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Abstract

The frequencies of the vibration of the Japanese hanging bell are calculated on
the assumption that it is a circular cylinder with a hemispherical cap and no line
traced upon the middle surface of the shell undergoes extension when the bell is
sounding. It is found that the frequencics of the partial tones of a Japanese bell, of
which the Poisson’s ratio is 1/3 and the ratio of the length of the cylindrical part
to its radius is 3/2, are in the ratios 359: 981: 1847:

The shape of the Japanese bell may roughly be represented by a
circular cylinder with a hemispherical cap. DBut its thickness is not
uniform everywhere, being very thin at the portion where the cylin-
drical part changes to the spherical form and very thick at the edge
as well as at the top of the bell. Since an exact calculation is indeed
scarcely to be hoped for, we assume, in the present paper, that the
thickness of the shell is uniform throughout the bell. The vibration
of a spherical shell' and of a cylindrical shell® are treated by Iord
Rayleigh on the assumption that the shell is deformed by pure bend-
ing. Tollowing Lord Rayleigh, we assume that any line on the
middle surface of the shell undergoes no extension when the bell is
sounding.

Tet 7, 0, ¢ be the spherical polar coordinates of any point of
a hemispherical shell in the equilibrium state, and let (u, 2, ) represent
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the displacement of that point in any state
of vibration, 7 being the component along
the radius vector, # that along the tangent
to the parallel in the increasing direction -
of ¢, and w that along the tangent to the
meridian in the decreasing direction of 6.
Then the most general possible forms for
2, v, w, when the boundaries of the shell
are two circles of latitude and the displace-
ment is that of pure bending, are given by'

2w=—>{(7+ cosl) Antan’lwq—cos(ﬁgo +a,)
2

— (12— cost) B, cot"{;cos(ﬂga +8.

(1)

v=s170%{ A,Ltan"i sin (ng +a,) — &,cot"isin(ﬂgo +Bu)bs
2 2

w=—sinf>{ A,ltanzg—cos(mp +a,)+ B,,cot”'ﬁ—cos(ﬁgo + Bt
2 2 s
where A, and B, are functions of time /4, @, and f, pure constants,
and the summation is taken with possible integral values of # from
zero to infnity. DBut, since the terms for =0 and 7z=1 correspond
to the displacements of the shell when it moves as a rigid body, they
may be omitted from the summation. Moreover to apply equations
(1) to a hemispherical shell, since the displacement at the pole #=o

. . . . 9
must be finite, we must reject the terms containing cot™—.  Thus
2

we get

w=—>(n+cos ) A, tan”wd;cos (120 + er),
2

p=sin 0> A, tan” ~—0— sin(ﬂga +a,), (2)

W= — sinﬁZA,,tan”-—licos(mp +a,).

Next let @, ¢, s be the cylindrical coordinates of any point on a
circular cylinder of radius @ and #, 7, w be the components of dis-

1. A. E. H. Love, Math. Theory of Elasticity, 4th ed., p. 508,
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placement in the directions of increase of ¢, ¢ and z respectively.
Then for a circular cylinder of finite length, when the displacement
is restricted to pure bending, the most general possible forms for =,
7 2w are given by

w=>n{Ad sin(np+0,)+ Bz sin(ne+3.))},
v="> {4, cos(ng+a,)+ Bz cos(rnp+7.)}, ) (3)
I

w=— S+ B/sin(ne + ),
7

where A,’ and B,/ are functions of 7, and @,/ and B,/ are pure con-
stants.

If we consider the bell as made up by the hemisphere being
connected with the cylinder, as its cap, since the displacements given
by (2) and (3) must be equal at the connecting plane, which may be
taken as z=o passing through the center of the hemisphere, we get

1A', sin(ng + a,")= —n.A, cos(r¢ + an),
A, cos(np + )= A, sin(ng+a,),

-2 By sin(ne + 8,/) = — A, cos(ng+a,),
72

or

T

an/ e Oy A'nl = A'm
2

(4)

T 72

ﬂn, = + an’ -Bn, - Au'
2 @

Substituting these values of A,/, B’ &/, B,/ given by (4) in (3), we
obtain

N

= — Zn(l - —LZ)A,, cos(ng+ a,),
a

7= Z(I - 7% Z)An Sin(ﬂgp + fl"), ( 5 >

a

w= —>", cos (ng + a,).

In order to calculate the frequencies of vibration of the bell, first
let us obtain its kinetic and potential energies. Tet p be the density

1. A. E. H. Love, loc. cit. p. 506.
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of the material and 2/ be the thickness of the shell. Then the
kinetic energy per unit area of the shell is evidently given by

' Ou V' Do\ dw \°
A5 )+ () +(50))
P\ ) T\ or 1.
If the length of the cylindrical part is /, its kinetic energy 7. is

o e ()?& 2 671 2 ()7(’] 2
iy CORETNEY s
Y Op ot of ot ¢
When the values of u, v, w of (5) are substituted in the above equation,
all the terms containing products of sines or cosines with different

values of 7 vanish in the integration with respect to ¢, as do also
those which contain cos(z¢+ @,) sin (¢ +a,). Accordingly

];:71"0(1[/1-2{(%2‘{‘2)'!-(722'}—I)(I+~—-I~ nt N7l }( dely Y (6)
3« /) a at

The potential energy of bending per unit area of the cylindrical
shell is'

D=, )

where £ and  are given by’

f= —-—L( dz?f + u), :
@\ d¢g*

Z, o, and p being Young’s modulus, Poisson’s ratio, and the modulus
of rigidity respectively. Using the values of (5), we get

b= — LSt — 1)(1 - ﬂz)A,, cos (12¢ + a,),

= —17272( 18— 1) A, sin (ng + a,,).
a*

. A. E. H. Love, loc. cit. p. 503.
2, A. E. H. Love, loc, cit. p. 507.
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The potential energy I, of the cylindrical portion is obtained by in-
tegrating the expression (7) over the shell; and we get

0 25t
Vo:S S L D{F+ 2(1 — o) badods
-1 Jo 2

=1 njg)l St — 1)2{ 3~ 20) +ﬂ+“ Ex }A"g
a

2 @

~i mpllt S (nt—1 ) {(3-— 70‘)+ ”Z L 72;.{2 }A712~ (8)

(I —‘0) 3 a
The kinetic enegy 7, and the potential energy ¥, of the hemi-
spherical portion are given by'

T

71=7rp42/é2<-—‘—i:,%)’( sin 0§ 2sin®@ + (72 + cos 6} }tan‘” g a6,

w0

o

2 sin®d

o 8 71'/1/113 373 2 2 2 25
V= 222 S0t — 1) 4,7 tan
3 a 0
By the transformation of the variable 1+4cos @ =x, we easily get the
relation

wa

g

S sin 8{2 sin’0 +(72+cos )’ }tan““ a6

0

= g: {Gz—1) 4+ 20+ 1)x—~x2}—(—2_—_—n~xll—(ix;
A %

and similarly by putting tan—=ux, we get

2

S 7 w0 d0 1 2t
tan’ e e S S
2 sin®d 4 n(nt—1)

Hence the expressions for 7; and V; become

ﬂznpaglz‘s_—_'(%f—)“j: {(n—1)+z2(n+ I)x—xﬂ}vg——z:f):dx, (9)
x

Vi=——

2
a
)

3
»ﬂl—_,/f—~2n(ﬂ'Z ~ ) 2iF — 1) A% (10)
pE:

From (7), (8), (g) and (10), we obtain

1. A. E. H. Love, loc. cit. p. §13.
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TZ?rp(l%E[(?f-f- 2) 4 +(1"+ 1)(1 + JﬁL) 7l
a

. 2
3 a

+§j {Gz— 1) 4 2(n2+ 1)x —2*} (2;”95)" a’x]( JA, )_, .

dt
2 Tpl LTI e _I)[ { _90)+ 72l
3 a* 1i—a
s 72‘{‘ }_i_+ 27;:-——1 ]Anz (12)
3 a ta 72(72°— 1)

as the total energies of the composite shell.  The kinetic energy 7
is a series of A,f and the potential energy 7 is a series of 4,7, so
that the coefficients 4, are really the normal coordinates of the
system and, by substituting (11) and (12) in Lagrange’s equation of
motion

d 07 _ oV

at oA, 04,

it follows that 4, is proportional to a simple harmonic function of the
time with a frequency #,/27 and 2, is given by

20l P 3
p'nZ: p T T AT

where

Pzng(nz——l)g[ ! { —20)+—— !
1—o a

L i }_«_}_ 20— 1 ] (13)

3 a ) a 2(1*—1)

="+ 2) + (7 + 1)(1 —f—-I— —ﬂ—Z«)ﬂL

&

+Sl {(n— 1)+ 2(z+ I)x_xg};(z__.jidx

The integral

f(ﬂ)—-‘—-—-ﬁ {(e—1)+2(n+ I)x"’xq}l%‘;ﬁdx

can be evaluated for any integral value of 2. /(2), f(3) and f(4) have
been calculated by Lord Rayleigh' as follows:

1. Lord Rayleigh, Scientific Papers, vol. I, p. 557 ; Theory of Sound, 2nd ed., vol. 1
p. 430.
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(3]
o
-

F(2)=1.52061,
F(3)=1.881356,
S(4) = 2.29609.

To obtain the ratios of the frequencies of vibration of the Japanese
bell, if we assume

/ 3

and o=
@ 2 3

as the reasonable values, we find from (13)

P = 2'”'/i“ X 12.01,
3pa
oo 2t
pg~=mji)‘{:4 X 96.23,
a3
20/
Az:—;f;;r“x 341.10,
. 3

and therefore we get

Bot b3 p=1"12.91 : 1V9b.25 : 1 341.10

=359 : 981 : 1847
as the ratios of the frequencies of partial tones.
Equation (13) may be written in the form

pi=LE P om)
pa @

Therefore we see that the frequencies of corresponding vibrations of
similar bells made of the same material are directly proportional to
their thickness and inversely to the squares of their radii. If the
similarity extend also to the thickness, the frequencies are inversely
proportional to their linear dimensions. Hence, if the dimensions are
halved, all the tones should rise in pitch by an exact octave.

In equation (13), if we make the length / infinitely small, we
obtain

2pf (31— 1)(278" — 1)
3pa’ j{(?l'—l) + 2(n+1)x — x} (’;x) dx

lim p.2=
30
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This is exactly the same as the equation obtained by Lord Rayleigh'
for the frequencies of vibration of a hemispherical shell. On the other
hand, if we make the length / of the cylinder infinitely long in com-
parison with the diameter, the frequencies are given by

2 200\
lim p,’ = 2l y " (7f 1)
1>en 30(1 — o) 7241
- B 72°(1° — 1)
30(1 — %) 741

.

These are also identical with those of a cylindrical shell obtaind by
Lord Rayleigh®.

The writer’s best thanks are due to Profossor K. Tamaki who
suggested the investigation and gave much valuable advice and criti-
cism.
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