A Brief Investigation on Zeros of Consecutive Functions defined by the Recurrence Formula

By

Tunezô Satô.

(Received June 4, 1934)

We consider a sequence of functions $\{F_n(x)\}$ which are defined by the following recurrence formula:

(1)
$$F_{n+1}(x) = A_n(x)F_n(x) + B_{n-1}(x)F_{n-1}(x), \quad n = 1, 2, 3, \dots, n$$

where two sequences of functions $\{A_n(x)\}$, $\{B_{n-t}(x)\}$, n=1,2,3,... are supposed to be given by such a way that their elements $A_n(x)$ and $B_n(x)$ are some analytical expressions of x and n.

Actually, however, sometimes $B_n(x)$ does not involve x, but n only, in the recurrence formula (1) which is satisfied by the sequence of functions $\{F_n(x)\}$ e. g. Legendre's, Tchebyscheff's, Hermite's, Laguerre's and Bessel's functions.

Therefore in this paper, we suppose $B_n(x) \equiv B_n$ independent of x. Now let

(2)
$$\Theta_n(x) = F_n(x) - \frac{dF_{n+1}}{dx} - F_{n+1}(x) - \frac{dF_n}{dx}$$
,

then regarding $\frac{dB_n}{dx}$ =0, from (1) we obtain

(3)
$$\Theta_n(x) = F_n^2(x) \frac{dA_n(x)}{dx} - B_{n-1} \cdot \Theta_{n-1}(x).$$

Substitute n-1, n-2,....., 2, 1 for n successively in the above result, then the Theorem 1 follows:

⁽¹⁾ For example, refer to the following: R. Conrant u. Hilbert, Methoden der Mathematischen Physik 1, 1924, pp. 66-79.

Theorem 1. When $\frac{dA_n(x)}{dx}$ holds the same sign for any x and n, and B_n for any n, if D_n be positive, then $\Theta_n(x)$ will hold the same sign for all n and x; where

$$D_n \equiv \frac{dA_n}{dx}/(-B_{n-1}) \div \Theta_0(x) \text{ and } \Theta_0(x) = F_0(x) \frac{dF_1}{dx} - F_1(x) \frac{dF_0}{dx}.$$

Next when we define a new sequence of functions $\{V_n(x)\}\$ by

(4)
$$F_n(x) = \frac{F_{n+1}(x)}{F_n(x)}, \quad n = 0, 1, 2, \dots,$$

from (2) we have

$$\frac{dV_n}{dx} = \frac{\theta_n(x)}{[F_n(x)]^2}.$$

Now if all the elements of $\{A_n(x)\}$ are given as regular functions, it is evident by (1) that regularities and singularities of each element of the functional sequence $\{F_n(x)\}$ depend only on those of $F_0(x)$ and $F_1(x)$. Therefore when we take $F_0(x)$, $F_1(x)$ regular in a certain interval, we can make all elements $F_n(x)$, $n=2,3,\ldots$ regular with respect to x.

Moreover these regularities exist in the product (Durchschnitt) of the existence-intervals of the functions $A_n(x)$, $n=1, 2, 3, \ldots, F_0(x)$, and $F_1(x)$, which is denoted by (I). If we denote the aggregation of zero-points of $F_n(x)$ in (I) by (E_n) and (I_n)=(I)-(E_n), then from (4) we can at once conclude that $V_n(x)$ is a regular function of x in (I_n) and also $\frac{dV_n}{dx}$. Accordingly, if $\frac{dV_n}{dx}$ holds the same sign throughout the interval (I_n), the function $V_n(x)$ will become monotone in (I_n).

Now if the first two Functions $F_0(x)$, $F_1(x)$ have no zero-point in common, no two consecutive functions of the functional sequence $\{F_n(x)\}$ have a common zero-point. For, let $F_{n+1}(\alpha) = F_n(\alpha) = 0$, then, since $B_{n-1} \neq 0$, from (1) we obtain $F_0(\alpha) = F_1(\alpha) = 0$.

Therefore from these results, if we denote the first zero¹ of $\mathcal{F}_n(x)$ in (I) by α_i , from (1) we have

$$V_n \binom{(n+1)}{\alpha_1} = 0$$
 and $\lim_{\substack{(n) \\ x \to \alpha_1 = 0}} V_n(x) = \pm \infty$.

I. We enumerate the zeros E_n , giving the order successively from the left.

$$(I)=(a, b)$$
 and

$$V_n(a) = \frac{dV_n}{dx} < 0^1$$

then clearly $a_1 \leq a_1$.

(see fig.)

In general we have

$$a_p < a_p$$

Consequently if $U_n(a)$ holds the same sign for any n, the inequality

$$T_n(a) = \frac{dT_n}{dx} < 0$$

will mean that for any x and n:

$$\varepsilon \Theta_n(x) < 0$$

where

$$\varepsilon = |T_n(\alpha)| \div T_n(\alpha).$$

By combining these results with Theorem 1, we can add the following to Theorem 1: Theorem 2. (i) when $\varepsilon < 0$, if $\frac{dA_n}{dx}$ is positive, the first zero of $F_n(x)$ will decrease as n increases to $+\infty$;

(ii) when $\varepsilon > 0$, if $\frac{dA_n}{dx}$ is negative, the same result exists also.

Application.

1. Legendre's functions $\{P_n(x)\}$:

In this case the recurrence formula is

^{1.} If $V_n(a) = 0$, the point a should be excluded from (I).

$$P_{n+1}(x) = \frac{2n+1}{n+1} x. P_n(x) - \frac{n}{n+1} P_{n-1}(x), \text{ where } P_0(x) = 1,$$

$$P_1(x) = x.$$

$$(I) = (-1, +1), \ A_n(x) = \frac{2n+1}{n+1} x, \ B_{n-1} = -\frac{n}{n+1}.$$

$$V_n(-1) = \frac{P_{n+1}(-1)}{P_n(-1)} = -1, \text{ i. e. } \epsilon < 0. \ \frac{dA_n}{dx} = \frac{2n+1}{n+1} > 0.$$

$$-B_{n-1} = \frac{n}{n+1} > 0. \ \theta_0(x) = 1 > 0.$$

Hence for all x and n, $D_n > 0$, then from the Theorem 2, (i) we have the conclusion that the first zero of $P_n(x)$ decreases as $n \to +\infty$.

2. Tschebyscheff's functions $\{T_n(x)\}$:

The recurrence formula is

$$T_{n+1}(x) = x \cdot T_n(x) - \frac{1}{4} T_{n-1}(x), \text{ where } T_0(x) = 1,$$

$$T_1(x) = \text{Cos}(\arccos x) \text{ i. e. } x.$$

$$(I) = (-1, +1). \quad A_n(x) = x. \quad B_{n-1} = -\frac{1}{4}. \quad \theta_0(x) = 1 > 0.$$

$$I'(-1) = \frac{T_{n+1}(-1)}{T_n(-1)} = \frac{\frac{1}{2^n} (-1)^{n+1}}{\frac{1}{2^{n-1}} (-1)^n} = -\frac{1}{2} \text{ i. e. } \varepsilon < 0.$$

Hence $D_n > 0$,

namely Theorem 2, (i) is applicable in the same way as above.

3. Hermite's functions $\{H_n(x)\}$:

The recurrence formula is

$$H_{n+1}(x) = 2x \cdot H_n(x) - 2n \cdot H_{n-1}(x)$$
, where $H_0(x) = 1$, $H_1(x) = 2x$.
 $(I) = (-\infty, +\infty)$. $A_n(x) = 2x$. $B_{n-1} = -2n$. $\lim_{x \to -\infty} V_n(x) \to -\infty$,

hence $\varepsilon < 0$.

Therefore in this case also Theorem 2, (i) is applicable.

4. Laguerre's functions $\{L_n(x)\}$:

The recurrence formula is

$$L_{n+1}(x) = (2n+1-x)L_n(x)-n^2.L_{n-1}(x)$$
, where $L_0(x)=1$, $L_1(x)=-x+1$.

$$(I) = (0, +\infty)$$
. $A_n(x) = 2n + 1 - x$. $B_{n-1} = -n^2$. $\theta_0(x) = -1 < 0$. $V_n(0) = \frac{(n+1)!}{n!}$ i. g. $\varepsilon > 0$. $\frac{dA_n}{dx} = -1 < 0$. $-B_{n-1} = n^2 > 0$.

Hence $D_n > 0$. Hence, although this case is a little different from the preceding three cases, Theorem 2, (ii) is applicable.

Now on the other hand it is well-known that all these functions as above stated are also the regular functions of such linear homogeneous differential equations of the second order as

$$\frac{d^2F_n}{dx^2} + a(x) \frac{dF_n}{dx} + \beta_n(x)F_n(x) = 0.$$

From this stand-point, Professor Toshizô Matumoto proves that if x_0 be a zero point of $F_n(x)$, when $\frac{\partial \beta_n}{\partial n} > 0$, we may conclude that x_0 decreases as $n \to +\infty$. In practice since β_n of each of $P_n(x)$, $T_n(x)$, $H_n(x)$ and $L_n(x)$ is respectively

$$-\frac{(n+1)(n+2)}{x^2-1} \quad (|x|<1); \quad \frac{(n+1)^2}{1-x^2} \quad (|x|<1);$$

$$2n \quad (-\infty < x < +\infty); \quad \frac{n}{x} \quad (o < x < +\infty), \quad \text{and clearly}$$

$$\frac{\partial \beta_n}{\partial x} > 0 \quad \text{in } (I),$$

this 'conclusion coincides well with our result.

In conclusion the author wishes to express his thanks to Professor Toshizô Matsumoto for his interest in this paper.

^{1.} T. Matsumoto, On the definition of functions by the recurrence formula......etc., These Memoirs A, 14, (1931) pp. 317-325.