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Direct images of D-modules in prime characteristic *
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Last year two remarkable results appeared concerning the D-modules on the flag variety
over an algebraically closed field k of chracteristic p > 0. One was due to Kashiwara M.
and N. Lauritzen [KLa02] showing the failure of D-affinity of the flag variety in SLs, and
the other by R. Bezrukavnikov, I. Mirkovic and D. Rumynin [BMR]; they establish instead
a derived equivalence between the category of finite generated modules over the universal
enveloping algebra of the Lie algebra of the relevant simple algebraic group G having the
trivial Harish-Chandra character and the category of coherent modules over the sheaf of
rings of crystalline differential operators on the flag variety, and succeds in computing the
number of irreducibles for the Lie algebra with a fixed Frobenius central character. On
any smooth k-variety X their crystalline differential operators are just the 0-th term of
Berthelot’s rings Df,;"), m € N, of arithmetic differential operators [B96]. Those 'Dg{'") s
form a direct system whose direct limit is the usual sheaf Diffx of differential operators.
The images '.55;") of Dﬁ}"’ in Diffx form the p-filtration of Diffx studied by B. Haarstert
[H88].

In this note we will clarify a relashionship of Dg}") and T)S}") with respect to direct
image functors, and construct on the flag variety a D(™)-module, whose global sections
constitute a standard module for the (m -+ 1)-st Frobenius kernel of G. That D™-module
is supported by a point, and is a unique irreducible D™)-module having the same support.

An advantage of D™ over D™ is that D™ is defined over the ring of p-adic integers
Z,. Thus a theory of D™)-modules over Z, on the flag variety invites our exploration.

If X is a scheme, by Modyx (resp. Modx, ®x) we will mean Mode, (resp. Modo,,
®ox)-

1° Crystalline differential operators

(1.1) Let G be a simply connected simple algebraic group over an algebraically closed field
k, k[G] the Hopf algebra defining G, g : k[G] — k the counit of k[G], mg = ker(eg), and
Dist(G) = {u € k[G]* | u(mZ!) = 0 3n € N} the algebra of distributions on G. Denote
the Lie algebra (mg/m%)* C Dist(G) of G by g and by U its universal enveloping algebra.

If Uz is Kostant’s Z-form of the universal enveloping algebra over C of the simple
*supported in part by JSPS Grant in Aid for Scientific Research
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C-Lie algebra of the same type as g, there is an isomorphisin of k-algebras
D]St(G) g Uz ®Z k.

A finite dimensional G-module is naturally a Dist(G)-module, and vice versa.

Let B be a Borel subgroup of G, B = G/B the flag variety of G, and Diff = Diffen
the sheaf of k-algebras of differential operators on B as defined in [EGAIV]. In positive
characteristic the Beilinson-Bernstein localization theorem [BB81] fails:

Theorem: Assume chk > 0.

(i) Smith [Sm86): The k-algebra homomorphism
Dist(G) — I'(B, Diff)
induced by the G-equivariant structure on Op is not surjective in SLy.

(ii) Kashiwara-Lauritzen [KLa02]: In SLs there is a quasi-coherent Diff-module
M of finite type such that
H(B, M) # 0.

Throughout the rest of the manuscript we assume unless otherwise specified that k has
positive characteristic p.

(1.2) Instead of Dist(G) and Diff, Bezrukavnikov, Mirkovic arnd Rumynin [BMR] consider
the universal enveloping algebra U and the sheaf D = Dg of k-algebras of crystalline
differential operators on B introduced by [BB93]:

D = Tw(Diff*)/
(A= Mog,a®6—a6,608 — 6 ®6—[5,8]| A €k a € Og;6,8 € Diff?),

where Diff’ is the sheaf of differential operators of order < 1 in Diff and Ty(Diff 1) is
the tensor algebra over k of Diff!. In charactristic 0 one has D ~ Diff.

To describe the work [BMR], assume for simplicity in the rest of §1 that p > 2(h — 1),
h the Coxeter number of G. Let T be a maximal torus of B and A = GrpSch(T, GL,)
the weight lattice of T. We will write the group operation on A additively as usual. Let
R be the root system of G relative to T, R* the positive system of R such that the roots
of B are —R*, and W the Weyl group of G. We consider a W-action ® on A centered at

—p= —%ZGGR+ o
wel=wA+p)—p, A€A

If 3uc = UAN®) = {u € U | Ad(g)u = u Vg € G} and b = Lie(T), transferring the
We-action onto b, the Harish-Chandra isomorphism carries over: '

3uc = S(h)™".
Define a k-algebra homomorphism
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and set U° = U ®3,,, ceng. Then the Beilinson-Bernstein localization theorem survives
in the derived category:

Theorem [BMR] : Assume p > 2(h —1).

(i) The natural k-algebraﬁomomomhism U — I'(B, D) induces an isomorphism
Ul - I'(B, D).

(i) There is a derived equivalence between the category Umod of U°-modules of finite
type and the category Coh(D) of coherent D-modules

D&Y ?
D?*(U’mod) D?(Coh(D)) .
RT(B,7)

(1.3) Yz € g, the p-th power z” of z in Dist(G) lies in g, which we denote by zlP! to
distinguish from the p-th power z? in U. Then
3n=k[z? — 2P | z € g)
is central in U, called the Frobenius center of U. If z1,...,z, is a k-linear basis of g, 3m
is the polynomial k-algebra in z¥ — z?’ }, and U is free over 3g of basis z" = z7* ...z},
n=(ny,...,n.) €[0,p":
U= H 3py z".

nel0,pf"

Due to the large center of U, any simple U-module is of finite dimension [J98, 1.1].

By the standing hypothesis that p > 2(h— 1), the killing form x on g is nondegenerate.
If N = Ad(G)n the nilcone of g and if S(g) is the symmetric k-algebra of g, one has
k-algebra homomorphisms

3 ——— S(g)M —— k[g]M) —S= k[N]W

zP — zlpl A k(z, 7), T €y,

where S(g)®) is the ring S(g) with the k-action twisted in such a way that each ¢ € k act
1
as (» on S(g), and likewise k[g]("), k[N]™). Let Vx € N, m,, = ker(ev, ) ores) € Max(3r),
UY = U’®3y, (3rr/my), and U%mod, the full subcategory of Umod consisting of those
M such that m}M =03n €N, or equivalently, having support in the closed subscheme
of Spec(3r) defined by m,. ‘
Likewise if S(73) is the symmetric algebra of the tangent sheaf 7z on B,
Z(D) ~ S(Tp)P via @P(8° — ) « aMOM a € Op,d € Tg ~ Dergyy.
If g : V(75) = Spec(S(7g)) — B is the cotangent bundle on B, under the morphism
(1) V(T5) <=~ G x® (g/b) —> G xBn—"> N

l9, 2} —— Ad(g)z
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put By = V(T)x xX, called the Springer fiber of x, Dy = D®g(p){Z(D)/ pg(res(mX))Z(D)},

and let Coh,(D) be the full subcategory of Coh(D) conmsisting of those M
with ph(res(m,))*M =03n € N, or equivalently, such that supp(¢§*M) C (B,)"Y), where
g : (V(T5)Y, Oy(gym) — (B, Z(D)) is the morphism of ringed spaces induced by q.

Theorem [BMR]: Assume p > 2(h —1).

(i) The BMR derived equivalence resricts to a derived equivalence
D*(U°mod,) ~ D*(Coh, (D)).

(ii) There is a categorical equivalence
Coh(Dy) = Coh(BM).

(iii) If K(By) is the Grothendieck group of Coh(B,) and if £ is a prime # p,
| rkK(B,) = dimg, H2, (By, Qr).

(1.5) Corollary [BMR]: The number of z'rreduéibles for UY) is equal to
dime, HE, (By, Qo)-

(1.6) We wish to make the BMR-theory T-equivariant to keep track of the weights.
In order for T to act on U, = U/(m,) by Ad, :

(my) =Umx=(:r”—z[”]—x(x)p|x€g)<}U

must be Ad(T)-invariant, which forces x = 0. Thus in the T-equivariant theory we are
to deal with Up =~ Dist(G,), Gy = ker(Fr : G — G™) the Frobenius kernel of G, and the
BMR derived equivalence reads

DRy ?

Db(U’mod,) D?(Cohy(D)) . -

RI(B,7)

2° Arithmetic differential operators

(2.1) Let X be a smooth k-variety. The sheaf Dx of k-algebras of crystalline differential
operators on X coincides with the 0-th term 'D;?) of Berthelot’s sheaves 'D;"), m € N, of

k-algebras of arithmetic differential operators on X [B96]. The D_(,:") form an inductive
system such that for m’' > m '

) —= Diffx
P! ,;'n T O
Dg;n) 'MOdog"+1’ (031 OB))



158

where C’)[m“] {a P" o€ Ox}; MOdO[m](OB, Op) | m € N) forms the p-filtration of

Diffx studied by Haastert [H87, 88]. It will follow from the structural information (2.2)

below that
lim DY =~ Diffx.

m

and we will write D_(,(°°) for Diffx; Dg?) can be defined in characteristic 0 and is isomorphic
to Diffx there. Put Ky, = ker(pm).

(2.2) Let (t1,...,tq) be a local coordinate on an open U of X. Recall from [EGALV] that
DY) = Diffy is free over Oy of basis 8", n € N?, such that

ol (t*) = (")t’“‘ Vk € N

Proposition [B96, 2.2.3-7]: Let m € N.

(1) ’Dg") is free over Oy of basis <™, n € N, such that Vk,n' € N¢, Va € Oy,
pm(8<7) = g0,

0> (¢): = om0 = ()£
§<n>g<n'> _ <n +n > g<mn'>

n
a<n>(z —_ , 8<n >( a<n >
n’+n"—-n n

where q = (g;) € N® withn; = p™g; +ri, s € [0,p™[ Vi € [1,d],

n q! .
{n’} = 711 with ¢’ and q" defined for n' and n”, resp., as q for n,

n4n/\ _ (n+n [ n+n7
n B n n '
Thus D™ = Oy[057"> | i € [1,d],5 € [0,m]] with 877> = 8<P'1>, 1; € N? such that
1,0 = 6; Ve, and hence is left and right noetherian.

(ii) The center Z(D,(}“)) of Dg") is a polynomial Og"“l-algebm in indeterminates
6<pm+1> .
; , 1€ [1,d].

|
(iii) If m' > m, pmm(8°"7) = g,;'a<"> with ¢ € N¢ defined by n; = p™gq} + 1},
ri € [0,p™ [ Vi € [1,d], and
ker(pmmly) = (0" |1 € [1,d]) = Kmlu.

(2.3) It is now easy to generalize a result of [BMR] that DY is Azumaya:
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Theorem: FEach D_(;"’), m € N, is Azumaya; if Ax = Ox [Z(D_(Q))], there is an isomor-
phism of sheaves of k-algebras on X

D™ @y oy Ax ~ Mod(Ax)(D, D) via §& 68 — 676,
where the RHS is the sheaf of endomorphisms of right Ax-module Dﬁ}").
Proof: By [KO, III.6.6, p.104] the question being local, we may assume X is affine

with coordinate system (t1,...,ts). Put D = I'(X, Dg")), Z=I(X,Z (D&m))) and A =
I'(X, Ax). Then

(1) A= ] 2zt

ke[opm+ifd

©) D= ] 46 = J[ 0%A by (22.)/[B9%, 2.2.5.1]
ke[0,pm+1]d kefo,pm+if
= JI zto.

knel0,pm+ifd
We have thus only to show
(3) D®z A~ModA(D,D) via 6®¢ > §76.

For that, both sides being free over A of the same rank, it is enough by NAK [AM,
2.7+3.9] to verify the surjectivity of (3) at each maximal ideal of 4: Ym € Max(A),

DR; A®4 A(m) ModA(D, D) ® 4 A(m)

NT lN

D ®z A(m) ModA(m)(D ®4 A(m), D ® 4 A(m)).

The surjectivity, in turn, will follow by Jacobson’s density theorem [L, p.647] from the
irreducibility of D ® 4 A(m) as left D ® ; A(m)-module.

Put B = Kk[X]. As A = B[Z] is the polynomial B-algebra in indeterminates
A" > g™ by (2.2.0),
Max(A) ~ A% ~ Max(B) x AL
At (z,y) € Max(B) x Ag,
DesAm)= [ k&<, DezAm)= [ ktto<».

kefopmtid - kng(0,pm+i[d
We may assume #;(z) = 0 Vi. By (2.2.i)/[B96, 2.2.5.1] again we have only to show
(4) (D®zAm)631 Vée J[ ka<>\o.
kel0pmifd
Applying the adjoint operator [B00, 1.2.2.1} on the 4-th formula in (2.2.i) yields
(—1)|klb8<’°> = Z {k }(_1)lk”la<k”>a<k’>(b) Vke N‘Vbe B,

n/
k= k
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where |k| = ¢, k; and likewise |k”|. Consequently, if k; > 1, one has in D ®z A(m)

. / : k
— 1\l a<k> _1\k=k') g<k~k'>g<k!> 2y _ _ 1\[k=1i] g<k—1;>
1) .t,a }:{k,}( 1)lk=*1g k> (¢, {1}( 1)k-1lg

k%0
e kX0<k 1> asq <p-1Vje(l,d],

and (4) will follow.

i

Remark: Asin [BMR] one has Ax = D(m)(Ox) the centralizer of Ox in 'D('").

(2.4) Inverse image: In order to treat DS, m € N, and DS = Diffx simultaneoﬁsly,
put N=Nu {c0}. Let f: X — Y be a morphism of smooth k-varieties. Denote the

category of quasi-coherent left 'D(m) (resp. ’D( ™) -) modules by qc(D("‘)) (resp qc(’D(m) ),
m € N.

IfV e qc(D (m)) f*(V) = Ox ®-10, f~'V comes equipped with a structure of quasi-
coherent left 'D )-module [BOO, 2.1.1} such that, suppressing (m), locally

5> - (1ev) = 3 5 x NI @ 857w
1<kl
by Taylor’s expansion formula [B96, 2.3.2.2]

Z <k> ((F x f)“('ry)){j} ®a§j>v
as (f x f)! is an m-PD-morphism by [B96, 2.1.4],

where 7v = Ty1 ... Ty,4y, Ty = 1®ly; —ty; ®1 in the sheaf 'Py/k (m) Of the principal parts
of level m and of order |k| of Y over k, if (tys,...,tva, ) is a local coordinate on Y, and

(f % N¥rv) T = (F x PV 1((f x H v y™)

if j = p™g + r with ~ the PD-structure on Py/k (m) [B96, 1.3.5.1]. One thus obtains a
functor Vm € N
f* : ae(DFY) = qe(DFY).
In particular, f* (Dg,m)) carries a structure of ('Dg{m), f‘l’Dé,m))-bimodule, denoted D}"_ﬂ)
Then . -
* m —
' f* 2 DI @ a7

If m’ € [m, 00|, the morphism f*(ppmrm) : pim D(m) is compat1ble with the struc-
ture of (D™, f-1DIM)-, (DF), F-1DE™))-bimodules:

(1) ' DI x D™ x f1Dg D("‘)
pm',mxf‘(pm’.m)x‘f_l(l’m’ '")1 0 l‘f (Pmt m)
D(m) x D(m) x f-ID,(xm') D(’:‘:)_
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If g: Y — Z is another morphism of smooth k-varieties, from [B00, 2.1.1]

(gof)' = f og"

(2.5) Direct 1mage Keep the notations of (2.4). Vm € N, denote the category of quasi-
coherent right D- (resp. DI™.) modules by qc’g‘('D(m)) (resp. qc™®(D (m))) We define
the direct image functor ffjm) : g (DY) — g (DY ™) for right modules as in [HSS,
3.1] by

f +m) = f+(? @y D(":,)),

using the structure of right f ‘1D§,m)-module on D}"f} [B0O, 2.1.3]. If wx is the dualizing

sheaf on X, wy is equipped with a structure of right D&°°)—module, and hence of right
Dgn)-module for each m via pn, and defines an equivalence of categories [B00, 1.2.7]

__wx®x? '
qc(D (m)) qc® ('D(m))

T®xwx

Then we define the direct image functor [ ;f (m) ° qc(D&"‘)) — q¢(D™), as in [H88, 7.1], to
be

0
/f - (7 @y wil) o f18, o (Wx®x?).

Alternatively, f*(Dy ®y wy') is equipped with two isomorphic natural structures of left
(f~1 DM, DYY)-modules [BOO, 3.4.1), and defines a (f~'D{™, DYY)-bimodule DY =
wx ®x f*(DI™ @y wyl). One has as in [H88, 7.1]

0
-/f‘ ~ f, (D;@@Dgn) ?).

J(m)
.
/ ~ f,.
fi(m)
m')

If m' € [m, 0], the morphism wx ®x f*(pm:.m Qy wy) : D}"j_) — Dfu__
with the structure of (f D™, D)., (f -1D§,"">, D™))-bimodules:

In case f is an open immersion,

is compatible

- )
(1) F8Y x DY x DY Dy
f"l(pmum)x(wx®.\'f‘(pmr,m®yw§;1))XPmI,ml O 1wx®xf‘(ﬂm'.m®1’w§1)

FD0) x DT x DY) D,

If g: Y — Z is another morphism of smooth k-varieties,

0 0 0
Jor™ hi
gofi(m) g(m)  Jfy(m)
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In the derived category we set

| =REOREGD  Dae(DF) — Dae),
fim .

(2.6) Ym € N, put ﬁfxm) = im(pm) = M"dok,”“l (Ox,0x). Haastert [H88] denoted 15_(,}")

by Dxm+1, and defined the direct image functor with respect to DY and D™ for each
m € N by '

M (DY @pem M) with DY = wy x f*(Dy" @y wih),

0
which we will denote by f?.,(m) : qo(DP) — qe(DE™), denoted in [H88) by / . There
fim+1

is an isomorphism of (1D, DE))-bimodules
(09) . T3y P
m

to yield [H88, 7.1]
0

.70
=~ lim [ 7 ) qc(Dg?’)) — qc(D§,°°)).
f’(m) m

Vm € N, 'Z_)S,"L) is locally free as right D{™-module [H88, 1.2}, and hence 'f)g,j'i) is flat over

0
D). 1t follows that all fg’(m) and / are left exact. Put for simplicity

(00)
/0 /0
s (o0)

0
To relate. / to [ g’(m), we have
f'(m)

Proposition: YmeN, -

0
- —0 — -—
) © pm /f o T D) = ()

0 0 0
In particular, lim / ~ / = / on qc(D&“’)).
m 1(m) 9(°°) f

Proof: Consider a natural morphism

ey
D§fm Bppm) ff mM=—m e e - > f'},(m)M
ll !
ﬁg,m) ®'D§,"') I (D‘(f’.n.) ®'D&"" M) o fe (ﬁ("B ®15§") M)

~| |~

Dy ®pem fol(wx @510y FHDE @y wil)) ®p M} — fu{ (wx ®;-10, FYD @y wil)) ® 0 M}

51286, 0b@m 61-(a®6,®b®m),
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which is well-defined by (2.5.1). To see it invertible, the question being local, we may
assume Y is affine. Using an affine open cover, we may also assume X is affine. Then (1)
reads as

ﬁg,m) ®D§(m) f+{(Ox ®f-10, fnl(D§’m) Ry w}_’l)) ®‘D&'.") M} -
1 {(Ox @10, FHDLY @y wil)) ®p¢m M}

via
H®a®&EH®M 8- (a®5H®mM) =a®8(45)®m

with inverse 5, ® a®1®m — a ® 8, ® m.

It follows in the limit that

0 o
~ lim jo ~ lim{@g,m) &y (m) }
/f,(oo) S M TS v Jrmy

0
o~ (l_igaz_)g/m ) ®(1 wD{™) (hm/f( )) by [BA, I1.6.7 Prop.12]

m

0
~ D) g ® e (hm

fi(m)
0
f,('n)

(2.7) Kashiwara’s equivalence [Kas70]: Vm € N, after the functor
Frtmy = Mod(F D)D), £717) : qo®(DYY) — e (DY)
in [H88], define a functor
Py = Mod(FHDE) (DY), £712) : qe™® (DY) — qe™ (D).
As in [H88, 8.12]: '
(?@x W) © frgmy © (wr@y ) = (FDE”) Mod (DT, £717) : qe(DY™) — ae(BFY),
which we denote by f(m), one obtains k
(? @x wx') © ffy my © (wr® 1) = (F DY) Mod(D2, £77) - qe(Dy) — ae(DFY),

which we will denote by f(*;n).

Assume in the rest of §2 that f is a closed immersion defined by an ideal sheaf Ty of
Oy. Vm € N, let qc'¥ (D ) be the full subcategory of qc'gt(’D ) consisting of those
M with supp(M) C X. Ym € N, let I[m] = {a?" | a € Ix} and let qc{it(mm](ﬁ,(,m)) be
the full subcategory of qc™8(D{™) consisting of those M annihilated by I;"Hl. Define
likewise qepximsn; (DY) and qey (DY) for left modules.
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0

As f is a closed immersion, all ]2,(,,,,), / ,m € N, are exact, so that we may suppress
film) - .
0 from those.

Theorem [H88]: (i) Vm € N, frgt (m) 18 Tight adjoint to f¥ ., and hence taking direct
limit, f* gt (c0) 1S right adjoint to f:5; +(00)"
(i) Vm € N, fit,, is right adjoint to [ #(m)» and hence taking direct limit, fty is right

adjoint to .
f /(o)

(ili) There are categorical equivalences

T 1.m) _
qc(Dg{")) QCix(m+1)) (D(ym)) VYm € N,
Tim)
and hence also
(D) qex (DY),

oo

(2.8) In the limit lim / o / Kashiwara’s equivalence holds by (2.7). At each m € N,

\(m)
however, / fails to induce an equivalence.
fi(m)

Proposition: Let m € N.

(i) Each ) 18 Tight adjoint to fffzm) ; hence also each f(fn) is right adjoint to /

s £(m)

(i) VL € qc®(DE™) \ 0, unless f is invertible, the adjunction
L= fm © Friim (£)
is not epic; hence also the adjunction

LOx wx' = (fm© (m))(ﬁ) ®x wi' |
={(?®x wx') o fif (m) © (Wy®y 7) 0 (7 @y wy') o 15 © (wx®x NHL ®x wy')

~fhye [ (C@xwz)
fi(m)

s not epic.

Proof: The arguments are the same as in [K?]. To illustrate, consider for example the

- case Y = Spec(kz,y]), X = Spec(k|z,y]/(y)). Put A =Kklz,y], 4 = k|z] ~ k{z,]/(¥)
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D™(4) = T(Y,D4V) = ], jen A0S0, DIV(A) = T(X,DF) = [[en A0S, and
D(m) (X D(m)) ,

If L is a left D™ (A)-module, the last adjunction reads as

A >R 7

ModD(’")(A)(D}"_‘,), L ®pemiy DI™)

Mod D™ (A) (A®4 D(I':)(A) L ®pmy( ,4) D f_,)

Mod4(A, L gp(m)(ﬁ) Df_.)
Annr,e.‘(ui:kaf”)(y)

N l
(@1 * {ve L& (Lenkds™) | vy =0},

where the structure of left D(™(A)-module on ModD™)(A) (Df__,,L ® pim)(4) D?:)) is
given by

6-(£®7) =L®((*5)?) with *é the adjoint of 6,

®pemy(4) is taken with respect to the structure of right D™ (A)-module on L such that
£.8=(*6)¢. Now

f ®a<z>)y Y] ® Z {J}6<J>( )3y<i——j>

J<i

—"@Z{ } () ¥ ()8 > with j = pMg+ 1,7 € [0,p™]

3<i
co (s + {1}
= {;}Z@ 8?‘“ asy=0in A

_ f@@;i_b fl<i<pm—-1
0 if, eg., i = p™*L.

t

Thus £ ® By<pm+1> € AnnL@:x(U,-eu kag>) (¥)-

On the other hand, as D™ (A H” ; AGS™859>, the adjunction for D(™(A)-
module reads

L— Annmk(u?::’—l kaf»)(y) ~L

3° Verma modules

(3.1) Back to the set up of §1, let B, = BtwB/B with B* the Borel subgroup opposite
to B, and k,, : B, — B. We will abbreviate Dg") as D™, ¥m e N, pim +_ is locally
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, (¢
free as right Dgz)-module. Then, as k,, is affine, / = Kun (DS:Z_®D§;,,) ?) is exact on
kw,(m) w
: 0
qc(Dg:)), so that we may write / for /
kw,(m) kw,(m)

If B, is the closure of B,, in B, 9B, := B, \ By, and if £(w) is the length of w, one has
[K98, 4.1] as in characteristic 0

(1) Rlg; /08, =~ /k ( )°L(k.‘u)[—f(w)] : DY(qe(D)) — D¥(qe(D'));
Vi € N, 3 isomorphism of B*-equivariant D(®)-modules
. OB.,, ifi= Z('w)
(2) H’B:/BB,,, (OB) = kw
0 otherwise;

and Vj € N, 3 isomorphism of Dist(G) — B*-modules

i J ~ By B ’
(3) H (B, HTS:/BBW(OB)) - {0 otherwise.

YA € A ~ GrpSch(B,GL;), let ky be the 1-dimensional B-module defined by A
and put A, (M) = Dist(G) ®pist(s) ka. If M is a T-module, we will denote by ch M =
> sea dim(M,)e(X) the formal character of M in the group ring Z[A] = [ [, Ze()) of A.

Proposition: Let A € A and L()) the invertible Og-module induced by ).

(i) [K90, 3.1): There is an isomorphism of Dist(G) — T-modules
HY, (B, £(N) = Aun(—A)",
where the RHS is the weight-space-wise dual of Aeo(—X).

1

(ii) (K90, 3.2]: ch HEY(B, L(\)) = ch A(—w e \)* =e(we )) [] T=e(=a)

a€Rt

(i) [K90, 3.2]: If s is a simple reflexion in W and if v € A, there is an isomorphism
of Dist(G)-modules Hy (B, L(\)) ~ H} (B, L(v)) iff A\=se A =v.

(iv) Bggvad [Bg02]: H{%’}ww(os) is coherent over D),

(v) Assume p > 2(h—1). ¥m € N, H%(;-"/)BBW(OB) is not coherent over D™ under
pm : D™ — D) In particular, » )0)51 ~ k1.Op, ~ ’)-{%/351(03) is not coherent
e (m
over D™,

Proof: (v) We have only to show that Hlé—;"/)w (Og) is not of finite type over D™, For

that, as D™ is a D©@-module of finite type, it is enough to verify that H%%”/)as,., (Op) is -



" not coherent over D@, Just suppose H'g(w/)aB (Op) is coherent over D©. Then by the
BMR derived equivalence
D*(U’modo) 3 RI(B,HyY), . (Op))

~ Hl(w)( B,0g) as He(w/)as (Op) is (B, 7)-acyclic by (3).

It then follows from [BMR, 3.1.6] thatH")(B, O) € U’mod,. Moreover, asHg"). . (Os)

is a DO-module, Hy (B, O5) ~ I'(B, st/)azs (Og)) is a Us-module: under the morphism

(1.3.1) one has

I(V(Zs), Ov(zy)) 7 k[ff]
(B, T(TB)) o kiﬂ]
S(Dery(Og)) S(g)-

S(g°P —action on Og)
Then H* (B, 0s) would be a Ug-module of finite type while HS*)(B, Op) is infinite

dimensional by (ii), absurd.

(3.2) Let m € N. Vw € W, let T,, be the ideal sheaf of Op, defining w and let O(m) (w) =
Oz, / (Z&) be the direct i image of the structure sheaf of the m-th Frobenius neighbourhood
of win B,,. Put

zw,(m) = ﬁ(m) Qpim) / ) O(mH)( )7
kw,(m

Gm = ker(Ft™ : G — G'™) (resp By, = ker(FY" : B — B™)) the m-th Frobenius kernel
of G (resp. B), ¥B,, = wB,w™!, and

Am(W) = DlSt(Gm) ®Dist('”Bm) kw00~(pm~1)(p+'wp)-

Thus the formal character of A, (w) is

ch Ap(w) = e(w o 0) H

acRt

1-e(-pma) -
1-e(—a)
Theorem: Letm € N.
(i) Zw,m) is T(B, 7)-acyclic.

(ii) 3 isomorphism of Gpmy1T-modules

RT(B, Zy,(m)) = Amtr(w).

(ii) Zu,(m) is irreducible over D™ with support {wB}.
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(iv) Recall from (82.2.i1) that Z(D™) is locally a polynomial algebra over Oguntr) in
oF > i e [1,N], N = |R*|. Accordingly, there is a natural morphism of schemes
f : Spec(Z(D™)) — B+ Let f : (Spec(Z(D™)), Ogpecezipimyy) — (BMHY, Z(DM))
be the induced morphism of ringed spaces. Then Z, ., 15 a unique simple D™ _module
of support {wB} and supported by Spec(Z(D™)/K,,) in Spec(Z(D™)) through f, i.e.,
supp(f*(Zuwm)) € Spec(Z(D(m))/)Cm).

(v) Ifp > 2(h—1), under the BMR derived equivalence 3 isomorphism in D¥(Coh(D®))
Zw,(O) jad D(O) ®%o A](’U))

Proof: One can show (i)-(iii) and (v) just as in [K?): by (2.6)

B™ @ /k O+ (w) = T, OGO (w).

(iv) Let £ be a simple D™)-module of support {wB} such that supp(f*(Zwm)) C
Spec(Z(D™)/K,,). Consider the adjunction £ — juuig (L) = jus(Lla, ). On Qy it is
invertible: L], = {jw+(Lloy)} o, while on Qy, y € W\ {w},

T,L) < [[£:=0 aswB¢Qy,

z€8Yy

likewise ['(£2y, jus(£Lla,,)) = T(Qy N, £) < [l eq, £z = 0. It follows that the adjunction
is an isomorphism of D™-modules £ =~ jy.(L]q, ). It thus sfices to show

Llg, = J,, O+ (w).

By the irreducibility of £ one must have L|q, irreducible over D‘(-Z:). Put for simplicity
L =T(Q, L), D =T(Q,, D). If A =T(Qy,Op) and N = |R*|, by (2.2.ii)

Z(D) = AmHI[a™> | e [1, N]).

Write L ~ D/I for some maximal ideal I of D. As D is free over Z(D) of finite rank by
(2.3.2), L is of finite type over Z(D). Then by [BC, 11.4.4 Prop.17]

SUDPDspecz(py) (L) = V(Anngp)(L)).

Consequently, Vi € [1,N], 3n; € N : (857" >)™L = 0. Then, in fact, 87" L =0
already. For put § = 6,-<”m+l>. 1t is enough to show 6D C I. Otherwise by the maximality

of I
D=1+Dé asD§=4D, d being central in D.

Thus 38, € D, 8, € I such that 1 =, + 6,6. Then §™~! = 1§, + 6™ € T as 6™ € I.
It would then follow that §"—2 = §"~2§; 4 §,6™~! € I. Repeat to get 1 € I, absurd. It
follows that L admits a structure of D-module with D = I'(,,, D'™).

On the other hand, by Cartier-Chase-Smith [H87] D is Morita equivalent to A(™+1),
Identify €, with A)Y with wB — 0, and write A = k[t] = k[t;,...,tn].



By the Nullstellensatz any irreducible k[t]-module is of the form k[¢]/(t1 — a1, ..., tx —
an), a; € k, nonisomorphic to each other. The corresponding D-module is k[t] ®Htl('"+”

(k(t]/(t = a))™+)). But
suppay (k(t] ®ugmeny (k[t]/(¢ — a))™*Y) = V(Annyy (k[t] Sugmen (k[t]/(t — a))™+1))
by [BC, loc. cit.]
CV((t—a™") aseach ™ — ™" = (t; — a;)"™*" annihilates
k(t] ®ypyemen (k[t]/(t — @)™+
=V((t-a))={(t-a)}

Consequently, we must have L = k{t] ®ypm+1 (K[t]/(t))™*), and hence by the unicity of

such .
Lo, =~ T, 08 (w),

as desired.
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