. Consequently in
any neighbourhood of the point of 7.4%¥, there exists a point which
does not belong to . Thercfore
A = AF*.

Consequently 4 belongs to the class [4%*].

13. Next we shall consider the measure of . The set o5 is
the sct of points on the boundary of enumecrable rectangles of the sct
S”, hence

we (AZE) = o,
and since the closed set AEF is measurable, the sct £5F s also
measurable and ‘
w0 (Al = me (ALF).
Since the open scts AF™ and A%F are measurable,
1 (A) = 10 (AFF) + 2, (DASS) -+ o (1A, ) Y
w0, (A) = (AFF) + 0, (DAL (DA i)

The exterior and interior measure of /15" may be of any values
B and B such that (A
into three parts /4, /# and F, by the two lines x=xa; and x=ux,
parallel to the x-axis such that

Hx=x), HHha<x<x), M=),
and et ay and a, be such that
i Th A =Py, (s AS)Y =i~ Bo (L AE)= (A5 — Br.t

Denote by & the set of all rational points in /, that is, the points
whose coordinates are rational numbers, and its complementary sct by
K,; and consider the non-mcasurable set £, which has with its
complementary set £,, the whole space /72, as its same-measure cover,

(1)

Nzp=p.=o. For, we divide the space 25,

and its interior measure is zero®. ‘The scts £ and &, are dense in F.
For if the set £ is not dense, then there exists an open sct @ such

1. Carathéodory: op. cit. p. 273,
op. cit. p. 288.
3. op. cit. p. 354.

8]
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that £0 is empty, but by the definition of the same-mecasure covert
2 (0) = 1, (L0)
which is absurd. Similarily for £,
Since R and K, are also densc in /5. the point set
R H A QH, + RA,
is with its complementary scts dense in /., therefore we can usce this
point sct for /). Then
DA = R I AR + QH, ALF + RH; AR
Since HL AR, Hy A%F and Hy Ag* are measurable,
e (DALY = e (Ry By AKF) + g (84 A5F) + e (REH, ALY,
1, (DASEY = 1 (Ry Ih AR + i (QE ARF) + o (R A%F).

But 1 (Ro i AEEY = n (Hy AEF) = P,
wt(QH AL®) = e (Hy A5¥) = By — P
iy (R AEY) = o,
m (RIHy A%F) = o

therefore m (DAES) = .4

and 10 (DASY) = B 0.E.D.

Similarily, the exterior and interior measure of 7A5* may be any
values 7 and y. such that m(A%Y)=rn=r.=o. TFor this purpose,
consider two sets 77 and 7%, which have no common point, such that

m (1 Afr) = 712 and m (1o A% = 11— 120

and let 1=17,+ 87,

then VAR = 1y AR+ Q73 AL

since AR and 73 .A4%% are measurable
m(TAR) = i (11 AgE) + m (27, Ak,
e ( TAEE) = (11 ALE) + i (R75 ALE),

but m (T AYE) =11 — 12

and m Q7 ATEY = o,

therefore m (TALE) =1

and m(TAEE) = 1a 0.ED.

Since wr QAFF) + me (A5F) + m (AZE) = m (AFF),

1. Carathéodory: op. cit. p. 279.
2. op. cit. p. 288,
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from (1) mdA) and 7{Ad) may be any values between #{A5*) and
(A7), such that
7 (AF*) = i, (A) = . (A) = e (AFF).

Therefore we have proved the theorem of §11.

14. The above proof may bhe extended to the space £, of #
dimensions.  Therefore the point functions which correspond to the
exterior and interior Lebesgue measure of any point sets in the space
L2, are the same as the point function which corresponds to the
Lebesgue measure of measurable point sets in the space Z,. 1 denote
this by the symbol p([A]).

Then et @ quadrable class [A*], p[A*]) & one-valucd, and

(¥ = € (L7
al « non-quadrable class [A¥F), ([AF*]) o5 dufindely many-valicd,
and the aggregate of all such functional valucs at [A¥¥] 5 a closed liicar
wntereal (i AFF), m(AFF)).

15. We have seen in § 1o, that the one-valued function ¢([A*])
is a continuous function in the domain {ZF}, which is densc-in-itsclf,
but not closed.  Since all classes in {Z, *} arc the classes of
accumulation of the set {ZF}, at a non-quadrable class, there is an
aggregate of functional limits' of ¢([1*]) which is certainly a closed
sct.  Thercfore we may define a new function v{[A]) for the space
{£,}, in the following manner: At cach quadrable class [A¥], let
[ A =¢([1*]), and at cach non-quadrable class [A**], attribute to
V{[A¥*]) the values contained in the aggregate of functional limits of
£([1*]) at that class [4**].  This new function defined for the extended
domain {Z,} is called by Hobson® #ic function obtaincd by cxtcnsion
of L)),

To see the rclation between this function v{[]) and the function
#{ 1)) defined in § 14, it is necessary to find the aggregate of functional
limits of ¢([%]) at any non-quadrable class [«**]. It is obvious from
(1) and (2) of §10, that all values of functional limits of ¢([A*]) at
[1%*] are contained in the closed interval (wa(AF*), w(AF*)).  But
rsely, it may be proved that any waluc i the closed rnterval
), wi{AE*)) may be a functional linidt of ¢([A*]) at [AFF)].

To prove this, divide the space /£, into two parts /; and 2, by

convel

(el

«

-

an 7 —1 dimensjonal plane x=2x,, such that

1. Hzbson: op. cit. p. 298.
2, op. cit. p. 322,
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//1 (J: é -rl)» /[:.’. (-TX < «T),
and i (Hy AF*) = B, e (Fly AFF) = o (AF*) — B,

where f is any value which satisties #(AF*)=pB=o0. Now modify the
net used in §8, so that x =x, is one of the parallel 2—1 dimensional
planes used for the net. lLet us denote the sum of the closed meshes
of the net which contain a point of 74.4F* by S, and the sum of
the open meshes in .57 by .S%; similarily the sum of the closed meshes
which contain a point of /74A;% by 7), and the sum of the open
meshes in 77 by 7%
Construct the point sot
A= L = RS 7YY S (G = 7))
then it may be proved as in §8, that
(A, A) < p,

p being any given number, and that ;" is quadrable. If we take a

SEQUCNCC  Pr, Oy wrenns R , with zero as its limit, then [:1[‘,*;],
L], s, LAET e, is a sequence of quadrable classes which has
- w

the non-quadrable class [A%*] as its limiting class.

Since  Lim {A™F ~ AT (S £ 7)) = AT
Hm o {AFF — A5 (S, 4+ 79 = e (AFF);
and ’//;”{g + (71 = 1)y = mSy,
but Lim .Sy = 74 A5,
therefore 17\,;:1% S+ (13 = 1)) = m (I A¥7) = 3.
Consequently 11'1—:1013 " (‘1,“") = g (AF¥) + 3,
that is, ///(4,,1;_z===<7)rrﬁ is a functional limit of the sequence ({1 ]),
(PR ) R LAl Ds , but B being any value between ///(/1;l )

and zero, #(A; *)+ 3 signifies any value between m(AF*) and #(AF¥),
including these two values.

Thercfore the aggregate of functional limits of ¢([A4¥]) at [d¥¥]
is the closed interval (m(AF*), #(A5*)), which is the aggregate of
functional values of w([A]) at [A**]. Hence we conclude that /e
pount function f[A)) defined in the space {E,}, which corresponds to
lhe Lebesgue mcasure of ﬁoz'm‘ sets &5 the function obltared by extension
of the poont function ([ A*)), defined e the sct {FE}, which corresponds
to the Peano-fordan mcasure of powd scfs.  If we use the term point-
wise discontinuity for the many-valued function, it follows that p([A])
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15 potnt-wisc discontinuons 1 {E,}', whose measure of discontinuity
is w(Ae)—2(A;); but this may be proved directly from (3) in § 10,
since
G (4] = p (4] = ¢ (4,
H([A)) is continuous in {Z,} at the quadrable class [A4%].
Since e([A]) = m (As) and g (LAD = m (Ay),

it follows also that ¢{[A)) and ¢([A)) arc the upper and the lower
boundary functions respectively of ¢([A¥]) i {27}, as has been already

noted at the end of § 10.

1 Fobson: op. cit. p. 322, this proof holds for metric space.



