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Abstract

The object of this paper is to extend an interesting research done by Campbell
on the solutions of Linstein’s equations under certain initial conditions and to study
some problems in relativistic cosmology by applying this extended result. Especially
the instability and the cause of expansion of Einstein’s universe are discussed in detail.
For these purposes it seems to the writer that Campbell’s method is more reasonable
than the methods adopted by several authors. In agreement with Eddington’s view,
it is shown that the initial universe expands when and only when local condensations
of matter which are closely connected by local diminutions of pressure occur more
actively than local annihilations.

In his valuable treatise on differential geometry, J. E. Campbell’
enabled us to solve the well-known Finstein cquation
Guy=o0,
under certain initial conditions by means of successive approximation.

In the present paper the writer tries first to extend his method to
the equations of the form

— . 1
Gy =g = _‘(Tuv“ oy >,

2

when 74, is related to gy, in some particular forms, and then to deal
with its applications to relativistic cosmology.

For this object the most natural and plausible assumption will be
that the actual universe was initially in an equilibrium state and began

1. This paper was read at the annual meeting of the Physico-Mathematical Society of
Japan on April 2, 1934.
2. J. E. Campbell: A Course of Differential Geometry, §§ 150-154 (1926).
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to expand or contract by some physical causes. Starting from this
point of view it will easily be seen that Finstein’s universe is the
best for the initial state, whereas a universe having negative or zero
curvature! and a cosmological solution without A-term® are not suitable
for the present purpose.

The last article of this work is devoted to the investigations on
the instability of Einstein’s universe first attacked by Eddington® and
on the cause of the expansion of the universe which has recently been
studied by several authors®.

For the present research, the writer uses the extended Campbell’s
theorem obtained in §1 under the assumptions that the energy density
and pressure are uniformly distributed for the first problem, while
their local changes and production of energy-flow really exist for the
second one.

§1. Extended Campbell’s theorem.

It was shown by Campbell® that if a quadratic differential form
andx'da®(2, k=1, 2, 3)° is given arbitrarily, where @y represents the
functions of three independent variables !, 2% &°, one can construct,
by means of successive approximation, a 4-dimensional Riemannian
manifold whose fundamental form referred to #', 2%, 4° and a new
variable &' is given by

ds*=VHdx")+ gudx'da®, (1.1)

which satisfies the Einstein equation for an empty world

Gyy=0
under the initial condition
(@s*) = guldx’da" = audx‘da®, (1.2)
where J7 and gy are unknown functions of 2% #', 2% 2* and [...]

denotes quantities evaluated on the hypersurface x°=o.
Iet us consider a more extended case in which (1.1) satisfies the
amplified field equations

O. Heckmann: Nachr. Ges. Wiss. Gottingen, Math.-phys. K1, 15, 126 (1931).
A. Einstein: Berlin. Berichte, 235 (1931).
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. S. Eddington: M. N., 90, 668 (1930).
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5. J. E. Campbell: loc cit.
6. Latin suffixes take the values 1, 2, 3 and Greek o, 1, 2, 3.
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: é’uvT> (I~3)

2

Guy—Aguv= “X(Z;w‘“
under the same initial condition (1.2), the explicit dependency of the
energy tensor Z7,, on g,, being given by
Zm:PVZ, Ty= Eo:: VS, Ta= — DGk (>I 4)
The line of approach here adopted for this subject is in principle the
the same as that of Campbell, but the calculations and results obtained
become somewhat complicated due to four equations which should be
satisfied by Z,,. Since two different kinds of quantities, i. e. quanti-
ties in the g-dimensional Riemannian manifold with the fundamental
form (1.1} and quantities in its immersed hypersurface x"=const. whose
fundamental form is given by
o= gudx'dx",
arise in our analysis, we shall discriminate between them, if necessary,
by a subscript “(4)” in order to prevent confusion. We shall further
apply the operation of raising or lowering suffixes with respect to g
and its conjugate ¢ to 3-dimensional tensors defined on a hyper-
surface 2’=const.
Now, if we introduce wy, after Campbell, by the equations
dg;

0‘;‘(’; = —s2Vwy (1.5)a

which, of course, may be written in the form

Ogu
d x()

then for the Christoffel symbols we have

{é.}z{/?.}, ' {Ol—— (U'] {/'}:—V‘(UZ’
2] 2 g 20
165

=2 I/azta)h (I 'S)I)

@
' 1.6
o\ LV (i\__alV fo)_ 1 IV (1)
{z'o}"_ Vooxt {oo}‘ S gxt {oo}— oox
® ) ®
From (1.6), we get
Ocw;::
G,, G+ wwy— 20]w,;+ l;” - T; (;;’g ,
gﬂi:gﬂ): I/y((oal‘“):i)y (107)

dw N
(Goo“ SV — Ve 0k 0 1 — VP whwr,
5 A
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where ; denotes the covariant differentiation with respect to gi.
Applying the first equations of {1.7) to (1.3) and then raising one
sufix, we get

(()?j: =V (Gt + wof)+ ViE— V(V”{ +——(p p)} (1.8)
where V="V ,, while making use of the second equations of (1.7),
(1.3) gives
4 ol o= =S, (I.Q)

for p=1, v=o0.

If we combine two equations obtained by contracting (1.8) and
by applying the third equation of (1.7) to (1.3), we get

G=whwi— &+ 200+ #p). (1.10)

Thus, in consequence of (1.5), or (1.5), the field equations (1.3)
with the energy tensor given by (1.4) are resolved into three sets of
equations (1.8), (1.9) and (1.10). On the other hand, since the energy
tensor must satisfy. the law of conservation, its divergence vanishes,
i e.

7y, v=o,
where , denotes 4-dimensional covariant differentiation with respect to
*&uve

By means of (1.6), these conservation-equations for ’che case glven

by (1.4) can be written in the form

= V(p+p) =25+ s, (1.11)
ox O

2.5 )

W: ﬁ +(/5+ )“‘——‘*"T/(Ub (1,12)

If, for simplicity, four sets of equations (1.5), (1.8), (x.11), (1.12)
and two sets of equations (1.9), (1.10) are called the sets (A) and (B)
respectively, it will be seen that the a’-derivatives of gu, «f, p, .Si do
not appear in (B) but merely in (A), while those of p, 7 never occur
in both sets. Ifrom this we can infer that, if, taking arbitrarily any
functions p and 7 of 2, &% #* and 2", we regard the set (A) as
generating equations of gy, «@f, g, S, we can determine them under
certain initial conditions on the hypersurface x’=o.

Among these initial conditions, it is evident that

Leu]=au, [P]:Pn: [Si=a: (1-13)::
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are considered to be those imposed on gu, p and .S, where p, and
o; are any given functions of %, #° x*. On the other hand, since
of are the mixed components of the symmetric tensor w; and more-
over satisfy (1.9) and (1.10), their -initial values £F given by

[wﬂ =0 (1 .1 3),,
must satisfy the differential equations
9, — 8= —za, (1.13)e

where 2=42% and | denotes the covariant differentiation with respect
to au, and the algebraic equations
@ 8= L 2}

G= ;05— 0*+ 2(2+xp,), (1.13)a
() R

where & is the scalar curvature formed by ax.

()

Differentiating two quantities .4 and Z; defined by
A= G— i+ o — 22+ xp),

and L=k, —w, ;+25;,

. e g, 4 Ay
with respect to x” and then eliminating di‘(:‘ , g;"; , jﬂv‘o = Z;:(;
by means of the set (A), we obtain

0.4 ey .

d;lo = 40" Byt 2 Vod+ Ve By,
0B,

B =1, .A— v A+ Vol

0x° 2

in consequence of the Ricci identity
Vij:j'“ I/Zj;i:!— V. Gi.

Hence, from the form. of these equations, it will easily be seen that
if A and B; evaluated on the hypersurface 2’=o vanish, the equations
A=0 and F;=o will remain true when x' takes any value whatever.
Since (1.13). and (1.13), represent the vanishing of A and 5; on #’=o
and the equations A=o and 5;=o are nothing but the set (B), it
follows that, when gu, «f, p, S; are generated by the equations (A)
from their initial values (1.13), the set (B) is satisfied by these func-
tions not only for the value x°=o but for any value of »°. Thus we
get the following theorem which will be called the extended Camp-
bell’s theorem :

Let any functions p, ¥V of a', 2%, 2* and a new variable &’ be
taken arbitrarily and moreover any functions au, gy o of &%, %% ° be
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given arbitrarily, where ay is symmetric and its determinant does not
vanish identically. If £f is found to satisfy
:,] l 'Q |i=— T X0y,
r.
ﬂmgk =i,

(G-— Qr0% — 2+ 2(A+ %),
)

and if gu, of, p and .S; arc successively generated by means of the
equations

7
= — 2 Vguwi,

ot _ V(G + wwf)+ VE— Vaf{l + L(P *p)}’

k 9V

w-d—‘g——““ Vo(p+p)—28 o

ox”
0.5;
dx()

in such a manner that ay, £, p, and o; are their initial values when
x'=o0 respectively, then the functions thus obtained, i

gszKZik—(z[V]llszi)x“-{- e
P=po {LV]Q([AHP«D—WL 6[ d —[V]e! }x”+ e,
axt

- VSk; &y

== 0/5 F(p+ )—--—+ VoS,

Semoct {1+ (a4 ) A 4 100}t
ox* ox*
are the solutions of the field equations

- 1
Guy— A8 = "'"( py é’wT)’

2

for which the initial fundamental form and the energy tensor are given
by
[ds*]=audx’dx”,

and Z}r):,OVZ; Tu=10w=VSy Tu=—pgu
respectively.

§ 2. Some properties of a non-statical universe.

In this article, following the ordinary view, we will confine our-
selves to the case .S;=o. Then, from (1.12), we have
0p
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This gives
_00(px")  _ Wp )
V= P , p= 50 0, , (2.1)

where @(p, x") is an arbitrary function of p and 2", unless p+p=o
and p is independent of x', #°, »#*. In consequence of (2.1), when p
depends only on x° so that p and }” are also functions of x° alone,
we can, without any loss of gencrality, take J7=1.° When we put
V=1 conversely, we find from (2.1), however, that  is an arbitrary
function of x° only, while p may be a function of &°, &', 4% 2%
Consequently we can state Campbell’s theorem for the case V=1
and .S;=o0, as we have done in §1. In this case the generating equa-

o

tions are
00 ,
o= 2, ]
()(l){-c T I3 S5 x . V
P = G% T+ wwf— 0 Z-}—T(p—p) , L (2.2),
dp
=w(p+o0),
P (2 +p) , )

where p is any given function of x° alone, and the initial conditions
are given by

Lo =au(s, o, %), [p)=pulac!, 2% o), []= 2, %, ), (2.2
where 2% represents functions satisfying

.Qé]l—‘-gl«,;:(),
lluu-(zz':[lkhQ:’:L_, : . (2~2)c o
(G)z!?Z N — 8+ 2(2+xp,).

It is obvious that solutions obtained by this theorem include all
those of relativistic cosmology except that of de Sitter, whose solution is
subjected to the conditions that p+p=o0 and p is independent of ',
2, 25 :

Tet ¥, 6, ¢ be chosen as coordinates denoted hitherto by %, %
x* and £ be written for 2. We regard
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— Ry o o
, sin®(3/ 7%y )
o) ——R,,“_'“—/e’——‘
L, s’V By) | 29
o) o) — R, M—/e———sm L (5.9)
po{ =const.),
22,07,
as ., Po, Q2 of (2.2), respectively, where Xy, oy, 2, are three constants
and 4 represents -+1, o or —1 according as the curvature of the
hypersurface a#"=o0 is positive, zero or negative'. Irom the third
equation of (z.2),, these constants are then connected by

(2.4)

Starting from (2.2) with these initial values and using a given
function #(¢), we obtain

R % 2 ke
gu=auf - 7p[-‘—(z+m.,)~ ) oo ) |

3
[ = =it 9p0>+87>(-~<z+/oo>

¥ }‘3—}- } (2.5)

where 4 dcnotcs [ ap
dt

)= -——() +xpy) —

0

] and ¢ is +1 or —1 according as #,>0 or

1, 0, after tedious calculation. Of course, this can also be obtained
by assuming

:z’s'lzdt‘l—lx’(z‘)"{dx‘l+M(dﬁz+sin20d¢")}. (2.6)
C

Comparing (z2.5) with (2.6) we have

EI S I k% x
]e(f) ——Zeo {I —2¢e T(X +ZP0) - - t+ [——6_<P0—_ 3?0)

+22— /:]tz— : [ “- fo———~(x{po+9p0} +82)
3 A 31 L2 6

(———(,H-/po)— 4 )"jm } (2.7)

In order to interpret the correlation between distances and radial

1. This device of representing the sign of the curvature is due to “W. de Sitter: Proc.
Akad. Wetensch. Amsterd., 35, 596 (1932).
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velocities of extragalactic nebulae, it is sufficient to take into considera-
tion up to the second term in the expansion of (2.7), making /=o to
correspond to the present state of the universe. But as we study the
instability of the initial state of our universe, we will take 7=o0 at the
instant when the equilibrium begins to be destroyed.

When ps, ps and s represent the energy density, the pressure,
and the radius of the statical universe respectively, it can easily be
shown, from the second equations of (2.2), and the third equation of
(2.2), that these constants must satisfy

() — =,
3 Rs - (28
and #{ps+ 3ps)— 28=0.
Eliminating 2 between (2.8),, we get
xps== ;efg — %Ps.

This indicates that, if £2=o0 or —1, ps must not be positive. Hence
we should take /£=-1 and moreover, from the second equation of
(2.8)., we see that 2 must be positive'. Consequently the equilibrium
conditions (2.8), may be written in the form

1 1
L (4 wpg) — L =o,
; (A+xps 7o [

and #ps+ 3ps)— 24=0,

(2.8),

which show that the initial state is identical with that of Einstein.
Since =0 now corresponds to the instant when the equilibrium
begins to be destroyed, we have
Po=Ps» 75(0) =ps, Ry=Rs.
Substituting these values in (2.7), we obtain by means of (2.8),
R, for /=o,

R(t>2% RSZ{I — (2.9)

e UAE } for 7=o,
3!
provided we assume that the universe begins to expand or contract
from an initial state of equilibrium. ,

Tt will be seen from (2.9) that the Einstein’s universe is instable

1. Cf. McCrea and McVittie: op. cit.
2. Cf. S. Kunii: These Memoirs, 15, 97 (1932).
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and expands or contracts according as <o or #>0 when 7 runs
through from negative to positive value. Hence the time rate of
change of p, which is closely related to condensations of matter as
shown in § 3, plays an esscntial role in the expansion. And we will
not able to measure accurately the instability and expansion of the
initial state, if we neglect the cosmological pressure p'.

§ 3. Cause of expansion, ’ :

We have just seen that, if the cosmological pressure decreases,
the Einstein’s universe expands so far as the change takes place uni-
formly. In this article we will inquire how the initial state behaves
when local changes of pressure as well as energy density and produc-
tion of energy-flow begin to take place. Regarding f=o0 as this in-
stant, the line element and the energy tensor of our world when Z=o
can be put in the ordinary form

ds*=d* — R&{dy’ + sin®y(d6* + sin*0d*) } (3-1)a
and
‘ps O | o) o
Rs o) o
= Z /)Z . ) PR sin*y o (31
o o o pelisin'ysin®l

respectively, where ps, ps and Kg are connected by the equations

1
RS

=——(+ps), 22=ps+ 3s). (3.2)
o

For simplicity, suppose that the disturbance of the equilibrium of the
initial state to have radial symmetry about a point / on the hyper-
surface f==0. Then, without any loss of generality, we may consider
P as the pole (i. e. ¥==0) of this hypersurface. These simplifications
will not impair the applicability of our results to real phenomena.
Transforming ¥ into 7 by the equation 7=/Rssiny and denoting
new components of the energy tensor again by 7},, we obtain from

(3.1), and (3.1),

a.’f:a’fz-{ @

~—-’-7-_ a0+ smza(w)} (3.3)e
YTTRS

1. Cf. Eddington: op. cit.
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and
( ps o o} o}
1
) S
?s 7 0 0.
Tuv= 1= 732 . (3-3)
o o P o
o o o  psisin®f

provided ¢=o and x'=7, 2°=0, ¥=¢.

The condition of radial symmetry now requires that .S, and .S
vanish identically and moreover p and ¥ must be independent of @
and ¢. When Z=o0, p and V" should bhe équal to psand -+1 respec-
tively, in order that they may be continuously connected with their
values given by (3.3). However, by assuming the existence of
universal time coordinate, we may put F=1. Thus the generating
equations in § 1 can be written in the form '

) o, )

_((%z——zgﬁwi, |
i

R A [T

o (3-4)
Ti =w(p+p)—St,

a5, 0p

O 9 e

of ot T

On the other hand, in comparison with §.1, it is obvious from
(3.3) that the initial values of gy, p and .S, are given by

—_—— 0 o
; 7
Ri — —
Qi = s y Po=Ps, =0 (3‘5)
o . — (o]
o o ~—7%in’f

respectively. TFrom the first equations of (3.5) we have for the non-
vanishing components of the contracted curvature tensor formed by au

a 3 2
%:: Gi:: G:;— Pty (36)
@ @ @ R§ :

Applying the third equation of (3.5) to (1.13). and (5.6) to the second
equation of (1.13), the condition of radial symmetry gives
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Qi=o, (3.7)
by means of (3.2).
Putting #=o in (3.4) and then using (3.2), (3.5) and (3.6), we get

2o [ ] [ o [ 5]
[ ot i Py R Py © o (38)

Differentiating (3.4) with respect to # and then putting £=o, the second
derivatives at /=o of these quantities are seen to be

[ L)L)
o ’ » ot

- )
[ *p 035, ]_— ] (3.8)
FYEN I RRPYE 07 L ot

by making use of (3.5), (3.7) and (3.8)..
Proceeding further in the same way, we find

Peu T
T | 22|

[ =zl ) or ]

NEREN K SN (3:8)e
r 0r L oz RE L '

[azsl]: or@] ’ V
or* ar L oor I )

Thus gi, p and .5; are expressible as the power series in ¢

# [Op]
Gir = Qags % + oo,
i Qg ™ 3 —T o

p=por LA | %) ]

s araﬁ _ araﬁ] (3.9)
LR " R val E-Far e Iy }+ :

and

2 0 |' 04 ] £ 0 |— 0225]
S = -
! 21 or L of + 3! or L o +

Consequently the line element of our universe when #=o is given
by

3 7.2
({52: [/f"-—- (1 — Z ;.[ ()’ﬁ ]){ ar 5 +7'2(d02+ singﬁdd)z)} (3.10)a
3! ot _
I e
R
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within the accuracy of the third power of Z. Transforming 7 back to
%, this is converted

. 3
dsﬁ:dzhkg(l—- £ z[ ‘Z ]){d;f—%—sin"x(dﬂ"+sin‘10d¢")}. (3.10),

-
3

3 T Q, 1
This formula for our line element implies that Rs<1 ——i—'/[—%bf
£ 0 ' 3
i. e. RS<1 -3 7‘[ djjf ]> may be regarded, within the accuracy of the

third power of 4, as the radius at the point ¥ of our universe which
will be called the local radius at y. Consequently the local radius at
any point ¥ expands or contracts from its original value Ky, according

0 . . . - .
as 0‘? in y is negative or positive. From the second and third

equations of (3.9), it will easily be seen that the (macroscopic) density
p of the total energy varies with the time in the same order as the

local radius, but the variation depends on [ 01?’] and 9 [0‘51]
o o7 o

other than [“5‘;,— . Hence the change of local radius has nothing to

do with it directly. In this sense we find the expansion of local radius
is not caused by the fluctuation of the total energy-density p but it is
caused by the fluctuation of the pressure.
Denoting the (microscopic) density of matter by px, we have
Pu=p—3p.
Hence, from (3.9) its explicit form is given by

a4}
pau=(pu)s 11 L of 21 Log 31 Uzt Lo

G D bl bl

_ 37 i[aﬁ]ﬁ["‘?]} ;.
AT B 7 (3-11)e

where (py)s represents the (microscopic) density of matter in the initial
universe.

From (3.11), we obtain

T

that is to say, when £=o, the increasing rate of density of matter is
equal to three times the decreasing rate of pressure. Hence the local
radius at ¥ can be written in the form
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9
Rx+ Lo Zon ),

36 ot ‘
and consequently it begins to expand wherever condensation of mat-
ter is formed. From this it will be seen that. the mean value of local
radii becomes enlarged if condensation of matter takes place, as a
mean, in Kinstein's universe.  Accordingly the expansidn'—'pfocess of
our universe can be stated as follows: :

If at first variations of pressure and of density of matter, which
are closely related to each other by (3.11)s occur in the initial equi-
librium state, the flow of energy is then produced, but the (macro-
-scopic) density of total energy and the initial radius remain unchanged.
In the next stage the radius begins to expand or contract locally ac-
co‘rding as condensation or annihilation of matter takes place, while
at the same time the density of total energy also begins to vary in a
somewhat complicated way. And if the mean condensation of matter
is positive, our universe will make an expansion as a whole.

In conclusion the writer wishes to express his cordial thanks to
Prof. K. Tamaki for his kind advice and encouragement throughout
this work.



