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Abstract

The aim of this paper is to classify all the possible solutions for relativistic
cosmology and to construct a reasonable model of our actual universe. Using the
line element

ds?== — R(t)*{ d P +sin®ddp +sin*Isin®pd ™} + 77 (9,£) 2. d¢2,
the writer shows that the solutions of the amplified field-equations may be separated

oF

into two groups i.e. =0 and =0, The former gives Einstein’s and de

Sitter’s world, while the latter gives a unique solution when the pressure p vanishes,
and many different solutions when p does not vanish. Important properties of a
non-statical world, such as motion of a particle, Doppler shift and the form of the
universe at eternity are described in §4 and §5. In the last section the writer
introduces a new model of the universe and discusses its properties and then estimates
the initial and present radius of that world.

One of the most interesting attempts in the general theory of
relativity is to consider the shape and size of our universe as a whole.
The inadequacy of interpreting our actual universe by FEinstein’s
cylindrical or de Sitter’s spherical world has come to be generally
recognised. Many relativitists are inclined to consider our universe
as a non-statical rather than a statical world on account of valuable
contributions due to American astrophysicists. Adopting

£90

A== (A di+ d)+ dE
(1 + ” >~
4R

as the line-clement of our non-statical world, they' attempted to in-

1. R, C. Tobman: Proc. Nat. Acad. Sci., 16, 320, 409, 511 (1930).
W. de Sitter: Proc. Nat. Acad. Sci., 16, 474 (1930).
T. Taléuchi: Proc. Phys. Math, Soc. Jap., 13, 166 (1931).
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terpret many important observational facts, for example the correlation
between distances  and radial velocities of extragalactic nebulae, as the
necessary consequences of our space-time world.

In the present paper, starting from a more general line-element
for the universe, the writer tries first to show systematically how many
solutions are possible for the cosmological problem, next to study
what properties they have and finally to give a new model having
reasonable properties in many respects.

§ 1. TField-equations with A-term.

We assume that in our world at large there exist coordinate
systems for which the forward velocity of light along any track is
equal to the backward velocity along the same track and the 3-spaces
are homogenecous and isotropic with respect to space-like coordinates.
If (&, ¢, ¢, £) be a coordinate system having these properties, the line-
element of our world can be written in the form

ds*= — R(£){d9* + sin*0dy® +sin®Isin’pd$*} + 7 (&, £)* d*. (1°1)

From (1:1) it is obvious that our coordinate hypersurfaces form
a 4-tuply orthogonal system. Accordingly we can find the Riemann-
tensor Ruu of our world by means of the well-known formulae'.
Among 20 independent components of Ay, we obtain

Rzuz =K sinzt?{ 1+ (%)“},

Raypy= Rgsin'“"&sin"’gp{ 1+ (*%)d} )

FF 0 (R
R =Rﬁ{‘ - }
4114 Z€ 0 &2 ()Z \ F

Rggos= stin‘z‘}sinz(p{ 1+ (i)"} ,
d (12)

. OF R\ .
Razza=RFSlm7'{ ]I€ d; cos?d— :; ( 1; )sm&},

]€4334::RFsinz95ingga{ ]Ie 0F cost— 0 ( R )sim?-},

0 ot \ F
Rut—‘——RR M@F in’ s
Va
Rz —-——];‘R or sin*Jsin’p,

1. L. P. Eisenhart: Riemannian geometry, p. 119. (1926).
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as non-vanishing components, where 2, # and R are the abridged
"notations of R(¢), F(J, ¢) and [275
Moreover we may assume that in our coordinate system the

energy-momentum tensor Z7j; which occurs in the Einstein’s field-
equations with A-term, i e.

Gu"’)‘gzj:_z(ﬂj‘*l—gijT) (1-3)
2

respectively.

is given by the following scheme

-7;}': —pgu © o e}

0] _? Oas o] O
o 0 —pgn O
o o o é"u(Pu + 3?), (1'4)

where both the pressure p and the microscopic density of matter p,
are functions of £/ only according to the spacial homogeneity of our
world. 1f we calculate Gy by (11) and (1-2) and apply these values
of Gy and (1+4) to (1.3), we obtain

(G S )

2
Gm:-},— ?)(]; sindcosd — sin’ 1.9[{ ( >}

R o( R )] 2 { }
P 9N = a2 6
7 Risin® A+xp + = (1-6)

2
2
Gu=— P [ 1 OF 0 ( 1\) 2 (1 O0F g
R'UR 0¥ ot sind L &R 08
—Oit( f{_ )smt?}] s {Z 3xp— o } (1-7)
R OF

Guy=—o O .

14 2 7R 98 o, (1.8)

as the independent equations to be solved. TFrom (1-8) it follows
that the solutions of our problem can be classified into two groups :—
(I) R=o, i e. statical solutions in which R takes a constant value,
say R
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(I - d g0 i. e. solutions in which we may put Z=1 without loss

of generality.

In accordance with this important result, we shall treat these two
solutions separately.

§ 2. Statical solutions; R=2LR,.

‘In this article we shall consider the statical solutions i. e. R=2R,.
Thus the field-equations (1-5), (1:6) and (1-7) can be reduced to

1 O°F
F oo

=—[\)0(/H-xp+ ) (2:1)

1 _OF sintfcosd — 2sin*d= — R‘ésingﬁv +xp+ ﬂ) (22)
9 2

1 aa 2 OF %
+ o C td= —‘F(}.‘— g ———&” )_ 2.
R oF R’ 09 = (3)

Eliminating (Z + xp+—i&~> between (2:1) and (z2:2), we obtain
2

0° 7 oF
—_— t =
o os o
Hence we get
F=THH+ T(¢)cos?, ( : ' (2.4)

7y(t) and 7y(¢) being arbitrary functions of ¢ only. Eliminating pp
between (2:1) and (2-3) and then applying (2+4) to it, we get

(7;——14—@)11(/)-!—( 2

From this it follows that the present case should be separable into

—l-l-zp)f(f)cosz? o.

two classes :(—

(i) Zi=o and [),,——-/l—xp.

If we introduce &[ )dl as a new coordinate and denote it by £

the line-element can be put in the form
ds*= — RY(dF* + sin’ddy” + sin*dsin’pd ) + dt* (2-5)

and the relations connecting 2, py, 4 and X, are evidently

=2—xp,
Ro %

[3‘ =49+ py.
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It is well known that this is nothing but Einstein’s cylindrical
world.

(i) Z»=o and —-]32_: ~ xp.

0
If we introduce j]}(!)zﬂ as a new coordinate and denote it by
Z, the line-element can be written in the form
ds’ = — R(d3* +sin’*ddg’ + sin®Isinpd”) + cos’Fdt* (2:7)
and the relations connecting p, py, 4 and R, are obviously

3

2. z=f—xp, }

Voo
4p +ps=o.

(2+8)

As is well known, this is de Sitter’s spherical world.

According to our nomenclature, when (¢) takes a constant value
the world is said to be a statical one. Strictly speaking, it is a
statical world with respect to the coordinate system (&, ¢, ¢, #). TFrom
the above consideration it will be seen that a statical world belongs
either to Einstein’s cylindrical world or to de Sitter’s spherical world.
This corresponds to the theorem independently obtained by Tolman'
and Robertson®.

§ 3. Non-statical solutions

Hereafter let us confine ourselves to the consideration of the case

=1. Thus the field equations (1-5), (1.6) and (1-7) are reducible to

the form

Y + R
]e + I ]el Z)\"Z/), (3.1)
AR — L Qb apet3ep). (3-2)
R 3
Putting
p=pot3p (3:3)

and calling it the macroscopic density of energy, we can write it in
the form

= AR) (34)

p ”Rg

I. R. C. Tolman: Proc. Nat. Acad. Sci., 15, 297 (1929).
2. . P. Robertson: Proc. Nat. Acad. Sci., 15, 822 (1929).
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where AR) is a function of R j'et unknown. Applying (34) to (3-2),
we obtain

B= N/_f_zeuw-?i—ff]f—). t (35)

The reasons for rejecting the negative root will become clear later.
TFrom (3-5), we get

= z dx
S N/ Ay 2R)
£y 3 3%

(3°6)

L% being the initial value of R.
Differentiating (3-5) with respect to # and applying (3:1) and (3 3)
to it, we obtain
7
= —%?—- (37)
3/
If we assume the 3-space to be elliptical, the total invariant mass
of matter in the world 44, is given by

My=aRp, == { /(R) + R/(R)}. (58)

From what has been said, it is clearly convenient to discuss all
the non-statical solutions separately according to the following classi-
fication.

(i) p=o, i. e. zero-pressure solutions. In this case, as will easily be

seen from (3'7), f(R) is a constant. Denoting it by 31 , we have,
X
by (3:8),

My=

3.An"

%

(39)

In the zero-pressure universe the total invariant mass is neces-
sarily comnstant.
(ii) p==o. We can divide this case into two sub-classes.
(a) AMy=const. Denoting this constant by 7D, (3:8) gives
SR+ RAR)=D.
Hence we get
B
j(R)———D‘}‘?, (3-10)

where £ is an integration constant.
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(b) M=#=const. In this case, AR) is indeterminate.

§ 4. Some properties of a non-statical world.

T.et us now consider the motion of a particle and the behaviour
of light in a non-statical world. Without any loss of generality we may

confine ourselves to the hypersurface goz—%, where the line element
assumes the form
ds* =df* — R(£)* {dF* +sin’Fd¢}. (41)
(A) Motion of a particle.
Using the variational principle
3 Sds=o
and (4-1), we find

%(,R?sinaﬂ ¢')=o,

lf”+RR(<9’2+sin"’(9 ¢'2)=o’ (42)

R(9™+sin®d ) =t7—1,

for the differential equations of the path, where the accent denotes

d

Eliminating 7 and s, the spacial path of the particle is de-

ds
termined by the differential equation
o _ zcot&(—i&—y —sindcosd=o.
a¢r dy

It can easily be shown that this defines a geodesic in the 3-space
whose line element &/ is given by

¥ =Rty (dO* +sin*IdP). (4+3)
From the last two equations of (4 2), we obtain the first integral
Rdt
ds=—m——, .
Va+ R (44)

where @ is an integration constant and the positive sense of s is taken
for the direction in which # increases. If we define the squared

velocity #* of a particle by (—Zé-«)u we find, from (4'1), (4-3) and

(4-4)s
.2 : dz >2 — [lg .
¢ ( dt A+ R (4:5)
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Consequently the velocity of a free particle decreases only when R >o.
On the other hand, the velocity increases with time when R<o, so
that the stable model of the universe will not be obtained, as Tolman
has pointed out.

(B) Behaviour of light.

By a slight modification of the argument given in (A), we can
easily show that the spacial path of a light-ray is a geodesic in the
3-space /=const. Next let us suppose a light source situated in (¢,
¢,) at an instant 7. At this moment the source sends a pair of light-
signals separated by the time 44, during which its position changes
from (¢4, ¢1) to (S+ddy, ¢1+d¢1),‘t0 the stationary observer at the
origin of the coordinate system. If 7 and 7+ 4/, are respectively the
instants receiving these signals, we have

2 dt (81, 4y)
S S 1/ O + sin‘ddd”

4 _R—(ZT - ©o
and
kb g B, EAY)
Sfl—kAtl REY = J(o, N 1V d* + sin*ddy’ -

Hence we get
t,+ A2, t, 02
g — j :dly'l.
£ 4,
But, according to Einstein’s principle of the permanence of atoms,
this gives
A+04  _ R(4y) . 1+(mh

A R(#) ( %;_ >

’

where 4 and A+04 are the wave-lengths of a definite line in the
stellar and terrestrial spectrum and (7,), is the radial velocity of the
source. Since the velocity o1 of the source is given by

( l?»’.? >2::1-—-"/2
df A o1y

we obtain, from (4-6), the general formula for the Doppler-effect

_ 04 _ R(t) 1+(z,)
=24 _ 2) . L, .
A Rt vhi—on ' (&7)
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I” being the radial velocity of -the source. Neglecting 7; for 1, (4:7)
can be put in the form

R(t) i '
V=22 q1+ (o0 — 1. -8
R | ()
Furthermore, if we neglect the proper motion of the source relative
to our coordinate system, we finally get

pa_B) ‘ (4:0)
R(t)
This shows us that B must be positive in order to interpret the
red shift as the necessary consequence of our space-time world. '
§ 5. Property of non-statical world when # tends to + .
According to Riemannian geometry, the necéssary and sufficient
condition that a space ¥, be of constant curvature X, is that the
components of the fundamental tensor gy satisfy the conditions

%
Ryp= Q(‘é’}q‘ LGir— 8 hkgij)- (5‘ 1)

If we calculate Ry in order to apply this theorem to our non-statical
world whose line element is given by

ds* = — R(t){ & + sin®Pde’ + sin®Isin*pd ¢’} +dF,
we find, by (1-2)

'Rgug = stineﬂ(l -+ R'Z)’ Rggg; == stin“&sin‘zgp( 1+ RZ)’
Rupy= Rsin®Fsin®e(1 + K%),  Ragn= — RRsin’d,
Ruu — ]\’R, R433; = - fef.ésinel?singga,

for non-vanishing components. By means of (3-1), (3-2), (5'1) and
these values of Ry, we find that the necessary and sufficient condition
that our non-statical world be of constant curvature X is that the
ratios

Rong L+ R

, 2 %
—_—— _ D
r, ", - 3 - p xp:
12812 — e R 3 3
LY
Rsng __1+R X xp —up
a3 b
L3813 S Vid 3 3
R R _ 2 L Py 3
=Ly, (52
Lufuu—&ulu R 3 6
Ry —_ 1+R _ 2 Xy
==y,
Lnfo3— L2283 R 3 3
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R~|224 —_ R — _2__ 4+ _*Pa_ ZPn +xp,
Guo— Znlu R 3 6
R R A

= — :—-___+ xpo +xﬁ’
Sufs— Ll ¥is 3 6

must have the common value X IHence if p, and p tend to zero
when # tends to +co, all the ratios of the left-hand side in (5-2)

converge to the limiting value ———R—. Thus we have the theorem: The

non-statical world such that its pressure and microscopic density of
matter tend to zero when the time tends to positive infinity converges

to the de Sitter’s spherical world having N/ 3 as its curvature-radius

if the time becomes positive infinity.

§ 6. Zero-pressure solution.

When p=o, from (3-6) and (3-g), the relation between R and #
~is given by the in;:egral

R P
ZL: . A dx: (6'1)
A—x+-2o4°

VR, 3

where A is positive since 44, must be positive. For simplicity we
shall denote this integral by 7(X).

(a) Case: A-— 32//I—>O' I(R) has a finite lower limit, because
1

there exists no singularity in the integrand and R does not become

negative.

(b) Case: A-— /T_<o The denominator of the integrand in
31

(6-1) has two distinct zero-points denoted by R, and R, (>R)) re-
spectively. If o==R,=R,, R can not vary beyond 2R, for Z(R) is
imaginary when <& But since the order of infinity at R=27R, is

equal to —1—, it is clear that 7{R) is a limited function of R. If
Ry=R,, I(R) has evidently a finite lower limit.
(c) Case: A-—

/A —==0, The denominator of the integrand in
31

(6-1) has a double zero-point

/) If 1/7>R0——O and /_>]€ =o,

it can easily be shown that /(R) has a definite lower 11m1t I B>

1/1 /}_, then /(R) can take any preassigned real value.

From these it follows that (a), (b) and the first part of (c) are
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unadmissible cases and the second part of (c) is admissible by con-

sidering the physical meaning of £ In this unique zero-pressure so-
2

lution, by the relation A= — we can perform the integration in
31

[
™~

(6:1) as follows,

(R=R_)Y{R+R_..+1V/ RR+2R_.) }"*
2R+ R_+ 1/ 3R(R+2R_..)

where R_., and C represent /I/l— and the value at f=o0 of the left-

]
hand side of (6:2) respectively'.
From (6-2) and (1'1), it follows that R approaches R... and the
line-element tends to
ds’ = — R (dF +sin’Idy* + sin*Isinpd¢®) + dF,

when / converges to — o, Thatis, we can say that the zero-pressure
world is an Einstein’s cylindrical world having &_., as its radius in an
indefinitely long past. If £ increases gradually from — o to + o, R
increases also from the definite value R_.,, to + o, as can easily be
seen from (6-2). Therefore the density

2R_.,

xR®

approaches to zero when /— + . According to § 5, we can conclude
that our zero-pressure world will become a de Sitter’s spherical one
having 13 R_.. as its curvature radius, if the time elapses indefinitely.

Since its total invariant mass remains unchanged i. e. it takes a constant
2R,

—t
=Ce L=, (6-2)

P=p=

value during this process, our zero-pressure model of the

universe has a somewhat different character from the actual universe
in which an enormous quantity of matter is being transformed into
radiating energy. DBut as for the red displacement of light emitted
from distant objects, the explanation by this model is very satisfactory.
If R{o) and R(#4) are assumed to be greater than K., in such an

order that t4he squares of R(:;), and R(;S can be neglected for
unity, #4 being the emitting time instant, we obtain, from (6-2),
?
R(Ifl) ey . 4
LR = V3R L 63

1. This solution was found in a different way by Lemaitre. (Cf. R. C, Tolman: Proc.
Nat. Acad. Sci., 16, 582 (1930).
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By (6-2) and (4-9), we get the formula
— - jl..__-

V3R

which says that the Doppler shift of extragalactic nebulae is pro-
portional to their distances, provided that their proper motions are
neglected. Taking a step further, let us consider 7 extragalactic
nebulae having equal distances from the origin. Then, by (4-8), we
get

V= (6+4)

Ve (6:3)
7 V'3 R,

where XV is the sum of their radial velocities due to Doppler shift;
for 2(z,), vanishes on account of the non-existence of systematic proper
motions in such a world. If we select 8 nebulae of this kind from
Hubble’s table', our estimation of ZR_.., by means of (6-5) gives the
value

R_.=1.15%x107Cms. (6-6)
Hence we get
ﬂﬂ,:ﬂ?—l‘f’—z 1.21 X 10" gms. (6+7)
%

§ 7. Non zero-pressure solution.
‘When the total invariant mass is constant, we have seen that
AR) is of the form '

- B 210
AAR)=D+——. (3:10)

Here we will not consider this type of solution, since de Sitter’s
research® in 1930 corresponds to this and the annihilation of matter
does not take place in such a world.

There is no ground to determine the form of f(&), when 27,
depends on £  For the purpose of this determination, first let us
assume that the world tends to an Einstein’s cylindrical one having
R_., as its radius when # decreases indefinitely, that is to say, our
first assumption claims that the cosmological constant appearing in the
amplified field-equations means the reciprocal of the squared radius of
the Einstein’s cylindrical world which was the form of our idealized
actual universe at the beginning of eternity.

1.~ E. Hubble: Proc. Nat, Acad. Sci,, 15, 168 (19209).
2, W. de Sitter: loc. cit. :
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In consequence of this, if we denote

U(x)= —£~x —1 —f————‘xf (%) ,
3

3% -
we get, from (3-6),
V(R_.)=o0, ¥(R._.)=o.
Since these are reducible to
tfR-0)=2R s, f(R.)=0,
AR) must be of the form

WfR)=2R RI: -— )g(p(ze), (1) a

@(R) being assumed to be expanded in the series

: . R._., R_..\? .
Q)([e)_ao—,ual( s )+42( = >+ ......... , (771)b

which is convergent at X=~K_..

Second let us assume that if # becomes infinitely great R also
M,

(11'/[0)t-==—oo
that is to say, our second assumption claims that at the end of eternity

the radius of our world becomes indefinitely great and its pressure
becomes zero, while its total invariant mass decreases to an amount
a times as great as that of the beginning. Then @(R) can be put in
the form

(ﬁ(R):——zRim(x—a)ﬂ—al( fje-w)m( Zje-”)ﬂ ...... L (72)

becomes so and the ratio tends to a constant a{o=a<1),

by (3:8), (71)a and (7-1)b.

By (7:1)a, (7:2) and the theorem obtained in §5, we can show
that the world tends to the de Sitter's spherical one when #—+ .
In the following we shall treat the most simple case contained in it

iLe m=a=...... =o. Applying (7:1)a and (7-2) to (36), {3-7) and
(3'8), we get :
1= “ . dx :
g ——— ! 3 2 5 »(7°3)
£y ( R x )4/ 3% {8+ 2R — 2R (1 —a)}
1= 1
” 4]63"%‘ ’ (Rl-m" =) (7:4)
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2 2
#y= TR g Romi ) 7:3)
, X R : '
If R(o) and R(#) are assumed to be greater than R_.. in such
R_ R
’ ; f Al —on . . .
an order that the squares o 30 and 6 can ‘be neglected for

‘unity, we obtain, from (7-3), the same equation as (6-3). For this
reason we can give a satisfactory explanation for the linear relation
between Doppler shifts and the distances of extragalactic nebulac and
also obtain the value

R_.=1.15% 10" cms,, (6:6)

as can easily be seen from §6.
Differentiating (7-5) with respect to 4, we get

v 4R 1—a) 2 )
j’/[()“ I R, (7 6)
where R is, of course, given by (73). Although, if we use these
formulae (7-3), (7:4), (7-5) and (7:6), we can deduce the expression
for annihilation of matter, we cannot estimate the percentage rate for
annihilation owing to a wide range of values (observational) depending
on the type of stars considered. Therefore we will try to estimate it

for several values of « lying between and 1. In this case, by

" means of (7+5), (7°6) and (7:3), we get approximately

[2h)eo= 7RO [pilro=a- 52 (77)
[__ 1 At ] — 2(1—0()R_m (7'8)
My dt e V3aR(0)}
Using Hubble’s value of density
im0 = 1.5 X o~ 8-
lork-o=1.5 1 . cm.

we can determine 7o) by (7-7) and then estimate the percentage
rate for annihilation of matter in our universe by (7-8).

115./3 :I -12 -1

—2 | =8.1x107" (years)™!' and R(o
)i~ 81 (vears) (o)
=1.5x10°%cms. In this case, the elliptic integral in (7-3) being ex-
pressed by elementary functions only, the rate is nearly equal to that
of Betelgeuse and the present radius in 13 times as great as R_..

" 11
For a= - we get [—
2
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.Z’Z, ] = -1 ’ -1
3 T Jomg= 1O 1077 (years)™ and (o)

=2x 10® cms. This rate is just equal to that of Sirius A.

I
For a=-3 , we get [—
2

TFor a=1—35.4% 107, we get [— 2, ] =1.7 x 107" (years)™ and
£=0

M, _
R(o)=2x10® cms. In this case, for which the ratio (ﬂ[")"z;]i’f) ()= 1
0 ft=e wen

is equal to that of electron and proton, the percentage rate is nearly
twice as great as that of 6o Kruger B.

For a=1—2.3x 107, we get [— A, ] =7.0x 107" (years)™" and
) .[L//(-) =)
R(o)=2x10% cms. This value of rate is just equal to that of 6o

Kruger B.
Thus we see that this non-statical universe serves as a reasonable

model in many respects.

In conclusion the writer takes pleasure in thanking Prof. Tamaki
for his kind advice and encouragement in the carrying out of this
research.



