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Abstract

As rough models of Japanese bells two shells of different thickness are made of
the same material as that of the Japanese bells. Both of them are circular cylinders
with hemispherical caps and their thicknesses are uniform. The lengths of the
cylindrical parts of the shells are changed and the effect of the length upon the
frequencies of the vibration of the shells are examined experimentally. The results
are then compared with those calculated by the formula which has been obtained by
one! of the writers on the assumption that no line traced upon the middle surface
of the shell undergoes extension when the shell is vibrating.

We* have found experimentally that the frequencies of the par-
tial tones of the Japanese bell are ncarly in the ratios
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The shape of the Japanese bell may roughly be represented by a
circular cylinder with a hemispherical cap. But its thickness is not
uniform everywhere, being very thin at the portion where the cylin-
drical part changes to the spherical form and very thick at the open
end of the cylindrical part as well as at the pole of the spherical part.
The non-uniformity of the thickness certainly has some effects on the
“vibration of the bell, but retaining the' problem for a while let us
examine, in the present paper, how the vibration of the shell is affected

1. K. Yamashita, These Memoirs, 15, 315-322 (1932).
2, K. Yamashita and I Acki, These Memoirs, 15, 323-326 (1932)
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by the length of the cylindrical part when the thickness is uniform
throughout the shell. Although the change of the length of the
cylindrical part greatly influences the duration and intensity of the
vibration, we shall here examine the effect of the length upon the
frequencies of the partial tones emitted by the shell.

To investigate this problem experimentally two models of bells,
named A and 2, of the shape described above were made of the alloy
composed of copper and tin in the ratio Cu 10 : Sn 1.5, of which the
Japanese bells are usually made. The mean wall thickness of the bell
A was 0.6 cm and the mean diameter of the cylindrical part and the
spherical part was 27.4 cms. The bell B was much thicker than the
bell A, its thickness and diameter being 1.3 cms and 26.8 cms respec-
tively. The lengths of the cylindrical parts of the two bells were
planned to be equal to the respective diameters, but the real lengths
were about 0.05 times the diameters, i.e. 1.9 times the radii.

Figs. 1, 2, 3 in Plate I and Figs. 1, 2, 3 in Plate III show the
sound-waves from the two bells recorded by a Low-Hilger audiometer.
Analyzing the marked portions of the waves by the method of periodo-
gram-analysis, we have obtained the following as the frequencies of
the partial tones emitted by the two bells.

Bell A4 (thin) 138, 425, 670, 1250, 1800, 2700; (1)
Bell B (thick) 377, 1000, 1900. (2)

Comparing these frequencies with the ratios
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which represent approximately the ratios of the frequencies of the
partial tones emitted by Japanese bells, we see that in the bells of
uniform thickness the frequency increases more rapidly with the order
of partial tones than in the ordinary Japanese bells.
' The frequencies' of the vibration of a circular cylinder with a
hemispherical cap have been calculated on the assumption that no line
traced upon the middle surface of the shell undergoes extension when
the shell is vibrating, the thickness being assumed to be uniform
throughout the shell. By the result the frequencies s,/2z of the
partial tones are given by

ﬁ,[z:-—z&—]g— [2=2, 3, dyererr... 1 )
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1. K. Yamashita, Zoc. cit.
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e being the radius of the cylindrical part and the spherical part, / the
length of the cylindrical part, p the volume density cf the material,
o its Poisson’s ratio, and g the modulus of rigidity.

In order to get the numerical values of the frequencies of the
partial tones we have obtained the values of the integral

f(?Z)ES;{(ﬂ—' 1P+ 2(2+ 1)x~x2}w(2—_{f)ia’x
x
for m=2, 3, 4, 5, and 6:

fi2)=z0log 2~ 12—l = 1.52901,
3

A3)=57 L —8olog 2=1.881356,

2

J(4)=200log 2 — 136

3
F(5)=280—40010og 2=2.74116,
S(6)=1700log 2 — 482=3.20297,

=2.296009,

of which #(2), A(3) and A4} were calculated by T.ord Kayleigh' in the
vibration of a hemispherical cap.

Tet us now compare the frequencies calculated by (3) with the
frequencies (1) and (2) which were obtained experimentally. If we
assume o=1/3 as the reasonable value and if we put //e=2 in (3),
we get )
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where P=p(r— 17+ 60+ 47} + n(n* — 1)(278° — 1),

Q=207+ 2) + 40(2 + 1)+ i?f(ﬂ“' +1)+A(n)
3
and therefore

1. Lord Rayleigh, Proc. London diath. Soc. 13 (1881); Scientific Papers, vol. 1, p. 557.
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If the density and the modulus of rigidity be assumed to be
p=28.3, p=3.5% 10",

and for the bell A,
2/h=0.6, 20727,

and for the bell 7,
2h=1.4, 20=26.8,

then the frequencies of the partial tones (v,=p,/2m) are as follows:

Bell A4 Bell £
YT 1471 v;=358.8
Y3 =405.0 vy =08¢y.1
y;==768.0 vy=1873
V== 1234 Y;== 3000
vy=1802 Ys== 4300

Dividing the experimental frequencies (1) and (2) by the correspond-
ing values calculated above, we get

158+ 147.1=1.07, 377-+358.8=1.03,
425+405.6=1.05, 1000+ 08¢.1=1.01,
670-+768.0=0.87, 1900~ 1873=1.01.

1250-+1234=1.01,

1800+ 1802=1.00;
With one exception 670+768.0=0.87, these quotients are all nearly
equal to unity and so we see that the experimental frequencies co-
incide with the calculated values, «,

The length of the cylindrical parts of the two bells A and B
were diminished in order to see the effect of the length on the
frequencies of the partial tones, and the sounds emitted from the bells
were recorded in three cases where //a=1, 0.5, 0 by the same method
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as in the case where //a=1.9. The waves are arranged in Plates I,
II, III, IV. The diagrams preceding these plates show the intensities
and the frequencies obtained by analyzing the waves.

The frequencies of the partial tones corresponding to the above
experimental values are calculated by the formula (3) and are shown
in Tables I and II. The experimental data are also tabulated for the
convenience of comparison.

Table 1.
Bell A. Thickness 2/2=0.6 cm. Diameter 2a¢=27.4 cms.
lfa=2 (1.9) Ia=1 /la=0.5 lja=0
Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp.
147.1 158 159.9 184 1785 211 220.9 258
405.6 425 430.8 490 477.1 570 620.9 690
768.0 670 802.1 850 877.6 950 1200 1225
1234 1205 1275 1400 1374 1600 1952 1900
1802 1800 1848 | ... 1968 2200 2876 2600

Table IL

Bell B. Thickness 22=1.4 cms. Diameter 20=26.8 cms.

lla=2 (1.9) Ija=1 Ija=o0.5 lfa=0
Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp.
358.8 377 389.9 413 4353 451 5387 512
989.1 1000 1051 1100 1164 1180 1514 1325
1873 - 1900 1956 2100 2140 2100 2926 2400
3009 | eeeees 3109 3000 3351 3000 4761 ......
4396 | e 4508 | ... 4801 7014 | e

The equation //a=2 (1.9), the ratio of the length / of the cylindrical
part and the radius @, in Tables I and II means that //e=2 for cal-
culated values and //a=1.9 for experimental values, and of course
//a=o represents a hemisphere. TFigs. 1 and 2 are the graphs of,
these frequencies. Each curve shows the change of frequency of a
partial tone when the length of the cylindrical part is diminished.
The broken lines are the straight line-segment connecting the expri-
mental values of the frequencies; and the continuous curves are the
graphs obtained by the formula (3), the ratio //@ being taken as the
abscissa and the frequency ,/27 as the ordinate.
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From Tables, I, IT or from Figs. 1, 2 it follows that so long as
the length of the cylindrical part is comparable with the diameter,
the calculated frequencies and the experimental values nearly coincide
with each other, but that they become a little different as the length
of the cylindrical part diminishes.

The writers wish to express their gratitude to Professor K. Tamaki
for his suggestion and guidance.
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II

Diagram

Frequency

Amplitude

Frequency
o
Pl III, Fig. 1 10 E 10 Tl 1V, Fig. 1
4 3 < i
I I i I S g
377 1000 1900 451 1180 2100 3000
10 PL IO, Fig. 2 10 9 PL 1V, Tig. 2
i |
377 1000 1900 451 1180
10 Pl 111, Fig. 3 10 PL IV, Fig. 3
'I
377 451 1180
PL HI, Fig. 4 10 9 10 PL 1V, Fig. 4
5 5
il nl I
413 1100 2100 3000 512 1325 2400
10 Pl 111, Fig. 10 PL 1V, Fig. 5
7
l5
413 1100 512 1325
10 PL I, Fig. 10 PL 1V, Fig. 6
N '
413 1100 512 132§



Plate T (Bell A)
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Plate IT (Bell A)
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Plate TII (Bell B)
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Plate 1V (Bell B)
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