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Abstract

Several years ago the author published the formulae for reverberation in two
adjacent rooms with the same acoustic properties. In that paper it was assumed that
the walls of the rooms were made up of many kinds of material with so small areas
that the sound-waves in each room were well diffracted. In the present paper, which
is an extension of that paper, two cases are considered. The first is a case where
the two rooms have the same acoustic properties and their walls are made up of a
few kinds of material with large areas. Applying the method of Millington, the
diffraction of sound is neglected and the number of incidences of sound-ray on each
surface is treated statistically. The second case is that where the two adjacent rooms
have different acoustic properties though their shapes and sizes are identical. In the
latter case, assuming that the sound-waves are well diffracted, the simultanecous re-
curring cquations for reverberation are obtained, and then by solving them the sound
energies in the two rooms are found both when the source is sounding in one of the
rooms and after it has been stopped.

I. Introduction

In order to obtain the formulae for reverberation in two adjacent
rooms let us begin with the reverberation in a single room. Consider
a room made up of v different kinds of material whose coefficients of
reflection are p,, As......5,, and whose respective surface areas arc
Sy $y...0008y, the total area being .50 Let z represent the mean value
of the time-intervals between successive incidences of the sound-wave
on the walls (including the floor and ceiling) of the room, and M. its
reciprocal, i. e. the mean number of incidences in unit time.

According to the most classical method for obtaining the rever-
beration equation, the total sound energy Z in the room, when a source
is emitting the sound energy at a constant rate e, is given by
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where # is the time mesaured from the beginning of the emission of

F= {1 — g~ NA-DxL (1.1)

sound and

) + 8 ~)+"'+ vPv
P= nh é“p“S R <1i. (1.2)

And the total sound energy in the room at time £ after the emission
of sound has been stopped is given by
E:_E()g—lv(x-l’)z, (1.3)

where £, is the initial sound encrgy in the room. KEquations (1.1) and
(1.3) are the formulae obtained by W. C. Sabine', W. S. Franklin®
and G. Jager’. A few years ago, it was discussed in detail by the
present author® that these equations are valid only when the room is
reverberant and the sound-waves are well diffracted between successive
incidences. It is easy to see that equation (1.3) does not hold for
absorbent rooms, i. e. for the limit ~—o.

Assuming that every part of the sound energy existing in the
room at any time £ falls upon the wall once and only once before
time #-+7, and that the incident amount of energy is divided propor-
tionally among the respective surface areas of the walls, the author’
has obtained, instead of (1.1), (1.3), the following formulae :

’ &T ;
E=— =), (14)
E=E,P". (1.5)

Equation (1.4) gives the energy at time f==sr in growing state and
equation (1.5) the energy at time /=wnr in decaying state. KEquations
(1.2) and (1.5) may be used for a room where the sound-waves are
well diffracted, no matter whether the room is reverberant or not, since
the above assumptions which have been used to derive these equations
are justifiable for such rooms. The same equations have been obtained
by C. F. Eyring® assuming that image sources may replace walls of

. 'W. C. Sabine, dmer. drchitect (1900); Collected Papers on Acoustics, pp. 34-37.
2. 'W. S. Franklin, Phys. Rev. 16, 372-374 (1903).

3. G. Jiger, Wiener Sits. Ber. 120, 613-634 (1911).

4. K. Yamashita, Zhese Aemoirs, 11, 120-123 (1928).

5. K. Yamashita, loc. /2. 123-128 (1928).

6. C. F. Eyring, ./. deous. Soc, Amer. 1, 217-241 (1930).
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the room. If we write equations (1.4) and (1.5) as the continuous
function of time #, we obtain

4
i i
E::«'—I—E;?-{x——]” L (1.6)
-t
E=EPT; (17)
or
&
b= py i (1:8)
E:E)glw log £ <I-9)

Thus we see that at the limit /1 equations (1.8), (1.9) become iden-
tical with equations (1.1), (1.3).

If the walls of the room are made of many kinds of material with
small areas, equations (1.4), (1.5) may be applied, since the sound-wave
is well mixed up by diffraction between each pair of successive inci-
dences. If, on the other hand, each of the areas composing the walls
is large, these equations are not applicable. As a decay equation for
the latter case, (z. Millington' has obtained a new formula

5 Iz 7 Sy 72
— —n
g S A A

/L:E)_pl /5: ......... /5\_,

_.—__.E‘n/)m

= By s, (1.10)

where
S S Sy

. Ky Ky S

P=p " ps 7 i N N (r.11)

This formula can be derived on the assumptions that, neglecting the
diffraction, the simple ray theory can be applied for the sound-waves

i

in the room and that a fraction R of 7 incidences will take place

~ . . v o i . A‘]‘
on the surface si. In Millington’s formula cach of the fractions o

RS Sy
Ca /AT T
S S
cidences on each surface is treated statistically.

The three methods described ahove are the most prominent ones

72 must be sufficiently large since the number of in-

1. G. Millington, /. deous. Soc. Admer. 4, 69-82 (1932).
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for obtaining the reverberation equations in a single room. Applying
the first method, i. e. the method of Sabine and others, A. I, Davis'
has obtained the formulae for reverberation in two adjacent rooms.
By the second method the author® already obtained the formulae for
reverberation in two adjacent rooms with the same acoustic properties.
One of the objects of the present paper is to obtain the decay equa-
tions for two adjacent rooms with the same acoustic properties hy
applying the third method of Millington and compare the results with
those already obtained by the other methods. And the other object
is to obtain the reverberation cquations for two adjacent rooms which
have different acoustic propertics though they are identical in shape
and size.

Il. Reverberation in Two Adjacent Rooms when
Diffraction is Negligible

Applying Millington’s method for a single room, let us obtain the
decay equations for two adjacent rooms. Consider two adjacent rooms
I and II which are in acoustic communication only through an incom-
pletely sound-proof partition /7. T.et the two rooms be symmetrical
about the partition 7 not only in the shape and size but also in the
distribution of absorbing materials. For instance, if there is in room
I a surface of area s; with coefficient of reflection p;, then there is
“also in . room II a surface of area s; with the same coefficient of re-
flection p..

Tet .S represent the total area of the walls in room [ (including
the partition area); s, S$u......5 the arcas of the elements of .S'; 4,
Daseeropy the respective coefficients of reflection; ¢ the coefficient of
transmission of the partition whose area is s,; 7 the mean value of
the time-intervals between successive incidences of the sound-waves
in room I. Since the two rooms have the same acoustic properties,
the symbols defined above may be used for room Il

let £, £, represent the initial values of the total sound energics
in rooms I and II respectively and Z,, £, the total energies remaining
in the two rooms at time /=t after 7 incidences. Z; is composed
of many elements of sound-ray which take different courses in the
time-interval from /=o0 to t=wnr. let £ be an clement of £, which

1. A. M. Davis, Fki. Jag. 50, 75-80 (1925).
2. K. Yamashita, Joc. /¢t 128-133 (1928).
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does not enter into room II at all and is reflected only in room I.

. . . . St .
Of the # reflections a fraction A takes place on surface s, another

Sz . .
fraction TN On s and so on. Therefore we have

5
-~*"n

f()~EI()[$1 P2 Ty .

Divide the time-interval from /=o0 to /=wut into 7 cqual short
intervals. Let Z§? be an element of %, which enters room II in the
~th short interval from the beginning and returns to room I in the
J—th short interval not to reenter into room II.  This element passes
through the partition s, twice and consequently the number of reflec-

. LN Sy . . )
tions on s, is —&w 2, the T T2 reflections being the sum of the

reflections in rooms [ and II. The number of reflections of this ele-

S1
ment on s is e, which is the sum of the number of reflections
in both rooms. Therefore A is given by

"1

(l D= flﬂﬁl

ey J°
There are many elements of /7, which pass through the partition twice
as E5? taking possibly different values for (7. 7). lot 7 represent
their sum, then Z{® is given by

(41(2)272(:.!El(i’j)

§ S 5
1 3y v
i Bl . e oY e 2

. s s 2
=Gl © pe T by 7"
where ,,C, denotes the combination of 2 among .
Similarly the sum of the elements of %, which pass through the
partition four times, six times. etc. are

5 $y v
";S;’“ll ”‘;:'}I "'?““71—4
~ 7 S i q
=,Coillpp P ey A
S, RY
T s

: ST
9=, 5/“,(,/;1 P
The indices of p, in the above equations must be positive or zero.
Of Z, there are many other clements, besides the elements
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considered above, which were initially in room II. These elements can

be classified by grouping the elements which pass through the parti-
tion respectively once, three times, five tilmes, etc. Tet £, B, E®,
etc. represent the sums of the elements thus grouped, then by a similar

method we get

5t Sy 5
B B —an—1
L) R .
L= C1f110ﬁ1 DT P g,
~~S§-n —ln .N‘g‘i PP
3 __ K K 5
1P =, Colona P2 T s Py 7,
Sl S -%‘.,n_ 5
5 K 5
VARES 'nCFII(\ﬁl p T Py 7%,

....................................

The indices of , must be positive or zero.
The total sound energy /£ in room I at time #f=wnrt is given by

I . . .
SE® and the corresponding energy Z,; in room II may be derived

similarly. Therefore we obtain
4
By=F, /yvl{l—{—q,C( 5 >+ C]( 5 )+ ............ }

2 4
EHZEHOP”{I +aC ( ) +,,C4<-f/-) Forerei, }
hr ;m
+

y; 3 ]
+-EIOP/71{71C1( }; > 'nC'a‘( Z ) +mC’|( Z )+...}

:0

==()
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where
5y S, Sy
S S & '
Pl=p s b2 S Py , (2.3)

These are the decay cquations for two adjacent rooms for which it is
justifiable to neglect the diffraction of sound.

{ll. Comparison of Reverberation Formulae
in Two Adjacent Rooms

The reverberation equations in two adjacent rooms obtained by
the author' by means of the second method are as follows :

E‘;w)r—E,(f){/)”—l“n(:zQ:/)"—?“i*na Q4/)”'"4+ ...... }
—FE/(fg){vl(;l()—/’”—l‘*‘1zCa03/)n~3+n(:{.(.)5/)n~5+ }’ (3.1)
B =B P+, GO P, GO P b
+ LGP GO GO ) (3.2)
1— 7 A
EfP=er (= PP—(F (3.3)
Q
EI(I%))ZEL (I _/))2__02 ’ (3'4)
where »
spp -t sepet o F sy p PR
== 41 < e <1, (3.5)
Sy .
Q=<7 (3.6)

and £, £57 are the total sound energies in rooms [ and Il in the
steady state, and A, £ are the energies remaining at time Ff=nr
later, and in (3.1), (3.2) the terms ,,C, Q* 7"~ are to be summed up for
all positive integers satisfying 74

In order to compare the above formulae (3.1), (3.2) with (2.1) and
(2.2), the former equations may be written in the following forms :

4 4
E;m:]g%o}p"{I +,,Cg<-%-> +,,C4(“-]0;;) o }

| 0 ; )y
empra(2)na L) s -S) v

1.. K. Yamashita, 7oc. cz. 131 (1928).
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<t . (L0
'}“]“(w)pnv T 0 Carn “73“
o U 4 M
(3.7)
ﬂ ON [ OV
(w)“fffﬁ)/)" I+7,C /) +1r(~‘4 _F b
(0 OV  ( QY
+E§0m)/) 71('1 M’/)w ,‘L’"(/; /) + (,-‘ - ]) "}“...
7 ) >
z/—: () 24
7&_,31 __L 2y )2i+l
- () fom 2 2 ) <
HERPY <( 7

(3.8)

Comparing (2.1) with (3.7) we see that, though the two equations are
similar in form, the number of the terms in (2.1) is by far smaller
than that in (3.7), but that the terms in (2.1) are greater than the
corresponding terms in (3.7), because we have

0 sy
2 .X'1ﬁ1+‘§'2752+ fen ’}‘S‘y"/?‘, l'/).', :

The magnitudes of /2 and /7 have been compared by (r. Millington'
It has been proved

=4, in

in the reverberation equation for a single room.
that under all conditions </’ except when p=g.=......
which 77= 27

By the first method A. T1. Davis® has obtained the following decay
equations for two adjacent roomes with volumes 17, 17, and total areas

S S
- _Jlf{!_’-zm.a_ I L T
L 6(1 —Ln)Su g T = Puy)Sy —07
E/: E[ﬂ{ )‘1 4 + 22 4 ) },
1 L)

1. G. Millington, Zoc. ciz. 77 (1932)

2. A. FL Davis, Zoc. cit.

P

I ]

(3.9)

(1927).
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L= Zim| P ¢ - Fi O }, (3~10)
4 l

L 3

where
N c (I “",/)I)A\'I (I ——/’,,)Lf\',,
A= "g- S R A _+ S e A

[rl 17

I ’!{ (I - ])][)AS']/ . (} - /)I>A§'I }: .{02\5\,;

b
S Al l']{ ['[

(w{ (I —/)')‘S'_’,,,, + (I '"‘/)11‘)‘5'11 }

A I I
¢ / (1 — Pu)Su (—=2)S, * 49°s7
A“,_ ”.,,:‘,‘~, _._____"..._.. e + - i ,
S 17 ) I

where /7, /7, denote the value of /22 for the two rooms and ¢ the
propagation-speed of sound in air. These equations are valid only
when the two rooms are reverberant. since they were obtained by the

first method.
When the two rooms have the same acoustic properties the above

cquations may be reduced, by putting
S=8=5 I=1,=1" == fPy= P

to the following forms :

. yo) 78y

L F{ (=28 +]}(‘_x,,t_-{‘4,<f,,,,ﬂ,—w,,/,f>”f,,5f,.ﬂ‘}(,—w}_

Q== > L 75, G5
(3.14)
where
N ((I - /))‘C 7Sy 3 A
/‘l:f-g 3 I,, {[ - ([ -/))AS‘ }‘ (3'13)
('(_l - /')).¢ /A .
2= 4 {I + (1———]’)5(}' (;"1(‘)

In order to compare equations (3.13), (3.14) with equations (3.1).
(3-2). we shall transform (3.1), (3.2) into exponential forms :
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E;w .
B5) = P+ Oy +(P=Q)'}

ES .
“ IIO {(/),L. O),, (/)’__ Q)’n}
> (3.17)
— flo {cq;lng(PJrQ)_}_gn lo"(l’—Q)}
()
fz { & log(I’fQ) —" log(P~Q) },

IIO

£S5
f<°°>~——~——~{(/7+ Oy +(2P— Q)

L)ﬂ;”)
—{(P+ Oy —(P— Oy}

T ; (3.18)
" [ D o g lor-DY

+

2
B

2

{gn Yog(P+@) __ P 10;:(!’—(2)}'

By equations (3.3), (3.4)
By B
-2 0
and therefore equations (3.17), (3.18) may be reduced to

: 7 (00) —_— —
F(oo)___ E { ! / + (‘) 'n log (1’+Q)+ 1 / O (';nlng(l’—Q)}
. 2 11—/ 1~ ’

(3.19) ,

Fp=

(o) iy -
Liiy { : /; +o oucrr 1T ]()) _Qmemogu’—q)}.
(3.20)

When each of the surfaces reflects sound~waves very well, Q is very
small and /7 takes a value near to unity and consequently 72+ Q, 2—Q
are nearly equal to unity. Therefore we have

log (P4 Q)=—(1—r-0Q),
log (P— Q)= —(1— L4+ Q),
and equatlons (3.19), (3.20) become

B (1= P40 it )
(e0) (1~ P-Q) — = =u(l=P+Q)
L= 2 -2 ¢ + -2 ¢ ’

(3.21)

2

8
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L=

5 -+ 0 —-P-0Q
L A ,\—ncx~/’—cz>_,.}V,,,,,.W/,w,_,,,,,.,,‘:,, o 1U=P@)

% 0O

5
2 <

{(3.22)

Hence we see that these equations are identical with (3.13), (3.14) by
the two relations

! 1 IAY

jpEm————

r 7‘477"

Fauations (3.1). (3.2) are the general solutions for decaying when
the waves are well diffracted, equations (3.13), (3.14) being a special
case of them, and therefore they may be used not only for reverber-
ant rooms but also for absorbent rooms. It seems impossible to obtain
the decay equations by similar methods when the two rooms are not
equal in size. By Davis’ method, however, the reverberation equations
for two rooms with different sizes are obtained as equations (3.9),
{(3.10) show, although these equations are valid only for reverberant

rooms.

IV. Remarks on a Paper by Carl F. Eyring

Carl F. Eyring' in his paper “ Reverberation Time Measurements
in Couple Rooms,” modified A. . Davis’ formulae, i. e.. (3.9), (3.10),
(3001). (3.12) as follows:

= ne—m, V' 7 b= Bt
o= pr—— {///g(()10+ ;7/1‘0”")( (br—aB11
— bp—m2,8 10}t
— 1+ M5pan)e \ ()
b= N
P//:m{(pm_}_ 7721{)[,())(' (Or—m,B1
— (b=t
— (o1 175010)C v (1.2)
S L |
Awt 1 (+:9)
where
- (/11"“ bi)+ 1/ (61— /J’)2+4ﬂlﬂu
- 2fu
(br—bi)y— 1 (bir— b+ 18Bn
JiyE=
2Bn

1. C. ¥. Eyring, /. Acows. Soc. Amer. 3, 181-206 (1931).
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= 4l ’ (4.4)
37148
== 4 ’:7‘1 y
—log (1 —as)
fe g e
[74]

and ps, p; are the sound energy densities in rooms I, Il at time 7;
on, pm their initial values; T/7 the area of an open window through
which the sound energies are transmitted ; 1, the sabsorbing power of
the surface of room I not including the open window ; «, the average
coefficient of absorption of room 1.

In the case where a;, a4 are very small, £, and £, are approxi-
mately equal to unity and we get

br—mBu

2 A”“}‘ 1 /l]+ I’l"' \
I S 7 S A
i 7

8

2

~/{ Ap+ W “41_]_ 77 }z+ T

8 T u

prepony -

“u ‘7

A {Au‘*"’lw /l]”*‘!,',}

k 3 57 T I
+ —W{“,\/{ Ap+ _ Al'f‘ I }3+ "W
8 et I 587
=,
b= o=y — wty).
NNy = — glll == - I,Z]L.

By using these relations we can see easily that, when the rooms are
reverberant, Eyring’s results (4.1), (4.2) become identical with Davis’
vesults (3.9), (3.10). Eyring has noticed that equations (4.1). (4.2) may
be used for absorbent rooms too.

l.et us compare equations (4.1), (4.2) with the author's results
(3.17), (3.18). From (3.17). (3.18) we have

¢
. 1 ~;~]0.Q (\P+ %
/',,(m*):'*;“ (E/(‘fo)“}‘ﬁ,(ﬂ?))ﬁ '
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\ S1eg (2= 01}
H(ES — Efid)e , (4.5)
e Liog (P+0)
i = ‘";“{(Efu“) +E5)e
Llog (P— Q)}
. (4.6)

In Eyring’s cquations (4.1). (4.2), if the rooms have the same acoustic

propertics, we get
[=/4 say],
by=b, [ =6 say),

(=8 say],

kr=ky

Br=fu
D=1, =1,

and then the energy densitics p,, p,; are given by
—{(6+B)r
} (4-7)

’

[

I —(o—
,‘71:‘7{(()1“’]’,0110)63 @ B)t'}"(PIn—Pun)l»’

[ (b —B)2 _
,o,,?T{(Perpnn)c OB —(or0—pur)e (HW}- (4:8)

By the relations
=05, A+MH=(—2P)S,
1 oy (1.9)
r o4l
b—f and 6+f may be expressed as
1 —log /P°
(4.10)

1 —log P
/’+B:T~ P , — V2 “(I — P+ ())
‘These are the indices in equations (4.7), (4.8) expressed by /72 and (),
and the corresponding values in (4.5), (4.6) arc
(4o11)

——%—105; (P+0), '%—log (L= Q).

Therefore we see that equations (4.3), (4.6) coincide with equations
(4.7), (4.8) either when the rooms are so reverberant that we may

take approximately
—log P=1— 1/’
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—log(L= Q)=1—LF(Q,
or when () is so small that the approximations
1 — P+ O=1-— P,
log(P= Q)=log L
may be permissible. But for the other cases they do not coincide
generally.

T.et us examine the assumption on which equations (4.1), (4.2)
have been derived. KEyring has considered the reverberation in a
single room first, and he has said that the rate at which sound energy
falls on a unit area of wall surface is given by

cp

4

(4-12)

o=
for a steady state, and that an equation of the form

kep
4_

q
i

N (413)
where
—log (1 —a)

pm— )

must be used for the case of decaying. By using equation (4.13) and
a differential equation

. dp .
If"—d/-—: —owd, (}.15)
or
dp eS8 log (1 —a) :
dr = I o (4.16)
the correct decay equation for a single room can be obtained as
p=poe”" {4-17)
wherce
—¢S'log (1 —a) .
b= NE . (418)

Thus equation {4.13) gives the rate at which sound energy falls
on a unit area of wall surface of a single room when no sound is
being supplied to the room, but it is questionable whether equation
(4.13) may be used for a room to which the sound energy is being
supplied. Eyring has, however, used equation (4.13) for coupled rooms.
In case of coupled rooms sound energies are always supplied to each
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of the rooms from the other both in growing state and in decaying
state. Therefore equation (4.13) must be examined if we want to use
it for coupled rooms.

For the sake of simplicity let us consider a case where the sound
energy is supplied at a constant rate. The total sound energy in a
single rooms when a source is sounding is given by

(419)

where ¢ is the rate of emission from the source. Equation (4.19) has
been obtained by the author' and by Eyring% If equation (4.19) is
expressed in a continuous function of time 4, we have

t
=P - —log P
- &1 ks
L=cr — = {1*(3 },

and the rate of change of the sound energy is
dr log 72 5 log

y7 = % I_PS. (4-20)

T

In equation (4.19) the initial sound energy is zero, but, if the initial
value is /%, an equation of the form

LY fom ! —‘])m / 3
L=1P '+er*~‘r‘_‘_‘7,‘” (4o21)

may be used instcad of (4.19), and consequently the rate of change
of the sound energy is given by

JdE log 2 log /°
— E___

dt — T =P (422

Equations (4.20) and (4.22) are identical in form.
Thus. if the source is emitting sound energy at a constant rate
¢, the rate of change of the total sound energy in the room is given by

dp aS'log (1 —a) log (1 —a)
= 0— e

4 ar 4 ! o
—e8log (1 —a) a+log (1 —a)
=e— o+ ef,
4 o

(4.23)

1. K. Yamashita, Zoc. crf. 125, (1928).
2. C. F. Eyring, /. dcous. Soc. Admer. 1, 228 (1930).
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and conseq&ently the rate at which sound cnergy falls on a unit area
of wall surface is given by

—cSlog (1—a) a+log (1 —a) / .
{ 4 ot “ e} S
kep a+log (1 —a)
:T+“——?§————a (4.24)
Equations (4.13), (4,24) differ by a term e{a+log (1 —a)}/ad’S. IFrom
this it follows that cquation (4.13) may be used as an approximation
when the supply of sound is very small.

The foregoing discussion concerns the case where the sound energy
is continuously supplied at a constant rate e, but it is not difficult to
assume that cquation (4.13) is applicable as an approximation also when
the supply e is changing with the time, provided its value remains
small.

From this we may say that Eyring’s formulae (4.1), (4.2) are not
the exact equations, but approximate ones which are valid only when

g =

the communication of sound through the window is small.

V. Reverberation in Two Adjacent Rooms with
Different Acoustic Properties

Equations (3.1), (3.2) or (3.17), (3.18) are the decay equations for
two adjacent rooms which, besides being equal in shape and size, have
the same properties with regard to the reflection and transmission of
sound. l.et us now consider a case where the two rooms have differ-
ent propertics with regard to the reflection and transmission of sound,
though they are equal in shape and size.  Assume that the sound-
waves are well diffracted in each of the two rooms, and consequently
that the sccond method may be used in estimating the absorption of
sound energy by the walls.

T.et ¢rn g¢n represent the coefficients of transmission for sound-
waves, ¢, being the coefficient when the sound-waves pass through
the partition from room I to room IT and ¢, the coefficient for the-
reverse direction. let /2 represent the arithmetic mean of the coeffi-
cients of reflection for the exposed surface arcas in room [ and 7,
the corresponding value for room 1I. the coefficients of reflection of
the partition IF7 being included in /% and /%, Since the two rooms
are equal in shape and size, the mecan values of the time-intervals
hetween successive incidences for the two rooms are equal. let t
represent these mean values.
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If the initial values of the total sound energies in the two rooms
are L, and Ej, respectively, the fraction of £, rema,ining in room
I at time /=1 after one reflection is /%, and the encrgy transmitted
to room I from room II in the interval from Z=o to ¢é=rt is Qpliy.,
where (J,, is givén hy

5

QnE ‘”“’g'v;}",(j//-

.S being the total area of exposed surface in room 1l and s, the area
of the partition 7 Consequently the total sound energy E,. in room
[ at time #=rt is given by the sum of /%F,, and Qpliy,. Similarly
the total sound energy in room Il at time £=7 is the sum of ~lfoy,
and O.F,, where

Sy
.

s, 7
and .S, is the total area of cexposed surface in room I, Therefore
we have

()=

Loy=Lrlyy+ Qnlipo, \ .
- N (5.1)
Ion=Lpliut Q. I

Similarly the total sound energies in rooms I and II at tlll]L‘a t=
2T, 3T,eenns nt are given by the following equations :

Er=PLn+ Qnbi.

Lone=Puln+ il ; }
Lrs=PLrt Qnkyp. \ (5.3)
.Eu;;‘:])u s+ Qi I o

....................

L= LrEgay + Quilein i,
L= Lorilig o+ Ol }
Thercfore we get
L= (P OO Lr - (LiOn PuQ) e\
Eny= L+ O QN Erra+(PuQs + L2O)Er (5-5)
L= (P4 220,0,+ 7 11()1011)/4’10
(PP Qu+ PilPuQu+ P30+ QrQ5) E,
Lyps=(Lf+ 2PuQnQi+ P1QuQn Lo
A PFO+ PO+ 1RO+ Qn(f)f)./i,»”. )

In order to get the sound energy at time Z=pr, let us obtain

(5.6)

from (5.1) an equation which does not involve £, but Z; only.
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Equation (5.7) is the recurring formula for £, and a similar equation
holds for £y,.
Therefore to get the sound energies £, and Zy,, it is necessary
to obtain the solution of a recurring formula of the form :
< ~ - ~ )
Eo=aly 4 b0E, s [12=2, 3, 4yeeuunn... 1. (5.8)
Since the coefficients ¢ and & are constants, that is, are the same for
all values of 7, the solution of (5.8) may be obtained by considering
the power series
Ax)y=Ly+Lox+ x4 + Lt . (5.9)
Multiplying both sides of (5.9) by ax+ 624" and using the relations (5.8),
we have
(ax + 027) fx) =) — Lay— Lyx + aliyx,
or

L+ (B —aly)x
Sx)= ‘1 ——(mlc-—/)x'“’) o (5.10)

As equation (5.9) shows, £, is the coefficient of &* and therefore £,
is given by the coefficient of a* in the expansion of the right-hand
side of (5.10), namely

. 1 g
Lyi—-—(a—y a'+ 40 )L (a+1/@+ 36 )

7w

Va+4b 2

. 1 SR .
L lat 0B (i y

,,,,,,,,,,,,,,,,, (5.11)

7

VabA b 2
Consequently we gel

I
L= (Lt Lu=R)Ew (p, 1 p, 1 Ry

-
-bht = /\) o7

1 -
E/ 17 "’;‘(/)1 + /Ju -+ R)ﬁl o (/)1 + -/)11 — j\))u

- /\) . S 3

where

R= 1/’( Pr= Py +410:Qu .

If the value of 7, given by (5.1) is substituted in the above equation,
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2y, is expressed by an eguation inveolving £y, and L. and &, may
also be written in a similar form. Thus we obtain

])l—])ll+]€ (P[‘}‘Pu ’f‘]€>"

]ilanJ(){

2R 2"
j)]’— 7)1]""]\) (P]”*“])n"']ey' \
— 2/€ | i S - J

Ou [ (P Ly R (D Ly R
ROy ——'"'“'“"W",r“-*'”"“},. (5.12)

n
2 2

]«‘ —
=411

{ Pu= Lk R (Lut L+ R)

R -
Ly—1—R (/)ll‘}‘]')f—‘]\))“
L }
? Ve + 7 +_/) " V& +/) —_ R

where

R= ]/( P )11)2 + 4 (.)1 (,)11. (5- 1 4)

Equations (5.12), (5,13) give the decay of sound in the two adjacent
rooms which have equal values for =, but take different values for /°
and (. The second method is used in the above calculation and so
the results are valid only to the extent to which the method is justifiable.

Tet the sound energy be emitted continuously at a constant rate
¢ from a source in room I until a steady stare is cstablished in both
rooms, and let £, 7§59 be respectively the total sound energies in
the state. Then the sound energy lost from room I in an interval © is

Ly (00— 1),

and this must be equal to the sum of the sound energy er emitted
trom the source and the energy £ (s received in that interval from
room II through the partition. “Therefore we’ have

E(v—P)=et + B3 O (3.15)
Similarly for room Il we have

ESRO—L)=ES 0, . (5.16)
Solving the above two equations, we get

. ET(l"‘ :')1]> .
70y i R
Yo (I “",,)IXI‘-/)/I)-OJ(‘)H . (n~l/)
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s
s

Jo B = — - i -
S (t =)t = Pu)— Q:0n
which give the total sound energies in the steady state.
It the source is stopped to emit sound after the steady state has
been established, the decay equations are obtained by using Zf7 and .

L5 given by (5.17). (5.18) as the values of 7 and 72y, in equations

(5.12), (5.13)-

Consider the growing state of sound in both rooms when the sound
energy is emitted continuously at a constant rate ¢ from a source in
room I, Let £8P, ES® represent the total sound energies in rooms
Land IT at time /==t and assume that there is initially no sound in
both rooms. Divide the time-interval from /==0 to /=7t into 77 equal
short intervals and consider the sound energy er emitted in the z~th
short interval from the beginning. Tot %, €5 represent the fractions
of that energy er. which arc remaining in rooms 1 and II at time /=
mr after m—7 incidences. The energios ¢, 52 can be obtained by
cquations (5.12) and (5.13). Tt is assumed that the energy et emitted
from the source in the /~th short interval does not fall upon any sur-
face hefore 7/==/r, so that at time /=7 the encrgy er is left wholly
in room 1 and no fraction is transmitted to room 1. Therefore sub-

(‘S.x Ri)

stituting .
E=¢r, D=0, n=m—17

in cquations (5.12) and (5.13). the energies 47, ¢ are obtained :

‘ L=yt R (P Lt Ry
/?(,') TEEeT p o o
2R 2"
P=Ly—= R (Pt ’,’,——./\’)”":':W[
- 2R ) P K

(‘/)""}jj//)l'fV/‘))m“i }

()] { (/)[1+ /)/‘.L ,/\))m—i

Cpi =E&T ]\,

Py
e

By summing up . AP from /=1 to /=, the cnergics 7280, 59

are given by

./)["‘ )1]+/\) 1 “'A;‘Ym ' A/)l““‘ 4')”"’/\1 1= :}MH l
7 On) —— —
s --er{ 2R 1—A 2R -1
(5.19)
() 1 _JX'}H 1 - If?n
A= { A } (5.20)

where
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Yo
3
&

A/\‘EV’(/’/" L4300

1 - e 5 T
“\—EWT{/)"‘L Lyt (Pr—Pu)+10:,0n } (5.21)
o U
)E“’:’ /')]":"‘ '[f““ “/l(‘/)/—, )/[) A‘L';l*(.)l()ll ’.

Tsquations (5.19). (5.20) are the growth equations.
In a limiting case where 7 tends to infinity, equations (3.10).

(5.20) become

PR P |
14

H P(m) )

},}}33»]1[" - (=P =)= O 0u
P vy

e = e G =) = 01O

which are identical with equations (5.17), {3.18) in the steady state.

In the special case where the two rooms have the same acoustic
properties and 77, (J; are equal to /%, (), respectively, equations (5.12).
(5.13), (3.17). (5.18). (5.19) and (5.20) may be written in the following

] .
Logg= Loy { (/7 Q) + (1= )}

1 . .
b B (1 QY = (2= O)', (s.22)

1 .
];un:‘“’;“]fun{(/’)+ 0)“ +(/)" 0)'}

L, X N l
+- z_jﬂm{(/)_f. ())n__(/)_ ())n} : (5‘23)

"T([ — / i) ‘
By (520
Moy ,MWA,_MS,?SL“‘MW . R
/un~— ([___]))1__0-; N (W—D)
L e 40 S S Vi 0)"* |
L5 2 { 1 —(/+ Q) + 1 —(P= ] (5.20)
P R et e wmn .
o T (PEQ) T =(p=oy ) 3

T AL and ES) are used as the initial values instead of /4 and L,
equations (5.22), (5.23) become identical with equations (3.17). (3.18)
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obtained already by the author. Expanding (5.20), (5.27) in power
series of (J, we get

] ey L nq,,A_Rl - m=1 4
B =er —-1“:73‘“—}* Q‘%jcgf”““*% Q;_ZNC}P?— +...f, (5.28)
- -1
E=er\ OSL G+ 05, G P+ (5.20)
Lirrg =—E&T Oz}b 1 ,,2]' 34 T eeress fo 5.20,
Jes Foey
These are the decay equations, expressed in power series of (2, for two

adjacent rooms with the same acoustic properties and they are the
same as the equations already obtained by the author'.
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