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We consider the following self-adjointed equation :
() =Py 0r=o,

where the coefficients Z(x) and ()(x) are analytic in the interval
e=x=0.

When G(x, y) is the Green function of equation (1), which satis-
fies the boundary conditions :

(L) Ma)=23( b)=o,
and when ['(x, ») is the Green function of the equation :
(2) qf(Jl/)E ¢(:|l) -+ )‘.,;l": o,

where 4 is a parameter, '(x, y) satisfies the same boundary conditions
(), and it is known that —(x, v) 25 the reciprocal kernel, consrder-
)}1.‘{)' G(x,v) as a kernel.  Generally, in order to find the Fredholm
determinant 2(2) of G(x, ), we must first find ['(x, ») by calculating
iterated kernels of Gz, v), and then from the formula

14
- S [, ¥)dxe= D' D)
drive it out, but the calculation is very complicated'.

If we denote by ¢{x;4) the integral of equation (2), correspond-
ing to A=A, with its first and second derivatives continuous in the

1. Vivanti-Schwank, lntegralgleichungen, 1927, pp. 203-204.
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interval a{e, 4), and satisfying the boundary conditions (1.), then ¢(xv ; 2;)
satisfies the following integral equation :

13
(3) ol s 1) =A Glaaelr s A
As to the boundary conditions (I.), we have

ola; )=¢(b; )=o0.

On the other hand, we know that the solutions of (3) can be obtained
when we substitute 4; for 4 in the linear function :

-
N - . P A <. t
2}(4:.4(3\'1 ------ ’ xh-—ly X, xh.+l: """ Xy J’I """ y ,’,Vr 3 A) H
s

where the -coefficients ¢/ are arbitrary and » is the rank of the
characteristic constant. ~ But from the definition of the function
My, Koy y X} Vi Vayereess ) 7.3 ), we see at once that for any given
value of x in the interval, ¢(x ;1) becomes an integral function of Z,
and depends only on the kernel G{x,»), the constant 4, the rank »
and ¢/.

Suppose that ¢(é;2) (or ¢(@;A)) involves A explicitly and that it
does not vanish identically for 4, then ¢(4;2) is an integral function
of 4, and clearly one of its zeros is 4. If we now give the one deter-
minate value 7 throughout the ranks of the characteristic constants

Aty Aoy Rypvennn R S , and one pair of values of ¢/, the solutions of (3)
depend only on 4; then the zeros of the integral function ¢(4;4) are
A1, Aay Agyenienes Augeinens .

As the differential equation (2) has at most two independent solutions,

we have »=2; accordingly we can conclude that whken all the charac-

teristtc constants have always the same rank 2, for the suitable chowe

of two constants ¢y, ¢, the seros of ¢(b; ) will be dentical with those

of the determinant DQR) wnder the exclusion of thew multeplictees.
Now we have seen that the series:

(4) E”I._,“

converges absolutely, and the determinant may be written as follows :

4o )~
(s) D{y=¢> 11(1 -4 )e‘x;;.
: el }‘h,

1. Vivanti-Schwank, loc. cit., pp. 97-107.
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By the absolute convergency of series (4), te tntegral function ¢(b; R)
s the function of the jfirst class with the rank 1, and thus the -
indext of @(b; ) o5 not greater than 2. But on the other hand, from
Hadamard’s theorem, we got

G(x“ RCIRRE o xn>;-</z‘%1\7"
= ’
Iy Vaseoanevneey Vo 1

where V is the maximum value of |G{x,r)| throughout the square
domain (e=x=6; a=y=b), and

G(ivl’ 4712, : .3,’:)5 l G(.ﬁ:‘,-, ;}'j) i ,

BT, 2y Fpeneni e

" Thus by observing the maximum absolute value of the coefficient of,
 in the expansion of d(xy,%s......s%p; Vi Vayererrns 4,5 4) in powers of
A, we obtain the conclusion that #he p-tndex of the nlcgral function
ob;2) &5 not smaller than 12, and ther¢fore the v-index is not
greater than 2.

From these results we have

, goo i 3
(6) o0 )= =),
fim o)

By equating (5) and (6), under the exclusion of multiplicities, we

have
() D@y=e? T o(552); b ; 0)=1.

Particularily, when the differential cquation (2) has one and only
one ntegral @o(x ; ), corrvesponding to every characteristic constant
=1, 2, 35.uu..)y Which satisfies owr conditions (L), then the rank of
A becomes 1, and accordingly tts multiplicity i also 1°.

Consequently, #f the tntegral function ¢(b;A) has the stmple zeros
ondy, the above formuda (7) will be as follows :

) ])()‘):eﬁ—"y)""")‘g.gp(& i 4),

/

where ¢”.9(6; 0)=1.

1. It is to be noticed that this number is quite different from the characteristic con-
stant ; see Vivanti-Schwank, loc. cit., p. 12,
2. QOur kernel Gla, 3) is symmetric.
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And moreover, when the following serics :

- 33 x5te(x; Aoy s A)
(8) 21 %

converges uniformly in the domain (ez=x=6;e==y=?0), where the
coefficients are so chosen that the system {xp(x;2)},0=1, 2, 3, cuunr..
is normalized, both integral functions will become functions of the
first .class with the rank o.

Consequently, we can conclude that zf serwes (8) s wneformdy
convergent, and cquation (2) has one and only onc integral, and if all
the seros of the mteeral function ¢(b;R) are stmple, then the equality
(7) well become

(7" D@)y= 2T (45 2),

where the determnand can be wrilten :

i o2 2
D)= 11(1 ~-—~>.
)‘Il.

=3
This results from the assumption :
(b ; 0)=o.

But if ¢(4;0)=0, we need a little modification.
We ought to replace the above stated integral function of ¢(é; 2)'
by ¢(é;2)/?" by choosing such a number 7 as

limM: 1.

o g™

Thus the equality (77) will become

Gy DW= ),

where £Xo)=1.
As applications we consider the following two cases.
I. We take the Bessel equation :

. 1
P(yy=a" +——ry=o0,
qar

where (L) : o) =3(1)=0,

1. Note that the function 2(2; ) in (¢ ; 1)/ M may not De-always an integral function of A
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[ M)
L
~I

then the Green function is

—1/xE log &
G(x, &)= for  a=£

—172€ log x

Hence P(=y"+—y+iy=o.

4xt 7

For the only solution of ¥(v)=o0, we take

By (7)
D)= ,.y>~+m_‘ e /7)’
where ¢(1;0)=1.
Now the series, corresponding to (8),
oy iE S L ) JE D)
i1 T 70)

converges uniformly in the square domain (o=x=1; o=§=1), hence

1)(;.):77<1 ~-§_)

tre=m 5

If we now rewrite the Bessel function /(1/7) into Weierstrass’ product-

formula, we have

0= (1=-2)

n=1 2
Comparing these, we have ¢g=»=o0, then
DA=](/L).
II.  Next we téxke
P(v)=y1"=o0,

where the boundary conditions (Z) are ¥(o)=x(1)=o0, then the Green
function is
&1 —x)
G(x, &)= for P
(1 —§)

Ience we have ¥(y)=1"+1y=o0.
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For the only solution of ¥(y)=o, we must take

siny/ 2. x
oy )= A
¢l 2) v

. siny/A _
3\\he1e g&(I,O)-—-}\lI;l oy
Since

. /7

siny/4
(I ;). e,
ol =—"

from (7'), we have

3 g2
D)=e""T"" o1 ; ),
where all the zeros of 90(1 i A) are simple.
On the other hand, the series:

2 § sin wra . sin wimy

B3

,“'"‘: el P13

converges uniformly in the square domain {o==x=1 ; o=v=1), and
hence from (7'), we have

pq)‘.i_,.)_z sim/l

D=
) v

Thus, just as in example | above, we can casily conclude that

siny 2

D)= O.E.D.

In conclusion the author wishes to express his hearty thanks to
Prof. Toshiz6 Matsumoto for his kind encouragement and remarks
during the study. '



