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Introduction. We consider the following combinations of functions:

O O o | W T Y
(2) Glx, D=9, D4/, )= 9t 07, ),
() Rl D= Do D=2 7 x)9 2
(2) Ffx, )=/ (% 2+ (o, x)~2§}‘(x, -y, £,

where 4 means a constant parameter, independent of two real variables

x and », and functions f(x, ») and #(x, v) are continuous and finite
a=x=b

in the square-domain /0, which is defined in ( ), and more-

a=y=o
over it must be so chosen that they belong to two different kinds.!
Now we shall define following functional operations :

b
Syap=o() =] Alx, o),
(3) ’ ,
Siag =g (0) =2 AC, 2rg/ (D).

By substituting one into the other and repeating these operations, we
obtain 8 product-operations as follows :

1. G. Kowalewski, Determinantentheorie, 1925. pp. 261—265.
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Sy SHe=5r
S),.g'S)ij'Sv)ilv"
RYWAY MES AGH
S S3e=S1e
S;I.SMEAS}[;P
S:‘:y'SMES;\FI’
SarS1=S 7,

S S3 =S} 7

But in the present paper, we shall mostly discuss only the combi-
nations (1) and (2).

Before proceeding to the discussion, we must know the following
theorem, which will play an important role in this paper: ZZe
product of two Fredholin's determinants of fx, v) and #(x, y) is also
another Fredholnd's determinant of Flx, v), where

P, 3=/, 9)+o(x, )= fle, (0, ).

If we denote each Eredholm’s determinant of functions /, # and
F by DfA), Df2) and Dy(2) respectively, the above theorem will be-
come as follows:

(4) D)= D[A)Dy).

This is called the wwdtiplication theoren: of deterninants.

‘ Now from the above stated product-operations, it is easily known

that if .Sh¢=o0, then .5),r¢=0%and if .Sy’ =o, then S;¢'=0. Hence

in a word,

Yemma 1, When 2 &5 a characteristic constant of 9(x, ¥), then the

F 83 of solutions of Hx, v), belonging to 2, becomes tndependent

solutions of Fx, v), belonging to the same constant; and the F..S.

of assoctated solutions of f(x, ) becomes independent associated solu-

tions of Mz, ), belonging to the same constant as thot of flx, ¥).
1. When the constant 4, is a zero of Dy{4), and at the same

1. G. Kowalewski, loc. cit., p. 265.
and I. Fredholm, Sur une classe d’¢quations fonctionnelles, pp. 381—383.  Acta
Math. 1904. Tome 28.

2. Note that F(x, ) depends also on the constant A of f and %.

3. Ap abbreviation of Fundamental System.
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time, of DJ4) and D,2), and its multiplicity is respectively 7z, 2 and
715 for each of them, and its rank is respectively g, #, and p,, then
it is evident that from (4),

12==170y 70,
and from Lemma 1,
| p=max.pi, po)-
Hence let
p=pFr=patry;

and let the F. S. of solutions and associated solutions of #(x, ¥), belong-
ing to the characteristic constant 4, be respectively

G oy Panniii Py
and ;ﬁ—l, Por Parearrrneeanneineens gb—?l,

and each corresponding function of ¢(x, y) to above those of f(x, »),
be respectively

Py P2 Porevnniinessesiseieeens Ppy

and ;D_l, 9—02, S;:;, ..................... sﬁps¢

Thus when we find the solutions of the following eqtlation:
SKQF'S‘O =0
b
e gln)—A| 7w pre(ndr=o,

these solutions must satisfy either of the two following equations or
both :

Sz @=0
i e o(x)— ﬂoﬁfz(x, ») (»)dy=0
and SHfP=0
e A Ax, D90N=o,

b
where Hx)=¢(x)— A,j #(x, ¥)o(y)dr.
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By the conditions' for the existence of solutions of the Fredholm’s
integral equation of the second kind, we see ot once that if

b
j {odx)ypfx)dx=0" for j=1, 2,.ceccun.. , 7 =),

then any solution of /(x, ), belonging to 4, will become a linear
function of the following functions :

991,_ Doy Payrecnreriinsncniniones R 90?2
and (f)b ¢)2, ¢3, ..................... y (1)7,2,
i
where  gfe)=i(a) | 7w, DMy for j=1, 2

Pl Poyenvriininnn » Py, bl Poreennnennnnn. , 957,2.

If, for arbitrary constants ¢’s and ’s, the equation
13 13
Zc'i(bi'*" Zlitﬁﬂzz 0O,
Fal Tl

where fz=r,, A=p, is true, then from the construction of ¢, and ¢;
we obtain
I3

% k b
g}m‘ﬁs + izzldisﬂi - Zéil()jllgﬁ(x, NP v)dy—

=
b3 o 3
’”.gdzzns 7(x, .J’)Sﬂi(ﬂ’)lb{y = Zlc‘igf); =0,

This contradicts the independency of the ¢'s-system.

As the above result can be quite analogously applied to the as-
sociated solutions of /#(x, v), belonging to the constant 4, we can
conclude as follows :

Lemma 2. When p=pys+r., it follows that

b
(5) s‘u{gai(x)}gﬁj(x)dy:o for =1, 2,eeieunn.. ) P
and the I. S. of the solutions of Fx, ), belonging to A, will be

Ply Pareeeererannns @y Py o, s bro,

I. Vivanti-Schwank, Lineare Integralgleichungen, 1928. pp. 107-108.
2. This means that by giving one of ;s these equations exist for all 2’s.
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1]
where ¢j(x)=¢,-(x)—2..,S Hx, 1)y, Sfor j=1, 2, ... , o
Quste somilaridy, when p=p,+r, the cquations
13
(5" Sa{sb,:(x)}goj(x)dx:o, JOr J=I1, 2, 3eeeneenen 7 (=p),

are followed, and the F. S. of the assocrated solutions of Flx, )
becomes

97’1» Dayeenivninnnns , ¢?; T ) 4’,.1,
. - 13 —
where %(x):?sj(x)“iﬂg S (J', x)‘f’j(ﬂ’)flﬁ’ Jor J=1, 2, AT
"

The above results can also be applied to G(x, »), Z(x, v) and
Fl(“'v, .:")' .

2, Now denote each reciprocal kernel of Ax, 7), #{x, #) and
F(x, y) respectively by Ax, v; A), #(x, v; 2) and Fx, y; 4), then
these functions of 1 are meromorphic everywhere on the 2-plane under
the exclusion of the infinity point, and have poles to be the charac-
teristic constants of Ax, ¥), #(x, #) and Z{x, y). Ience we expand
these meromorphic functions of /1 into the Laurent’s series in the
neighbourhood of i=2, one of the poles; namely

oy D) L ales)
(%, v; %) Y .
+ oz, 1)+ Ro=Dbo(x, 1)+ .eiiiiinns

=Pp(x, y; N+Re(x, v; 2),

where Pr(x, ¥; 2) is the principal part and Ry(x, ¥; 1) the regular

o

part of the Laurent’s expansion of the reciprocal kernel A(x, v; 2),
corresponding to the characterisric constant A,
From the above equation, we have

Px, y; o)=F(x, ¥)
= Pplx, »)+Ru(x, »)
=fx, ¥)+7(x, »)
where Pilx, Vy=Pw(x, v; o) and Rz, =R (x, v; ‘0).

Now we wish to prove the following
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Theorem 1.

Sf(x ¥ ))a’y-——————S S, S?(x, v N,
272

where these ntegrals are taken along the closed curve (C) snvolving
the pole A=,

Before entering into the proof of the above theorem, we must
know the following: The residue of the reciprocal kernel of any
kernel is represented in the bilinear form by fundamental functions
with respect to the characteristic constant.' '

By taking the residues of reciprocal kernels A(x, v; 2), Ax, v; 2)
and g(x, »; 2), we obtain the equality :

w [€))
(d)) (I’l(xy J/> :(11(.?\7, jl> + [I'l(x> j’) + al’(x, .:ll))

o W
where functions @, @, are the coefficients of 1/(3—4) in the Laurent’s

expansions of reciprocal kernels Alx, y; 4) and #(x, v; 2) respectively,

but #' is an unknown term.

w )
And st1]1 (71, a, and @, can be together written by the biorthogonal

and normalized systems in the following bilinear forms :

k4

a(, 2)= () i)
=1

ﬂx(ﬂ )= }_a,,(x) ﬁh(q')

fo==1
m(?», ¥)= Zﬂh(%) ﬁh( ),
h=1
where
o V=33
(a/n AB') = fOl'
1 h=1
o o fi=2
(ah, ﬁ,) = for
I /l‘— 4
_ - o e
(a, Bi)= for
1 =1z,

1. Bryon Heywood, Sur ’équation fonctionuelle de Fredholm, Jordan Journ., 1908. pp.
300-—307.
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~1

and 72, w, and ., mean respectively the multiplicity of the charac-
teristic constant 4, of each kernel /7, f and <.

On the other hand, the solutions and associated solutions, belong-
ing to the constant 4, of each kernel 7 / and ¢ are always respectively
represented in the linear function by the two following systems :

{a,}, {Z;,}, {7;,} (1=1, 2, 3reereeeres )
and {Buy, {Ba), {E} (=1, 2, 3yeeeeeerns ).

Hence, when we write cach F. S. of the solutions and associated
solutions belonging to the constant 2, as follows :

(6) xz-(x)=§_:Cf,,fl,,(x) for =1, 2, 3,ueeereenn D
and

(67 Z(x):%ahﬁh(x) for /=1, 2, Jrreesnenes , D,
then from T.emma 1 we can obtain the equalities :
) t{x)=¢lx) for 7=1, 2, 3,.eceeu... ,752‘
and rx)=¢{x) for /=1, 2, 3yererer.. , Pre

On the other hand, just as in the case of the above functions y.(x),
y{x) we have

o x)=linear function of o's
¢ x)=linear function of F's,

and by applying orthogonal relations (5) and (5/) in Lemma 2 to (6)
and (6'),

D=1, 2, 3yeeeeencn. , 7y
Con=0 for

2T=T, 2, Jyeviennees sy Do
_ h=an+1, vt 2,. ... , 772
Cyp=0 for

TZ2T, 2, Bheeneenieennsiecens s P1

Thus from the above results and the equation =2+ 7w, we can
find the two following equations :

[€2) ‘7’71 —
ax, ) =/Za,,,(x )-8 5)
e==1
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k23

@ . =
and a(x, 1)=2alx)B2)-

=41
Consequently, in view of the left-hand side of the cquality (¢)

a(x)= gemai{x) and E(oc) = Eie’ wif3i2).

Therefore we have

o Q=g

(a;’ ﬁi>220hi(ah ﬂ]) =€],j={ for
! 1 YA :]'.

Accordingly  ax)=a(x).

In a like manner we have

E:(x) = ;Q/,,(.X).

w &)
After all we can rewrite @, and @, in the following form:

o2 ’ 7 .
alz, )= a(x)Bi(»)

1=1

©)

e

(€]
a(x, )= m{x) ).
h=m +1

Now Iet us replace these results in the equality (¢), then by observing
=71+, We obtain
a'(x, y)=o. Q. E. D,
From the preceding Theorem 1, we have easily the following
Corollary Y. Zet A be the characteristic constant of Mx, v) and p be
its rank for F(x, v), g1 for Ax, v), p. for ¥(x, v), then the equation
P=pitpe

w2l necessarily follow. :

For, from the equality (8) any associated solution of Ax, »), be-
longing to the characteristic constant, is arranged for the linear func-
tion by the fundamental functions as follows :

By Borereereresnriiaennens B

and in the same way any solution of ¢(x, ¥) is represented in the
linear function by the following fundamental functions :
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a7’ll+ly aﬂzl_*_z,-..--.--.-..... ------

while (a;,3;)=o0 for 7==;; therefore the equations (5) and (5’) in Lemma
2 exist for all the functions ¢’s and ¢’s. IHence we have
Te=p 717 P,
accordingly DP=pt+ P
This corollary is true.

Now from the equalities (8) we obtain at once

13 1
>

w ) w «

a(x, Ha(t, vydi=\ ax, Dalt, v)dt=o.

a «
By recalling the preceding studies we discover that the existence of
the above equations is independent of the function A(x, #), and de-
pendent only on having the characteristic constant in common ; hence
we can conclude as a corollary as follows:
Corollary 2. When both kerncls fx, v) and g¢(x, ¥) have the same
characteristic constant A, the residues of therr reciprocal fernels al
the pole A=12 are orthogonal to cach other wn the fnterval (a, ).

As all the coefficients a{x, ), a(%, ¥)ieeeeeren... of every term
A=A =AD" . . in the Laurent’s expansion of #(x, »; 2)

are formed by bilinear functions® of the fundamental functions, cor-
responding to the constant 4,

Oy O3y Ugyiveseirsossvaonsonnnsy U0

ﬂl, ﬁz, [J’g,...............-.....,‘Bm;
moreover the results obtained for A(x, »; 1) hold good also for
Ax, v; 2 and ¢(x, »; A, so their corresponding principal parts
Plx, v; &) and PJfx, v; 2) can be represented by the following
fundamental functions :

A, Uayiennenoncannss seveeeen, &

‘Bl? ﬂg,..‘. ....... fvaeesnanae 5 ‘197”1,

and

eeee, @

Dy 1> gy qppressrvnnnseeenans .

1. Heywood, loc. cit.,, p. 300.
T. Lalesco, Introduction & la théorie des équations intégrales, 1912. p. 50.
2. Vivanti-Schwank, loc. cit.,, p. 134.
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B 1, By zresveseveneens cererens By

in the bilinear forms respectively.
~ Consequently the following relations :

13 13
(o) | 2w, 2 02 3 Dar= P, £ DPAL, 23 Dde=o

will exist; therefore we have
Corollary 3. When the characteristie constant &y s held e comwion
by both kernels fx, v) and 9(x, v), the relative parts' of thewr receprocal
kerncls flx, v 2) and #(x, v; }), corresponding to b, are orthogonal
to each other in the interval (a, 0).

Now let us consider the principal part of the Laurent’s expansion
of F(x, v; 2) in the neighbourhood of the 4, then we obtain at once
the following : '

Pz, v N=Pfx, v; D)+ Pfx, v; A).
Substitute A==0 in the above equality, then
(10) Pz, »)=LPlx, )+ Psx, 3);

while let i=o0 in equations (g), then we have
14 b
jpf(x, NP, _y)n’z‘zs Pox, DP(L, vdi=o.

Thus corresponding to Corollary 3, we have the following

Corollary 4.  Whien both kernels f(x, 3) and #(x, v) have the same
characteristic constant A 11 conmnon, the relative parts’ of these kernels,
corresponding to the characteristic constant A, are orthogonal to each
other wn the interval (a, b).

Remark: we must recall that functions Ax, ») and ¢(«x,y) ought to
be of different kinds as shown by the preceding foot-note. TFor in-
stance the following functions will be of the same kind,

Sz, ¥)=sin x-siny
g(x, ¥)=sin x-sin ¥+ sin 2x-sin 2v

interval (e, 0)=interval (—=z, +n),

I. 'We call the principal part of any reciprocal kernel at the pole N, tke relative part
of the weciprocal kernel, corresponding to the characteristic constant A, after HFeywood.

2. The function, produced by substituting =0 in the relative part of any reciprocal
kernel is called #he relative part of the original kernel corresponding to the same charac-
teristic constant ;.
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while on the other hand, the following are of different kinds,
A, y)=sin asiny
#{a, ¥)=cos x+Cos J.

Now we see immediately from (10) that the function Z(x, ) is
represented by the sum of two functions orthogonal to each other,
and hence under some hypothesis e chracteristic function of Pi(x, ¥)
may be a lincar function of the characteristic functions of P{x, )
wzd Pfax, »).

Also, we are familiar with the following : Zthe solutions of the equao-

frons
o) =4[ 7w, 3yel)ir=o
and g =h| A, 2pg()dr=o
become those nf the equations
ga(x) . anip v (x, J')'Sp(ﬂ')(?{ﬂ’zo
and 9’/(;\7)-2¢,S:PJ,-(3', x)(v)dy=o0 respectively.

Thus we can conclude that by a certan hypotieses the solutions of the
kernel F(x, v) may be written lincarly of the solutions of two kernels
Plx, v) and Pfx, v), belonging to the samec constant as that of
Hx, ), where Plx, v) and Pfx, v) are the relative parts of the
kernels f(x, ) and 3(x, v) respectively, corresponding to the same
constant.

Now from the independency of the system y’s in (6), the rank
of the following matrix of coefficients is % :

p
Oy Oyrnvtvereinessoannas , O, C{,ml—{-r, CI [ - RN Crecasenany CI,m \
Oy, Opevnvinnnvanaenas ey O, Cz,ml-f—l, C?., T4 2y eeneniiieonriariines y Cz,m
O, Oyrvceeercans sesenes, O, Cj)z,'m!—i-l, sz,ml—{—z, ........ ereas eenesy Cj)e,m
(/p 41,1, (/Jt—!—x 2.0a, C/) ~+ 1, 12y, (/{).,+I 7 A1, C[) R S S Cj)z-i-l‘m
\Cp,r, Cp,z, .......... fereseevreeienian wevedsnas Cerirracavansine eeaseaende N Cg),m ),

1. B. Heywood, loc. cit. pp. 290—291.
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On the other hand, from the independency of ¢'s the rank of the
matrix :

CI,mI-I—I, Cl,ml+2,.. ..... tereseorticarecttonanen oy Cr,m

Cz,ml—{-l, Cz,7711—-1-2,................ ...... deesenns , Cz,m

LR N R R F TN

F=1, 2, 3yeieennine. vy P
| Cyl#=0 for
J=a 1,04 2,0 ovny 772y P,
we will obtain
P2 72
am,—%-/z225’1"%%277“"7111+z' for /.l:I, 2, 3y-evienien , pg.
FE=-3 § =y 1

Quite similarily we have

¢=lincar function of (wm,..........s,, )

for 7=1,2, 3,.cceuins, Py,

where the rank of the matrix of coefficients is p;, therefore

a;=linear function of (¢;, ¢,...... s Py s Gy e Gy
1
for =1, 2, 3,.ueen.. ereeenn , Die

Substitute these above results in the expression of the function x,(x),
then

(Im) ¥{x)=1linear function of
(1, Payeevrnnnns, B3 Prrvevessinns Pp 3 Gp qpy Gy foyernneees
ey Oy By s ety

for /=1, 2, 3,......, p.
We can obtain the same result for the functions y/(x) as for
yx) =1, 2, 3yeeeeriinnn. , P

Therefore if two reciprocal kernels f{x, »; ) and ¢(x, v; 1) have
the simple pole at A=2, at the same time, the multiplicity of the
characteristic constant 4, will be coincident with its rank; namely

n=p, and 7y=ps.

In conclusion we have the following
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Theorem 2. If the reciprocal kernels of Rx, v) and #(x, y) have the
sunple pole at A=h at the same time, the eigen-function of F(x, )
which belongs to the characteristic constant k will be writen linearly
by the independent ergen-functions. corvesponding o lhe same charac-
feristic constant k of the kernels f(x, v) and #(x, ), where

Az, )=z, y)+9(x, J')—I(J:f(x, )¢, y)dt.

The saine result os applicable also to the associaled ergen-function of
the kernel F(x, ).

But it is evident that a pole of the reciprocal kernel of any
symmetric kernel is simple', so that there exists the following
Corollary 1. If both kernels fx, v) and #(x, y) are symanetric, the
etgen-functions of Fx, v) which belong to the characteristic constant
Ay well represent linear fusictions with respect fo the ergen-functions
of the kernels f(x, v) and #(x, v), belonging to the same constant .
And the same can be said also for the associated eigen-functions of
Az, y)

On the other hand, in order that the reciprocal kernel may have
the simple pole at 1==2,” it is necessary and sufficient that no associated
eigen-function of the original kernel becomes orthogonal to any eigen-
function, belonging to the same charateristic constant 4, Hence we
may rewrite the above corollary 1 as the following
Corollary 2. When no associaled solution ts orthogonal to any cigen-
Sunction of the kernel fx, y), belonging to the same characteristic
constant d, and simdarly for the kernel ¥(x, v), then the ergen-finction
of the kernel Flx, v) which belongs to the constant can be cxpressed
lnearly by crgen-functions of kernels fx, v) and ¢(x, v), belonging
lo the saimne constant A,

Now if the pole of the relative part of the reciprocal kernel
(%, y; A), corresponding to the constant 4, be only simple, we shall
have

[€p) @ .
alz, v)=—alx, v) for =2, 3,...,¢;

accordingly the coefficients of (4, —4)%, /=2, 3,...... ,¢ must cancel
out each other.

1. Vivanti-Schwank, loc. cit.,, p. 148.
2, Vivanti-Schwank, loc. cit, p. 144. °
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o @
Again, as those coefficients @;, @, are always the linear functions of

a's, B’s, so we have

alie, )= ZEJnfo(x) Bu(2)

1 =1

m(x y)= Z‘E,,,a,( x)Bul )

Iy he=wn1,+
L2, 3yennrenneenes L
Therefore
IIZ V22
>_fy. a;(x)Bi( )+ S Enafx) Bl y)=
Jyh=1 Frh=m 41

Multiply both sides of the above equality by F.») (2=m2) and integ-
rate with respect to y from a to 4: '

.Ej/{(.lj(.%) =0.
since
b 1, 7.: /Z
[prad= "
@ o, /=i
Consequently Lp=o,

quite in the same way, £;=o, for all the values of j, /.
Therefore we have

w
afx, y)=o0 and a(x y)=o0

This shows that if the reciprocal kernel #(x, v; 2) has the simple
pole at A=4, both reciprocal kernels Ax, ¥; 4) and ¢(x, ¥; 1) neces-
sarily have also simple poles at the same point 4. Thus we can
rewrite the above theorem 2 and corollary as follows :

Theorem 3. When the reciprocal kernel of F(x, v) has the sinple
pole at A=A, the eigen-function and associated function of F{x, v)
can be written i Linear functions of the corresponding ergen- and
associated eigen-functions of kernels flx, v) and 9(x, v) respectively,
belonging lo the same characteristic constant .

Corollary 1. If a kernel Flx, ¥) be symmetric, the eigen- and as-
soctated ergen-function will become a linear function of those of
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kernels f(x, v) and ¢(x, v) respectively, corresponding to the same
characteristic constant A.

Corollary 2. If 70 associated solution s orthogonal to any ergen-
Sunction of the kerncl F(x, ), the cigen- and assocrated cigern-functions
of Fx, v) will be lincar functions of the corresponding eigen- and
associated eigen-functions of kernels fx, v) and g(x, v) respectively,
belonging to the same constant A,

3. From Lemma 2 and corollary 1 to Theorem 1 in the preceding
sections, we know that two F.S.s of the characteristic functions and
associated functions of the kernel #{x, ¥), belonging to the characteristic
constant 4, are as follows:

Ol Porerenieninnninns S Pp Dl Py, , qSi)‘,
and Bty Pareeeernrnennenn. , ;/1;1 S Pl Purreiiiaiins , @,2,

Where g ) =) = b e, 0N

oi(x)=i{x)— loj:f(y, x)-@¥)dy respectively.

In the present instance, when we repeat the same process for
Glx, ¥ as for Fx, y), then we obtain the two following F.S.’s of
eigen-functions and associated eigen-functions of the kernel G(x, ¥):

(,,/1, (,"j;z, ............... N ¢,’;’1; Q/}, Tg, ............... R 11725,

2

’
1

P opi T T, ,

o

h A ) N 13
vhere g e)= w0 —a| A 2y wl)ar
— — b .
dlx)=¥ j(x)—l.,‘g #y, 2)TL{)dy respectively.
Now let us suppose the following permutability between two kernels
Az, v) and g(x, ): '
b b
| /G, 099(t, D)de=\ #(x. 7 ),
then from (1) and (2) we have
- Flx, v)=G(x, »).
Consequently, the above two corresponding systems of eigen-functions

must be coincident with each other, while the necessary and sufficient
conditions are

2 2s
b= A+ D B ns J=1, 2, 3peeeueenenen. , D1

k=1 fem=1
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and ¥, ZC,,, & +>_,DJ,L<7'),, D UU- T O , D2

Ah=1 f=1
Substitute the second equation in the first equation, then we obtain
ya
(l)- A—.AA]” //, +§_Js]h§0h+$ /'/J,, (ﬁ,n
=1 Je==1
for /=1,2,3,.cc0000unne. , P

P2
where &= > By Chs

Je==1
pid)
Die= >\ B D,
/l =1

and moreover By=D,=o0 for ~A=p.+1.
Now we consider the following determinant :

I— /4 D2yeecescrsncirsnionnnrencnscnnes , 71?1
=4.
771, I 7}23, .............................. s 02?1
--qj)ll’ —v?lz, ........................ ceseay 1 _vplpl

By applying the above relations, the determinant can be written as
follows :

d=determi. of|7;|=determi. | By [ determi. | D, .
Therefore let the rank of the determinant 4 be », then there will e\1st
(p,—7)-functional relations among the following functions : '

4)1, d)g, .............................. ’(i)ﬁ ;

1
namely one of (¢, $useenennnn. , ¢Z’r— ) is expressed linearly by the other
r-functions @, 4y Ppppa e Py
Hence we shall have
Theorem 4. When two kernels fx, v) and #(x, y) are pernuitable to
each other, and have the same charvacteristic constant, 1 order that
the eigen-function of the kernel Flx, v) may be represented by a
linear jfunction of cigen-functions of kerncls f(x, v) and 9(x, y), it
is necessary and sufficient that the above stated determinant 4 does
1ot varish.

In conclusion the author wishes to express his hearty thanks to
Professor Toshizd Matsumoto for his kind encouragement and remarks
during the study.



