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Introduction

§1. Recently S. Chandrasckhar,' in his investigation of>the equili-
brium of the slowly rotating and tidally distorted polytropes, made an
important extension to Emden’s researches on the polytropic gas
spheres. His works, however, are confined to rather small distortion
so that its higher order terms can be neglected.

From quite different point of view, the same problem has also
been discussed by Jeans® for the complete sequence of the geometry
of configurations for all range of distortion. According to his inves-
tigations, a gas sphere rotating as a rigid body can break up in two
distinct ways : either by fission into two detached masses as in a liguid
‘star; or by a process of equatorial hreak-up after a lenticular shape
as in the Roche model—according as the polytropic index 7 is less
or greater than 5/6. A similar result was obtained as for a gener-
alized Roche model consisting of a homogencous incompressible mass
of finite size and of finite density surrounded by an atmosphere of
negligible density. It was shown that the critical point occurs when
the ratio of the volume of the atmosphere to that of the nucleus is
of the value of about 1/3.

§2. Similar circumstances are found among non-rotating gaseous
models. The Roche model corresponds to the polytrope nz—=35 and
the liquid star to that of #z=o0. The central condensation is, however,
so pronounced for polytropes with larger indices that in the investigation

1. Chandrasekhar: M. N., 93 (1933) 390, 449, 402 and 539
2. The Probleur of Cosinogony and Stellar Dynamucs, p. 186
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of the equilibrium of their outer layers, their own gravitational attrac-
tion may be well neglected. Or in other words, in such cases, we
can determine approximate distribution of the density in the outer
regions as an extended Roche model, by taking only the attraction of
the nucleus into account and assuming an appropriate polytropic re-
lation between the pressure and the density. - At a certain boundary
the pressure and the pressure gradient must be continuous with those
of the nucleus which is in itself in mechanical equilibrium. Tor ex-
ample, the polytrope 7= 3 contains go percent of the mass within the
sphere of about half the radius and in this case the temperature 2z for
the present model will take the form

B 1 1
W=ty — 2 51‘(—““5 - —ﬁ“)
St

where —,&" is the mass within the sphere of radius §. The accuracy
of this approximation can be seen from the following short table.
If we take the boundary of

Distribution of Temperature .
Emden’s model as the place

£ u$,=4.0) | w}=69) | «(Emden) of continuation, the diver-
4.0 0.2049 0.2118 0.2049 gence from true values will
45 0.1561 0.1558 0.1553 gradually appear as we pro-
5.0 0.1134 0.IL10 O.I111 ceed inwards, but the ap-
6.0 0.0494 0.0439 0.0441 proximation seems to be
6.9 0.0079 0.0000 0.0000 most preferable at least for
7.1 0.0000 the outermost layers.

On the other hand, the
effect of the rotation or of the tidal force increases rapidly in these
regions where the density becomes insignificant. According to Chandra-
sekhar, for example, the level surface in a slowly rotating polytrope
is given by

1(€) +2{ (&) — dups(€) Pocos 0) } = coustant

and since the deviation of this surface from a sphere is small, the
oblateness ¢ will be easily found as follows:

~

ooo ——g(&) u

2

Taking the value of ¢u(§) from his paper, we find that the oblateness
at §=.,4.0 is about one fourth of that of the boundary surface.
Consequently we may infer that the deviation of inner leval surfaces
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from sphere is still small even when the rotation is so rapid that the
free surface begins to break up equatrially ; that is, in such cases,
although the solution of Chandrasekhar gives a good approximation
for inner regions, the configurations of outer layers will be represented
more preferably by the extended Roche model. Moreover, since in
this model the main difficultics met in the calculation of the gravita-
tional potential are eliminated and in actual applications the configura-
tions of outer layers of the polytrope =13 is of most interest, it will
be worth while to rediscuss the problem from this point of view and
to consider some applications.

§3. The problem is simple. Suppose that throughout the model
the total pressure 2 is related to the density p by means of the relation

4
P=Kp* (1)

and that it is subject to a finite uniform rotation or is tidally affected.
It is required to determine the equilibrium states of the outer layers
hy taking into account only the gravitational attraction of the nucleus
which is in turn in mechanical equilibrium. The level surface forming
the boundary of the nucleus is supposed to be ellipsoidal, and the
pressure and the pressure gradient in the two regions are made con-
tinuous on this surface.

In such a model, as is well known, if we introduce the variable
{7 defined by the equation,

¢=¢.U,
¢ being the total potential, the temperature, density, and pressure are
proportional to U, U7* and U respectively. It is convenient to mea-
e

sure the radius vector € by the standard unit ~/ “nGon where the
‘ ¢ c

sufix ¢ means their central values.

The Rotational Problem

S4. Assuming that the gravitational potential satisfies Poisson’s
equation in the nucleus and Laplace’s eguation in the outer regions,
the distribution of the total potential {/in the model star rotating with
a constant angular velocity o is governed by the differential equation

pU,=o— U} (2)
or

r*t,=uv, (3 )
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where 7 is ©*/znep,—according as the nuclear or the outer regions are
concerned. In the exact problem, equation (2) should be satisfied
throughout the star and formally the approximation by (3) will be
adequate when /% is small compared with 2.

The solution .of equation (2) will be given by

.00, &)=u(&) + v{ (&) + axs(§) Pocos 6)} (4)

if we neglect, following Chandrasekhar, the higher order terms in o
and reserve only the spheroidal terms. Here € is the colatitude, /2,
the Iegendre function of second order, @, a constant of integration,
and z, ¢, and ¢, satisfy the following equations:

I ad (. du .

A D

! i, . _
& dt ( dE >+3u'$j{u"1:0 (5)
S (T W S

& TJE \ & 7 >+—g2—+3u¢2._o, )

The first of these is Emden’s differential equation of index 3, and
“ associated Emden’s functions” ¢, and ¢, are numerically integrated
and tabulated by Chandrasekhar (doc. cit., p. 404).

The solution of equation (3) will be of the form,

M bs &
U= —Fte u[ = Pycos ) +—— 5 {1+ Pcos 0)}:1 (6)

where A/, &, and C are constants of integration to be determined by
the condition on the boundary level surface of the nucleus that {/; and
p U, should be continuous respectively with {7, and FU,. If we write
the cquation of the boundary in the form,

E=61+v{eyt e cos 0)}), (7)
thesce constants are found to be
M= M1+ vdM)
C=C(1+24C)
.gqgf-ﬁ)
(8)

ll

A/gb (&)

L,
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i
&= — '5:7;17‘%(51)

I 1

©TT6 TEan 4,

where we put
M= —§& !
Ci=wu+ €2l

3
A= {_‘;1““’“‘ by 1) - /! ‘r’ﬂ(g )}gl
E’ \ (9)
2 2.
C‘[A C: -_— ““;“M + E[¢(;/(El) + (I + 7/i, 51)9”(‘(51)

—~1
A=58 {o*‘fl +519' 1)/&”2/ 51)}

As already shown by Chandrasekhar, there is mass increase o374/
compared with the corresponding spherical star of equal central density.
The values of 4dM, a,, ¢ and e reduce to those given by him if we
take §,=6.90 where 2,=o0. '

The numerical values of these constants calculated for three cases
are summarized in the following table.

Table I
5 ; M, t AM c, AC a % D&t | @ L.
4.50 1974 | 538 —0.2834 12.68 —0718 | —282 ; 4.89 f 9.13
5.00 2.001 5.77 —0.2890 12.97 —0.721 —260| 680 | 1L.7
6.90 2,015 6.13 —0.2920 13.45 —0.Y23 —1.42 | 200 27.9

The meaning of the continuation at §=06.go is' somewhat ambigu-
ous in its original sense and it would scem that the solution 7, thus
obtained can not be applied to rapidly rotating stars. But it may be
taken for a limiting case or that which reduces to the solution of
Chandrasekhar when the rotation is slow.

§5. The second term in the equation of {/, will be ascribed to
the deformation of the nucleus but since |d,+ €| is less than unity
near the external boundary indicated by {/;==0 and 7 is about 0.004
even at the critical point as shown later, it may be safely neglected
compared with the first term so long as the outermost layers are con-
cerned. Thus we find for the equation of the external boundary
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M (¢ sin 0Y
7 = O
If we denote the equatorial and the polar radius by &, and &,, we have

. M( o 52>“

N A Ta -
11

£ o

Sp C

<

‘ oblateness ”’ ¢ may be written

& z

and since the

o=1— 5e = — 4C £,
we have again
V74
N (S (i1)a

and
. o ( M )2
(T(I"’O‘) —~—-“z‘a‘m C‘ . (12)

Here both A7 and C are functions of #, and therefore the values of
o, §p and &, can each be calculated by these equations. In particular,
when # is small, ¢ may be written

ME

0= — U =Ty N (13)

to the first order and depend on the ordinary Emden function alone.
The numerical value of g, is 40.8 for § =6.90, which is*a little smaller

than that of Chandrasekhar, ":3"83:4‘1.8. This is evidently because we

neglect the correction due to the deformation of the nucleus.
The radius of the non-rotating star is given by

2= T (14)
and since apparently

£,<6:<E,
there must be somewhere the radius §=§,, for which

L AC—AM
$in%lly = —— (15)

indifferently to .
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Finally the critical stage occurs when the rotation becomes rapid

and “‘H—Z;—" vanishes at the equator. This condition follows
Table II N AL
E—,
& 5 6, To Teritienl o
450 | 6.97 24°3 | 428 | 0.00383 or substituting this in (11),
5.00 6.92 24°.6 | 415 0.00397 we find
6.90 6.90 25%0 | 408 0.00405
§=
Fig. 1. Oblateness o
04 showing that the critical
oblateness is one third irres-
fzaso pective of the value of &, as
e 2::;’2 in the case of the ordinary
’ Roche model.
o The numerical values
of these characteristics are
- calculated for three values
ot Lhandsasefian. of & (Table II). Their mutu-
al divergence is not so great
a16° that the ambiguity owing
00 - v 7o o to the arbitrary selection of
51 will make much difference Fig. 2. Equatorial Elongation A,
in the actual applications.
In order to illustrate
the contrast with the solu- 54
tion of Chandrasekhar, T ¢ =50
plot in Fig. 1 and 2 the Bimese
oblateness o and the cqua- 0
torial elongation 4%,= ;
—1 against #, where the | 2%
lower straight lines corres-
pond to his solutions. The
divergence comes into ap-  of Caniriselbas,
pearance rapidly for o great-
er than o.oor, the oblateness rx10®
being about double of his *° ‘o 20 30 10
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value for the critical rotation. The variation &, with 2z is nearly con-
stant so that the critical equatorial elongation is practically independent
of & and is found to be about o.46.

§6. The arguments made in the proceeding article can be applied
to inner level surfaces if we replace C by C—{/, but here the effect
of the deformation of the nucleus graduvally becomes more significant
as we proceed inwards and it is safe to solve equation (6) directly.

The oblateness at & =4.50 and 5.00 is estimated by (7) to be about
0.05 and o.07 for critical rotation respectively, showing that the solu-
tion of Chandrasekhar, as expected, gives a good approximation for
inner regions even in the critical stage.

Above calculations all refer to the standard radius &, and since
the actual radius is quite arbitrary for the spherical polytrope =3,
we can say nothing about. the variation of the actual radius with the
rotation. It will be of some interest to convert p, inte the mean den-
sity p and to express the critical rotation by using the latter. The
volume I of the Roche model at the critical point, as well known,
is equal to

o 47
476} X 0.180373 ==&, x 1.68
J
so that
.o 1+ 434 Tieritieal
pP=" = 1.68

Here p, is the mean density of the corresponding spherical polytrope
and is equal to p,/54.36. © Hence we have for the critical rotation

10
_.Z_T;Z;T: 89.1 X Zeritical,

which becomes 0.341, 0.354 and 0.361 respectively for the above three
values of § and their mean value is practically the same as that
estimated by Jeans (op. cit., p. 206).

The Binary Problem

§7. We consider in this section the steady configurations of a
binary whose orbit is circular and for which the period of the rotation
is equal to that of the revolution. .

Take the centre of gravity of the primary, A7 as the origin of the
coordinate system, x-axis in the direction of the secondary, M and



Distorted Outer Layers of the Stars.

to
"O
o7

z-axis parallel to that of the revolution.  Then the direction cosines
of a radius vector are given by

A=cos ¢sinl, p=singsinf and v=cosf, (i6)

where ¢ is the colatitude and ¢ the longitude measured from a-axis.

The fundamental differential equations (2) and (3) to be satisfied
by the potential will remain unchanged in the present problem, but
here the rotation should be replaced by the revolution around the
centre of gravity of the system and it follows

o MM
, (17)

=2 5
where @ is the distance between the two bodies measured in the

=

27 (7P, @

standard unit.
Now their solutions will be cxpressed in the form

Up=wu+ 2’{‘/’(»(5) + (lg‘/"z(f)[)z(lf)} + ' $,(€) Po(2) (18)
M, b, & -
[]”:"E——i—?‘[ - Pov)+ ?{I‘PJ(V)}]+C

1

by i 3
+‘“E—Pz(7~)+ﬂ{/{ & —7“"_”;:“]32()‘)}: (“9)

so long as the effect of the deformation of the secondary can be neg-
lected and the boundary surface of the nucleus can be taken for an
ellipsoid. THere A7, is the mass of the nucleus and & mecans the dis-
tance from the centre of gravity of the secondary, viz

a 1 5
75?: (1—22p+p) i =1+ +7LA)+ ..., (20)

7 being §/a. ;

Constants of integration in (18) and (1g) can be determined, as
hefore, by the conditions on the boundary surface, which may be now
written

5251{1 +Z’€(\+ Z’Egp_z(v)—{"‘EIng(}\)}. (21)

But since the terms independent of 2 in these cquations are of the
same form as in the rotational problem, the values of 47, &, C, a,
& and & will be given by (8). The same process gives the other

three constants as follows:

e
—li= o § e - ) )
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M A M A J (22)
e,,/ T = Y (12, - 3 y
e a’ 51?/ 1 14 5['.’.(51)

where / is the same as given by (g).
Tt is convenient for the present problem to adopt §=6.90 as the
place of continuation and to introduce the following two parameters :

74
,‘.,,//,_:7 3

L 74

, 1( A ) 51.)'
TERE T T

The constants appearing in {/; will now become after some reduc-

(23)

tions
M
M= 1 — o' dM’
C 1
. o ALY v {2
a7 =g (1+740) (24)
1 v’ b by 20, , ,
3 o A T TR T TUES rToan
where
'(&
A/]f/:‘”:“—,_ ¢Oé l)——:().075 \l
I 1
3
AC’:J——- —@(21—)20 088. . J
3 &
Substituting these values in (19), we have
O 1 0.412 A &
W o T e _1(’,132(”)‘"3?",/)2()-)}+7’/ 3E7 {1 — Pyv)}
a7 1 1 i
+ ’W{T"(I —l—b;)} ——51—(1 +0.0882"). (25)

§8. The terms containing £7° in the right of the above equation
may be ascribed to the effect of the deformation of the nucleus.
However, since, near the external boundary indicated by {/;=o, they
are insignificant as compared with the first term, we neglect them in
the following discussions as in the rotational problem. Thus we ob-
tain for the free boundary ’

1 1 AN A
7 + —3—(1 +—ZIT>77“{ 1— Pv)} +W—{T*(I +Z’77)}
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1
= (1 +0.088¢") (26)
A

Now if we take ¢ and @ for the independent variables, the extreme
radii of the surface will be given by the conditions :
Oy ‘ 0
Ig =0 and oA T

or differentiating

sin#sin o' " —1)=o0

[(; + 'j;_;/-) 7 sin 0+—j3;[[—,(77’“:‘— 1) cos go]cos f=o,
which are satished by the fo]l‘owi ng four sets of equations
sin =0, cos 0=o0;
sing=o0, (1 -—;7/~3):( ;]]/[, 577 sin f; (38)
. cos =0, sinf=0;
cos 0=o0, 1—7 " *=o0.

The first set defines the maximum axis, lying in a-direction and

. T
the other three the minimum. In the diametrical plane (qo*—“-') the

minimum radius coincides with s-axis; but in the principal meridian
(p=0), such is not the case. In fact neglecting the higher order terms

in 7, we find for its direction

/][ . . a9
4457 jsin = ssin'f)y+...... , (29)
[Finally in the equatorial planes (0“%), it gives simply
I
cos ==, (30)

or combining this with the boundary equation (20),

- (31)

The boundary surface at the critical point is determined by the

1
+“;“'f=(1 +0.08

condition,
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.0
o

which follows indifferently to #

V.74 1—75 ) (1 —n.)

7T 1= -7y 7. (52)

By substituting (32) in (26), we can find the radius » of the corres-
ponding spherical star for different values of 477/47. The results are
collected in the following table.

Table III

Characteristics of the Equator at the Critical Point

a’ .
7 n N Nz Trvin Dmin

0.0 1.000 1.000 1.000 1.000

0.5 0.425 0.571 0.469 0.438 77°%4
1.0 0.367 0.500 0.400 0.374 79°.2
1.5 0.334 0.458 0.372 0.337 80°.3
2,0 0.310 0.429 0.347 0.312 81%.0
2.5 0.293 0.407 0.328 0.295 81°.3
3.0 0.279 0.389 0.314 0.280 82°.0
4.0 0.258 0.362 0.292 0.258 8206
5.0 0.242 0.341 0.274 0.242 83°.1
6.0 0.230 0.324 0.262 0.229 83°.4

The Phase Effect

§9. The stellar luminocity observed to the earth depends on the
shape of the external boundary and the distribution of the surface
brightness. In a binary star, the surface receives the radiation from
the secondary, superimposed on the ordinary radiation streanﬁng out
from the interior. The reflection effect is of the order of magnitude
of 7, and is maximum at ¢=o0 and minimum at ¢=n. The proper
radiation is proportional to the temperature gradient on the swrface;
and since the latter is larger as the radius is smaller, it tends to in-
crease the phase effect because of the deformation of the surface.
Therefore it gives the maximum luminocity when observed in quarature,
the contrast being greater if the limb-darkening is taken into account.
The order of magnitude of the deformation effect is 7*; but as its
coefficient is large, it becomes significant for close hinaries. In the
following we shall discuss the question more closely.

Tet 4, and /7, be the flow per unit cross section per sec. of the
ordinary and reflected radiation travelling in the direction « to the
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surface normal. Then the total luminocity observed in the direction
(00, 500) is

Z(b,, ¢0)= S(fr +7,) cos a A1, (33)

where 4/ is the surface clement, and the integration should be ex-
tended over the whole visible hemisphere. If we denote by f the angle
between the surface normal and the radius vector, #/ will be given by

cos Bd =7 sin 0d0dp (31)
and we have »

cos a= I+ mnn+ n (35)

cos =M+ pmrtvn, (36)
where (A, p, v), (4, m2, 22) and (A, 72, 1,) are the direction consines re-
spectively of the radius vector, the surface normal, and the line of sight.
Now represent the net flux through the boundary surface by n/#,.

Then the ordinary outward flow 7, for a darkened star will be

fim—t i+ s cosa), (37)

1+s

s being the coefficient of darkening. s can assume any value between
o (no darkening) and oo (complete darkening) but usually we may
take it to be unity. Naturally /A is not constant but can be calculated
if we suppose additionally that the star is in radiative equilibrinm so
that the net flux is proportional to —p{/,! Consequently we find
from (235) for its components

L Ha ( M\, MW [ =)y } \
7 AT\ a7 >’7’1’ a7 { R

- rdA _&/.// 3
SN AREIES R
, Fh { ar ( 7 )}
7 g T T\ )

where A, is a constant and can be determined by the following rela-
tion giving the total radiation 4/ emitted from the whole surface:

sz=\zar (30)

Further, since —p U/, is of the direction of the surface normal, it gives

1. von Zeipel: M. N, 84 (19z24) 665
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£, A, ; -,
I=~F5, m= ]j]‘—ly - and  n= f[: : (40)

Fh

Next we consider the reflected radiation. The subject has been
investigated by IEddington', Milne* and others. In a steady state, the
whole of incident radiation is necessarily re-emitted from the surface
but the retlected radiation will not be distributed uniformly in direction.
Milne derives the following formula for the law of reflection :

1Y 1
(cosy+— \cos at+~—
Ly=Fcosy t 27, (41)
cosy+cosu

where w/4 is the flux per unit cross section of radiation incident at
angle 7y to the surface normal and may be approximately given by

/

=, 42
, (42)

4/’ being the total radiation emitted by the secondary whose deforma-
tion and limb-darkening are neglected. The angle y will be given by

1
4
7
Equation (42) is valid while 7' is within the common inner tangent
cone to the two stars. Nevertheless, it can be used in further calcu-
lations with sufficient approximation since, outside the cone, the incident
radiation is small and decreasing rapidly in this region.

$10. As it is impossible to evaluate the integral (33) rigorously,
to procecd further we have to confine ourselves to some simplifications.

Accordingly we neglect here the higher order terms of distortion and
bra
consider only the case, 0":"‘;‘“» that is the line of sight being.in the

cos y=—(/—7 cos 3). (43)

equatorial plane.
Expanding 7 in powers of 7 we obtain from (26)
1
=gl — 00887+ (1 =+ A+ 4(2)
+pl P (44)

to the order of approximation. (44) is the same as the expression
given by Chandrasckhar (loc. c/t., p. 467) except for a small difference

1. Eddington: M. N., 86 (1926) 320
2, Milne: M. N, 87, (19206) 43
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in the coefficients of variable terms. His exact values are 1.0280,
1.00736 and 1.00281 instead of our unity.
On the other hand, since we have from (38)

Hi=/ Hi+ Hip ¥ He=AH+ pHy Yo+ O0F),

it follows

cos f=1+ O(7") (43)
and
L , . S A ( 1
7 g =1 G a1 0()

=1 =21 =) =0 22D+ 3p 20 +anp’ LD} (46)
by inserting the value of 7' from (20).
Similarly we find from (38), (40) and (46)
1=0(1 = o) + 0" (B— ) PYO) + YD)+ P
= L3 = R PI 7 B0) 49 PO (47)
n=y(1+ (1 =)+ W PR+ PV + 9 P, )

422
where /3,/(2) means -

Now we can evaluate our integrals. The total emission becomes
e Qo 2
L= S 5 Hy' sin 0d0dp= 47rf[,(1 — Tw’). (48)
[LAa]

Here the term in 2’ gives the diminution. of emission owing to the
rotation (von Zeipel, Zoc. cit.), since by definition

2 IS 74 o* o’

307 3 & aGp, . amGp (o)

to the order of accuracy we are working.
Next we calculate the observed luminocity. IFor the observer in
the equatorial plane
%
Lh=cos @), wyp=sing, and 2,=o0. (50)

Hence the contribution from the proper radiation will be

T : ks
+—-
LI(T’SD") ek

= o o
nld, P %__g_fny sin 8d0dy
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ol
(V9

1
:v I — -—m*[ﬂ/ —+ 7}//{ 2]‘{)([0) - vlzl)‘i(lo)}]

s [6 ) ”{ 16 s i
TTi+s L3 7+ 5 Pyfh)+ 3 nlb)f | (51)

by (37), (46) and (47). Iere as expected s, the coefficient of limb-
darkening, tends to increase the deformation effect. It is of interest
to note that leaving out the limb-darkening and regarding only the
elliptical terms in the above equation, the variation in the surface
brightness behaves as though the excentricity of the external surface
is just twice as large as its proper value.

In the calculation of the reflection effect, we neglect the deforma-
tion of the surface and reserve only the terms to 7' Accordingly it
is sufficient for the integrand in (33) to write 4 and oy for £ and » and
we have by (42) and (43)

’

L . .
wh, cos y= T{ At 29 ) + 39 Po(A)} (52)

It may be noted® that here the darkening does not play an im-
portant rdle since the coefficient of cos y in Milne’s formula (41) of
reflection is equal to unity for y==60" and varies from g/8 to 3/4 for
y=0 while a varies from o’ to 9o’, the latter corresponding to the case
when s=1/3 in the ordinary law of darkening (37). Indeed near y=
go’, the amount of its variation becomes greater in the opposite direc-
tion, but in this region cos y is so insignificant as not to concern us.
Consequently here we may use cos 7 instead of Milne’s formula with-
out: much error.

Now we find for the reflection effect

ki3

T =2
L,(w, g,) :§ S = 11 cos y cos ap’ sin 0d0dp
-2 0 Po——5

—_—[,,7712[ - {(r- — @)t 7/1‘,}

I 1
+ TV({/o “*;1").;(/0’)} — T-,/l‘-’«/llnsJ (53)

from (33), (35) and (52). To the first order, Z, is the same as given
by Eddington (loc. ert.).

$) ©'i,* to this expression, we have the general formula

1. If we add

1
1
s i+
for the observer not in the equatorial planc.
2. Pike: Ap. J., 73 (1931) 205
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L, and Z, combined give the observed luminocity
o

7T "
L(’"TZ'"', So() = Ll + -L‘_’v (54)

showing its variation with the phase. In conventional scales the con-
tributions from these two effects are illustrated in Iig. 3 separately.

Fig. 3 Eflects of the Deformation and Reflection. 5,=20.3

0-08

0-04.

0-00

~004 1

-0-08

§11 In order to compare their relative amounts in the same scale,
we must know the ratio Z//Z. According to Jeans',

Lo A/ (53)
approximately. By means of this relation, the total phase effect for
a component can be calculated for different valucs of 7 and 477 /M,
a few examples for 7=o0.3 being-illustrated in Fig. 4, where the
resultant luminocity (Z+Z') is taken to be unity. As apparent in the
diagrams, its dependency on the mass ratio is remarkable. The
reflection effect becomes predominate for the component whose mass
is a little smaller than the other, and the oscillating light variation will
then disappear.

"The transition point can be estimated by (54) approximately, for

L. '
it will occur first when o =0 at ¢=o0. Differentiating and equat-
(0

ing to o, we have for y==

1. ddstronoeny and Cosinogony, p. 130
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Fig. 4 Phase Effect for the Component, JZ 7,=0.3
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whence for gy=o0

39 15 2
(Yo, gt
ar ) =h

2

+7g

-
3

(57)

Combining this relation with that defining the critical houndary given
in Table III, we find for the required transition point nearly

A A=1.7.

The deduction depends on Jeans' relation (55) of mass and luminocity
hut this estimate will not differ much if another plausible law is assumed.

Beyond this point, the deformation effect becomes appreciable and
increases its relative importance for close binaries, although ultimately

its absolute amount begins to decrease: proportionally to A77/44. It is
hardly necessary to say that the observed phase cffect is the resultant
of those of the two components and is to be found for ecach case.



Distorted Quter Layers of the Stars.

[
wi

S§12 Now we proceed to compare our result for the deformation
effect with observed data. It has been found by Shapley' that of go
eclipsing variables whose orbits had been computed, 23 show measur-
able ellipticity. The ratio é/a of their equatorial axes is collected in
the following table directly taken from his paper.

Mef. i (Ziliir;;mn No Stars Tniform b/a Darkencd b/a Darwin b/a
0.501 5 ) 0.971 0.983 0.944
0.399 5 0.900 . 0939 0.902
0.320 6 0.83% 0.900 0.858
0.196 4 0.809 0.883 o7z
0.100 4 0.700 0.782 V 0.692

It will be seen as noted by him that while the uniform value of é/a
agrees remarkably well with Darwin’s theoretical value for a hypotheti-
cal homogeneous fluid, the darkened stars show throughout considerably
less ellipticity than the homogencous bodies for given separation. in
spite of general adaptability of the darkened solution.

In order to compare our model star with Shapley’s data it is
convenient to reduce it to the uniform brightening as theoretically the
variation in the surface brightness which has the same tendency as
the limb-darkening should also be taken into account.

Consider a binary of equal ellipsoidal components. If they were
uniformly brightened, the observed luminocity would he proportional
to the area of the cross section perpendicular to the line of sight.
Consequently apparent #/a will be equal to the ratio of the maximum
and the minimum light, leaving out the variation due to the eclipse.
Thus we find from (51) for s=1

/} Ll min = 1 “0-97713

(58)

a Lo a1 — 489"
to the first order. ‘
On the other hand the ratio of the true axes is found from (44) to be

7 1to.324y°

7. 1+1824p° " (59)
Similarly the mean separation is given by
t—27.= 1 —2p(1 + 1.8247°). ~ (60)

1. Shapley: Contr. Princeton Univ. Obs., No. 3, p. 115
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Numerical results are shown in the following table.
Table IV

Ty min 0~C
e , T Ly mae ]:’olytn-ope i Darwin
0.250 0.244 0.943 -+0.028 +0.027 0.989’
0.300 0.288 0.910 —0.010 —0.002 0.967
0.340 0.321 0.866 —0.028 —0.020 0.953
0.402 0.369 0.795 +0.014 - +0.037 0.931
0.447 0.400 0.735 . —0.035 1 +0.008 0.919

The general agreement between the theory and the observation is not
worse than in the case of a uniform liquid star. But as expected, the
ratio -of -the true axes is much closer to unity in a polytropic star.

Summar;}

1) The steady states of distorted outer layers of the polytrope
n=73 in the presence of the rotation and the tidal effect are studied
as an extended Roche model defined in §3 and the results are com-
pared with the investigations of Chandrasekhar.

2) The divergence among the two solations comes into appearance

ZT;UG—‘;P greater than o.001 (Fig. 1. and
Fig. 2); for example, the oblateness of the boundary surface is about
double of his value for the critical rotation (z=0.004), although even
in this case his solution gives a good approximation for inner regions
(say €< 4.3).

3) For a binary, the characteristics of the equator of a component
at the critical point are calculated for different values of the mass
ratio and the results are collected in Table [l

4) ‘Fhe effect of the deformation on the light curve is estimated
by taking into account both the variation in the surface brightness and
the darkening to the limb. The result is compared with Shapley’s
data concerning the eclipsing variables, and found to be in satisfactory

rapidly for the value of 7=

accord (§12).
5) The reflection effect is also considered (§10).  The deformation

EI K . 2
is proportional to (ﬂ ) while the reflection is proportional to \- -

but the coefficient being greater, the former effect becomes significant
for close binaries.
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6) Apart from this the dependency on the mass ratio is remark-
able, the reflection effect being predominate for the component whose
mass M is a little smaller than the other. Tn IFig. 4 the combined

, £
phase effect is illustrated for different values of 2477/, —7;-* being

fixed. 1t is shown that the deformation effect becomes appreciable
when 1.747 becomes greater than 477, and increases its relative im-
portance for close binaries, although ultimately its absolute amount
bagins to decrease proportionally to 77/ (§ 11).



