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Abstract

The effect of the coast on the wind current has been already investigated by W,
Ekman, but his treatment is not an exact boundary value problem as he states'.

Thereafter, several investigators give solutions of the similar problem under the
boundary condition that the component current normal to the vertical sea wall is nil
at the coast. But their solutions are appropriate only when the tractive force of the
wind vanishes at the coast; otherwise they do not really satisfy the above boundary
condition.

In the present paper, the writer investigates exactly the boundary value problem
when the tractive force of the wind is nil at the coast, but is uniform all over the
sea surface.  Taking into account the term of the horizontal ¢« Austausch ”, he suc-
ceeded in obtaining a complete solution for the steady state.

According to the results, the deviation of the Ekman’s theory from our exact
solution for the cwrent and the surface slopeis limited only to a distance from the
coast equal to one or one half times the depth of the sea. The surface elevation is
much the same in both.

The chief object of this paper

W. Fkman has already investigated the coast effect for the wind
current in his paper of 1g9os and 1923, but his solution is not an exact
boundary value problem as he states. It is because he does not use
the boundary condition that the component velocity normal to the
vertical sea wall is nil at the coast (x=o0, L), but only uses the equa-
tion of continuity that the total flow normal to the coast vanishes
everywhere.

1. Ekman, V. W.: Uber Horizontalzirkulationen bei winderzeugten Meeresstrdmun-
gen. Ark. Mat. Astr. o. Fys. Bd. 17, Nr. 26. 1923.
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J. Proudman and A. T. Doodson® studied the motion of water and
the surface elevation generated by a special wind in a canal, and ob-
tained a solution which satisfies the above boundary condition.

They used the equation of motion in usual form

Qe o¢ 0*u
*,_-—: ‘_‘g'—-—-'—— /l——:‘— ........................... ( I )
ar Ox dg
together with the boundary conditions
%w=0 at #=o0, and L ... (2)
Ot - : -
pt = — Tsinkax at z=o where ;=2 (3)
dz L

And they obtained a solution of the form, e=/{z, {) sin A, and stated
that “ The gencral case can be built up by the superposition of these
particular cases with different value of 2.7 But it is doubtful whether
the purpose can be attained by superposing these particular cases, or
not. Indeed, when the surface traction 7 is any function of x, by
expanding 7(x) into a Fourier’s sine series we can obtain a solution
of form

9= 00

=50 26(2, )SINAX. e (1)
1

by
- The above series (4) vanishes certainly at x=o0 and Z, but it
does not necessarily vanish when x converges to o or L. IFor the
actual purpose, however, we must of course take the boundary value
as the limiting value when x converges to o or Z, but not the direct
value at x=o0, or Z. Indeed in the present case. if 7 itself vanishes
at x=0 or L, the scries (4) will also vanish for x—o or Z, but other-
wise or when 7' is uniform all over the sea, the series does not vanish.
In other words, the condition (2) can not be satisfied. As Proudman
does not treat the general case, we can not point out this fault. But
in the recent papers of Dr. K. THidaka® and Mr. K. Kocnuma® on the
problem of the drift current, the above weakness is present.
Thus the next step on the problem must be to find solution which
generally satisfies the condition (2). Recall the theory of the conduc-
tion of heat, then its answer is very clear. Namely our purpose will be

1. Proudman, J. and Doodson, A. T.7 Time-relations in meteorological effects on the
sea. Proc. math. Soc. London, Ser. 2, Bd. 24, Part 2. 1924.

2, K. Hidaka: Motion of Lake Water generated by Wind. Part I. Geophy. Mag. .
Cent. Meteo. Obs., Tokyo. Vol. VIi, No. 3-4, 1933.

30 BHE - e HTEE 67 (1933); 226 (1933).
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attained. by raising again only one term of the horizontal “ Austausch”

d..
¢ Fp |
x, two degrees of freedomn appear, which supply the two boundary

in eq. (1), because, from the second derivative of # regarding

condition for x.
Actually in a lake or a sea whose depth is very small compared

can be usually neg-

: A Pu
lected in comparison with the vertical * Austausch” /l——‘r)q,, , but in

. . . . P
with the horizontal dimension, the term pg—o:

the immediate neighbourhood of the coast this term can not be neg-
o’

lected and becomes even larger than p . Moreover, in the region

b

where the wind traction changes very abruptly, this term also becomes
large and it can not be neglected.
Thus, in the following section we shall give a solution which

o,
—1nto account.

.

. . . . 0
satisfies the condition (3) at the same time taking p

Solution

Now, for simplicity, let us consider only the state overlooking for
the time being the effect of the earth’s rotation. This simplest case
is sufficient for our main object aimed at in the present paper.

Conceive a sea of uniform depth and of semi-infinite extent, whose
one end is bounded by a straight vertical wall. If a constant wind
blows uniformly all over the sea, the surface elevation or depression
caused by the wind will become infinite at the coast; but it can not be
admitted physically. Fence we shall consider a case where the wind
blows over only a finite region from x=o to x =/ and in the direction
normal to the coast.

Choose the coordinate axes such that the z-axis is directed ver-
tically upwards and the x-axis lies on the sea surface and perpendi-
cularly to the coast, and x is measured from the coast seawards.

Let the following notations be used :

ZI'=the tractive force of the wind per unit area of the sea sur-
face, and it is uniform for o<a </, and vanishes for x>/,

k=the depth of sca,

p=the density of sea water which is here assumed to be unity,

p=the coefficient of the eddy viscosity of water,

w#=the velocity of current in the direction of x,
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/=the coefficient of friction at the bottom, assuming the resistance
proportional to the slip velocity.
Then the current and the surface elevation produced by the wind
will be represented by the solution of the eq.

& 0[: =p 0 + 01”) for x>0 and '—“/Z<Z<O, (5)

dx ox* 07
with the eq. of continuity
0 .
S BAZTEO,  ereeeerienenneinenaa i (6)
-~
and under the conditions
9 =—7 at z=o for o<a</
0z
o ~(7)
o =0 at z=o for x>,
0z
I =K at 2=—7, | ceereieiiiennen (8)
z
where K= L,
H
=0 at =0,  cerirriiiieieien.s (9)

O .
2, ’UT’ and ¢ are continuous at x=/ ‘l
x

and are zZero x=o0Q,

To solve the eq. (5) we shall use Stokes method. Iet z, SC and

7" be expressed by Fourier’s integral, then

‘[;, 24-:—2-[003in(zx7/(a) /7 SOOI (11)
g T JO
where wn)=—1" jwu()‘)sina)\ da,
,, g,
_Z_C*_—_— 2 S r(o)sinex dx e, (12)
x  x Jo
where 7({5)55 9% sinad d?,
o O
VAR el .
T Ta)sinox dx ceveveeereninannnenss (13)
gn T J0

-

where )= T

oh a
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(}27[ ()22& . . . .
Express — and also with Fourier’s integral
Gu - 2 (™. = 0% P 2 (2 0
— ="\ sinexda ! sinaddi == = —sinax dx,
o7 T Jo o dg* po omJo 0
0% 2 (. ® 0%
— ==\ sinax du —sinad dA.
0x* T Jo o 0F
Now

w,

w0 2 l 2 2
j‘ d 7{ sinad d2 ZS kL sinald2 +S J 71 sineldA
o opf 0 : OF .

2
S

1 £ 13 3 hd
:[ O sina.i.] +[ O sinal] -ag d\” cosaln’l—aj QZ/ cosad d2.
BT o o) r o Jo 02 ¢ 04

J A

. . 0
gyi] is continuous and that [/x—%] =0,
dl A==l dx A=

the above expression becomes

TFrom the conditions that [,u

»

z
= — aS dut cosaddA— ag du cosnA dA
o 02 04

4

: * L
=— a[n cosa)} — a[u cosal] — aS 7esinad dA,
0

o Y

Here again remembering that [22(2)]=[#(A)]==0 and 2(2) is continuous
A=0 A=

at 1=/, we get

0% ® ®, . ) “, .
% = ——~2—S smaxdaSa‘zz(a)snm)\a’A: g 2 Sa‘zf(a)smaxa’u.
0x* T Jo o poowJo
. P 0 a .
Substitute the above values of Zi , Zf , and € into (5), and
oxt’ 0 Ox
equate the factors of sinax, then we get
v .
= <22 S /
= , (5"
where = —j—— and o=ak.
7

Corresponding to (5/), the eq. of continuity (6) and the boundary con-
ditions (7) and (8) become as follows :

0
j DAETZ0, v (6)

-1
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do VA I‘—COSO'—//Z-" ‘ R
E= v [ o<l x</,
at =0 ( 7’)
a;z; = x>/
as
and
Zi’ = Kr at f=-—1 L (89
where K=hK.

Since y is independent of &, the general solution of (7/) is ob-
viously

p=-1{ Asinha(1 + &)+ Ascosho(1 + &) —1}.
e

Determining the constants 4,. 4, and y by (6/), (7)) and (8), we
obtain
I”‘COSG‘—/——
7 h
¢ d{osinhe+ Klocoshe—sinha)}

T=m e

X [ K(o—sinhe)sinha{1 +£) + {0"3 + K{cosho—1 )}cosha(r +&)

—osinho — K{(cosho— 1 )] ........................ (14)
and

==, . __ /
Va {O'a]ﬂh()“{"“ K (coshe 1)}{1 COSO'~7Z———-}

= 3 = : 15
4 & a*sinhe + 'K(acosha — sinho) (15)
Therefore the current and the surface slope produced by the wind

traction are given by the following integral forms.

7] 2 ® : 2
;&?7/: " S«) (o, E)smo-—;a’a, ........... (149
and
()C 2 e A ’
3 “-;Z—S07311107({a. ..................... (15"

For convenience, to:evaluate these infinite integrals we transform
them into '
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'uq == — 2 TS 7 (o, §) sincr—?—"—-daﬁ-i lg?z"(a,f)sino- x;f—! do
? {

on? 7 ghle ~ T gl
F- L [S ?'(a, E)Sin(ia [—x >n’o, ......... (14")
T ghJo /]
i} ARGV - 7, x-
e =2 fg 7’(0)311104-%——0'0'{- ! 'fS 7'sine tl do
ox T ehdo V/ T ghilo Y/
L Lj 7’(a)sin(:*:c [—x )a’a', ............ (15")
m ghdo Vs
where o/=—-_9 and 7=-—-54
7 7

and the upper and the lower sign must be taken according to o<<ax <</
and x>/

Evaluation of the above integral can be casily carried out by
Cauchy’s integral expression. The results are as follows:

7 o . Bsx —.-.@;’L -
L _y= -LZB,,{a # +e¢ 2 sinh —@’i}
gnt eh T ‘ %

X {,Bssin[i,( 1+ &)+ BeotBcosB1 + 5)}

T{S(K'Jﬂ) ¢2+5+_@:ii_~} for  o<a</,

o Vy(K+3) -~ 4(KE+3)
d —_ {3"“‘7 _ Bs‘?;
/l‘, = z > )S{f . —¢ & cosh 4 }
e gh 1 /i

X {ﬁssinﬁs(x +6) + BicotficosBt +§)— 1} for x>/,

Beanpf,+ K(secf—1)

where By= 22 g ,
BB+ ( K+ 2)tanf,}
and f; are roots of eq. tanﬁz»—-fgg% which involves an infinite
B ,
number of real root. '
w0 . Bv-ﬂ' — gsl . Iy . . T
—@“C“‘:'” 7 ZC;{& 7% “+e¢ % sinh P }—— T "(2_’_{&_)
dx gh T Vs gh 23+ K)

for o<a</,
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o Ber Bsx
o T ch{g—7ﬁ—€_ % cosh-"— /3/ } for x>/,
1 2

Bitanf, + K(secB,—1)
BB+ (K + 2)tan £}

Integrate (18) with x and determine the integration constant by con-
dition (10), then we have surface clevation ¢ generated by the wind.

where Ci=2

'Z - ﬁ‘}‘__ fral (5 = L
:'—“zl){ % cosh-+i B e }.__/_ "(“+;7§) x—{
z g 263+K) A

for o<a</,

1

oal [=-] B.‘x Bsx
=~ 4 ZD.‘{A‘” % cosh B —e  h } for x>/,

. BtanB, + K(secf,— 1)
ﬂ B+ (K +2)tanf,

Lastly from the horizontal velocity = given by eq. (17) and the

where D=

. D2t v . . .
eq. of continuity LIRS dw =0, we can obtain the vertical velocity
x 2
of the current, 7. Namely
. /
7] 7 & b P
£ = z {c % cosh—2 Bex —¢
a/z g‘/ 1 /3

Bor Bex

/; = 7 ZBs{ﬁ'M/z cosh
- 1

)
x {[;’scotﬂssinﬁs(i +&)— fcosB1+€)— 13‘,5} for o<x</,
)

x {ﬂgcotﬂssin B(1 +&)— p.cosfi(1 +§€) — ,Bf} for x>/
.............................. (20)

In the above obtained egs. (17), (18) and (1g), the 2nd parts are
9%

Ox®
is neglected, namely they are identical with the solutions given by

Ekman. And the 1st parts may be considered as the correction term
0%

o’

the solutions when the term of the horizontal “ Austausch” p

for Ekman’s solution due to the consideration of p
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Now we shall regard the two extreme cases when XK=00 (no
bottom-current) and K=o (no bottom-friction). Then in these cases
(17), (18), (19) and (20) become respectively :

(a) Case of no bottom-current, K=oo,

PRI Bex B+
B = 7 ZB.{(?_ ko +eT sinh~—[)’;—x~}
1 L

K/ gt
. \ T 3 & I
x {ﬁssmﬁs(l +&)+cosp(1 +&)— 1}—- {—‘—5 +§+——}
gh L g 4
for ol x</,
@ Bsx Bsx
£ 71:»2; 235{6__77“—5‘ 2 cosh—g‘f—l—}

o ol T V/

X {Bssin[ig( 1+8)+cosp(1+&)— 1} for x>/,

where Bym=a s 1

and f; are roots of eq. tanf=p which involves an infinite number of
real roots.

o LS B e sinn B 2.z
— = — C‘s > h o+ n Nh—22 b .
e o 2 Ry e sinh~- —
for ol x</,
o 7 & _ B B Bl
= = g{é’ %z —¢~ 7 cosh '11-} for x>/,
Ox oh T Y/
.............................. (18)
where Ci=2 secf— 1
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secfs—1

/353

where Di=>

- Bl N "
£ = Joh comn b~}
P ¢ o 2 > cosh - ¢
X {sinﬁs(l +&)—B.cosp(1 +6)— ﬁ.f} for o<x</,
ly w0 Bax Bax
—£ = a ZB{ Tk COSh—@i —c R }
o ol 1 Y/
% {sinﬂs(l +&)— Bcosf(1 +8)— B,,f} for x>/,

e e (20)

(b)  Casc of no bottom-friction, K=o.

@ B.«x @J
= z ZL&{(“ i +e” h sinh-H— frv }cosﬂg
o’ /2 /3
4 { L g ! } for o<x</
gh L2 3
ﬁe‘v qu
TP P{f —e" k cosh—‘@—!---}» for x>/
o7 o >3 : ’
.............................. (17")
where =,
/3.5

and f3, are roots of eq. sinff=o which involves an infinite number of

real roots.

»—O—C——:— T for o<x</,

ox oh

P TR (18")
- for x>/ J

ox

7 x—1

o — for < '<Z,

¢ g Y/ oresESL L (19")
¢=o0 for x>/
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Bex

w0 _ Y ﬂ Z _
ZBS{(? ) cosh——/i-——a % }sinﬂsf for x>/,
T 2

et e (20")

By these formulae for two extreme cases (K=00 and K=o),
we can calculate numerically the horizontal and the vertical current

)z 7T

o=

5
g i

without

and t, the surface elevation ¢ and the surface slope
much labour. Tables 1 and 2 (which give only the values of the
velocity near the sca wall, but the values near x=/ are omitted) and

Tiigs 1, 2 and 3 show the results thus obtained, units of the current

r I,

and 7. respectively.
I &
In these figures, the scale of depth is taken to be the same
as that of the horizontal length, and the vectors show the direction

and the surface slope being taken as

and magnitude of the current velocity.

Table 1

K =co (Case of no bottom-current)

\asi | | |
o 0.1 0.2 0.3 0.4 0.5
70N
ks w 2L w " w (3 @ KA w k{2 @
o o | o 1420 © .186} o 2110 © 228 © .236;E o
0.1 o |—.088 .058 —.048 .IOOE —.029 .I22 —.014 .I37, —.000 .I45 —.006
0.2 o |—.153 .018 —.088 039 —.052 .054 —.028 .06g —.017| .070. —.0II
0.3 0 |—.165 —.002 —.102 001 —.063 .006 —.037 ,008 —.023 .0I1 —.01§
0.4 0 |-.140 =.023 —.093 —.022 ~.00I —.027| —.040 —.030 —.025/ ~.030 - .016
0.5 0 | —.109 —.028 —.075 —.042 —.052 ~.052 —.038 —‘050i —.024; —.062 — 0I5
0.6 o |—.082 —.031 —.056 —.046 —.038 —.059 —.039 —.067 —.019 —.072 —.0I2
0.7 o |—.061 —.035 —.039 —.050 —.024 —.062 —.021 ~.068 —.013 —.074 —.008
0.8 0 | —.035 —.028 —.019 —.045 —.0I3 —.053 —.0I0 —.,057 —.0006 —.062 —.004
0.9 0 | —.0l1 —.015 —.006 —.026 —-.0035‘ —.031, —.003 —.032 —.002 —.035 —.00T
0.1 o | o o o o o o o o o o o




Table

2

E =0 (Case of no bottom-friction)

] 0.1 0.2 0.3 0.4 o5 0.6 0.7 0.8 0.9 1.0
z//z\
® w 7t w 2 w 2 ke k12 w 7% w k{2 w 7t W k{4 w (2 w % w

o] o o 145 0 .210/ O .246] o 272 O .291} O .302 O .3111 0 317 O .3211 O .324] ©
0.1 | 0]—:112] .070|—.061 .124/~—.042| .157|—.029| .180~.018 .198—.013 .200,—.0I0 .217—.007| .223/—.005 .227|—.00} .230—.003
0.z | 0—.196 .030|—.113 .061|—.078] .086/—.055 .105—.039 .119|—.025 .128/—.018 .135—.013 .I35—.010 .143—.007 .146—.005
03 | 0,—.212 .021}—.145| .O[9\—.I101] .043/—.072| .041|—.046] .053/—.034| .060|—.025 .065—.018 .068/—.013 .071~.0I0 .073~.007
0.4 | 0|—.216/—.012{— 162/ —.011|—.114|—.000|—,081|—.003—.085| .000/—.040 .003/—.029 .006|—.021| .007|—.01I5 .009/—.0Ii .0I0|—.008
0.5 | 0j—.176]—.019|—.148—.027|—.108|—,033|—.079| —.038 — .05 7| —.042| —.042|—.042| — .03 1| —.042|—.022) — .042|— 016 — .04 2] —.01 2| —.04 2| — .00Q
0.6 | 0/—.161}—.028/—.124 —.042|—.093|~.057|~.070| — .066| — 05 5| — 07 4| —.040|—.077|— .029| - .081| —.021| —.082|— .01 5| —.083'— .0 1| —.084 —.008
0.7 | 0/—.114{—.029|—.093 —.058/—.073|—.072|~.0§6|—.081~.046| — .097|—.034|—.104|—.025 —,109| — 018 —.112/—.0I 3\ —.115—.0I0|—.I17|—.007
0.8 | 0|—.088/—.038/~.061|—.069|— 050 —.086| —.039| —.103| —.039| —.113|—.025| —.122|—.018 — .129| —.013|—.134|— .010 —.137|—.007| — . 140, — .00%
0.9 | 0,—.036—.036|—.023}—.072|—.021|—.092|— 018 —,109|—.018|—,112|—.013| —.133]| —.010|—.141|—.007|—.147|—.005 —.151|—.004| —.154/—.003
1.0 | O O —.041} © —.074{ © —.096| o —.114} O —.145 O —.136] 0 —.I45 O —.151} O —.155 © —.158] 0

SO omyonyor - -
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Fig. 3
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Conclusion

Iet us enumerate the important points which can be seen from
the above Figs.

1). Near the coast (x=0) or the place (x=/) where the wind trac-
tion changes abruptly from value 7 to zero, water particles circulate
in the vertical section of the water basin. The horizontal velocity
vanishes at the coast itself, but it changes continuously at the place
x={. Thus our principal object for the boundary value problem has
been attained.

2) A perceptible vertical motion is limited in the immediate
vicinity of the coast or of the place of the abruptly changing wind;
a little apart the current becomes much the same as that in Ekman’s
theory. Indeed the horizontal range where some correction to Ekman’s
theory will be neceded is only a half or equal to the depth of the sea.

3) Regarding the surface elevation from the mean sca level, our
solution is much the same as that of Ekman’s theory. When K=o,
no correction is needed and when Z=00, a slight correction will be

wanted as seen in Fig. 3, in which the correction value is exagerated
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to ten times the calculated values. The surface slope, however, must
be corrected somewhat near the coast and x=/7 ‘

4) After all, from the practical purpose our result indicates no
marked difference from Ekman’s theory, except the generation of the
circulation near the coast and x=/, but makes some advance from the

theoretical standpoint.
In a similar manner, we may obtain formally the solution for a

rotating sea; but from the above reason we find no necessity to dis-
cuss it in detail.

In conclusion, the writer wishes to express his sincere thanks to
Prof. I. Nomitsu for his kind advice, and also to Assistant Prof. 7.
Namekawa for his valuable suggestions.





