On Abel’s Integral Equation
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Jitroduction . In general the following singular integral equation,
which is derived from the tautochrone problem in mechanics,

(1) SI ,,,*_,‘z?.(_{.,)w. =A(x) (o< au<t)

is called Abel’'s integral cquation', in which ¢(s) means an unknown

function and A(x) a given real function of a real variable x, defined

over the open interval (to the left) o<lx=a which we call it /.
Now if we suppose that A(x) be integrable in 7, we have

(2) o(x)= singz 0 jz /(z) ds

T Ox Jy (x—2z)"°

as the unique and continuous solution.
But moreover if we allow the existence of the limit A +o) and
the value of the integral:

r A6 s

+0 (\f ”)l *

the above formula (2) will he written as follows:

(3) sD(x)*-f”’“’"‘ { U (;_O) S” lﬁ(:)féﬂ}

vo (x—2)'™"

This is a well-known formula, given by Mr. E. Goursat®.

1. Maxime B8cher; An Introduction To The Study of Integral Equations, Cambridge
Trac. in Math. and Math. Phys., 1926, pp. 6-11.
2. Acta Math,, Vol. 27 (1903), pp. 131-133.
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Next, when the limits of A +0), A(40),...cv.... and f(4-0) exist,
e
and also the integral S (x =z FOD(5)dz  exists, then the above
+0

formula (3) will take the following form

_ sinex [ A+0) /{(+0) . f”(+o) o
‘ )= 4 AL T oaennns
(4 ) ‘lg( ) T { a4 17 (I((l“f‘ I)

+ Vf(n)(+0) xu—t—n-—l

dat1)..(atrn—1)
1 - -

+ 3 v — ETIE WL CTE R §) = (l’g}.

ala+1)...(a+7z—1) +0(‘c R

Tately by generalizing the exponent a of (x—s)™® in the integrand of
(1), Mr. R. Rothe* discussed the functional equation

(s5) | (v —sPels)ds=1(x) (3> —1)

7+

instead of (1). Evidently there will occur Abel’s mechanical problem

2

for the special case B= ——— in this formula. Mr. Rothe shows as

another example Toricelli’s law which holds the special case f= L
2

while before this Mr. N. Hirakawa® discussed the same case by deriving
from another mechanical problem, but this method is quite different
from that of the former.

Now taking such a number pg> —1 as

(6) prpyi=u (2 being any non-negative integer),
if we allow the existence of o — j (3——x)"f(x)a’v we shall have

0S
the unique solution of (s5):

(7) ¢(s)=

{)n-ﬂ )
x)" dx,
1](/1)]1([9) o1 j‘ .0( “6) f(q,) v

where II{x) expresses the Gaussian Pifunction for all the values of x,

excepting only A= —1, —2, —3,siceeiiineran .

1. In order to generalize the functional equation (1), we may
consider the following formula :

1. Zur Abelschen Integralgleichung, Math. Zeitschr. Bd. 33 (1931) pp. 375-87
2. Ona Simple Integral Equation, The Tshoku Math. Journ. Vol. 7 (1915) pp. 38-41.
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( 8 ) S” XS} S&L—-l SD(Sq;)(iSq,d\s',,,_l......({S\ ___f( ’V)

+0¥ 40 v (B=s)n(s—55)%...... (Sn-«l—_sn)a"'
under restrictions : 0<a,<1; f(x) being given and ¢(x) an unknown
function to be required. Conjecturing from this form, we may for the
present call this the 7n-th repeated Abel’s integral equation. And for
the sake of convenience, we adopt the notation

(0 |

(x —s)e(s)ds=M(¢, B)
+0
after this.
At first, we wish to study about the special case for =2 in (8),
which will be called the second repeated Abel’s integral equation, that is,

(8,) Sz 3‘31 sO(Sz)CI/’&zLZ’SI =f<x) (O<(li< . 1:.: . 2).
‘ +0

ro (= s5)n(s1—55)%
For that purpose, put

(9 ) rl **ﬂwxg)d& 2901(31) (o<ay< ),

N O
then the above equation (8/) will take the form
(8”) Ss M.‘_.:/(x) (o<a,,<1).

+0 («"7”’51)“‘

‘Thus when we allow the existence of the limit A +o0) and the integral

M, a—1) in (8”), from (3) we obtain

sin ’,1!,"",4{1_(_“419‘)‘* n g ____fi{_).té__}

xI—a 0 (x._g)[-—-a‘

50‘(;’6) =

By applying the formula (2) into the equation (g),

sinaz 0 S i(=)ds
7 dx Jy (x—z)1—a

o) =

Now replace the above results into ¢, then we have

r eR)ds  _ sinam { A +0)S” ds
J 0 (:V—S)I"'a:’ T +0 zf“‘“x(x—z)1~'“z
te * 7z
-+ F(o)dz g ¢ } ;
J+(~‘/,( 1) 1‘ 5 (x___z)r——u._,(g_zl)l——a,

.o ¥ - ~ -
in the second member, if we put s==x/ into the first integral and z=
2+ (x—25)f into the second one, and transform the integral variable z
into £, we can evaluate as follows: -
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7

_ singrw { oy — )M (ay—1) [N
o+~ 1) S+ 0)x

Il(a, - I)[](lz.,—-— 1) - }
! - DELS, Ly = .
o+ a—1) LS ot o | 1)

Hence we obtain

()= sin gy sin o Moy — 1) H{ay— 1) {f( F o)t

a Hay+oy—2)
Do
. S DS, o Fay— }
ay + a1 ()37 (f “ “ ! )

Consequently we can conclude as follows:

Theorem 1. When the liits f{+0), //{+0),...ccrn.. , and fO(+0)
and the tegral MO, wFayt+v—2) exist, the sccond repeated
Abel's integral equation has one and only one solution, which is gtoen

by
sin agr sin awr oy — 1)1 {0z — 1) { e
x)= + o) tas—2
o(x) g o /(+0)
v //(4—0) porbey—T
oyt o — 1
T 4 ) O

(o, 22— 1) (o1 + e12)
e B
(e + as— 1)y F ). ety F o+ v—2)
’ ! DS+ ay+v— 3)},

+
(s +am—1). (a+a+v—2)

where a4 ay— 1=}=o.
Thus we have at once the following corollary to Theorem 1.

Corollary. [n order that the contimous solulion of ihe sccond
repeated Abel's ndegral cquation (8'), defined over I, mnay hold the
Sinrte and determinate it at the potnl x=-+o, it 1s necessary and
suprceent that (i) A +o)y=/(+o)=0 for o+ m—1<o; (ii) (+o)=o0
Sor eyt ay—1 >0, where o<ey<o (i=1, 2).

Next let us investigate on the particular case when o +a;—1=0.
For this case we see

r o(2)ds __sinam { 11ga1'1)11<_(}.‘) A+0)
7o)

Jyy (w—z)1—a I

b = =a) (% iyl = a0y U s = A
| 11(o) S RAS "’“} S+ >*‘S_‘_6/‘ ()i==/(z0),
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accordingly we have

sinoer 0 (% ., si — )
(o) =-1LET AY f(g)(/g:_?ﬁ_(_‘__i’,z)_mf(x),
w (),',1? Voo e
Hence when ay+ay—1=0, the sccond repeated Abel’s tntegral equation

has one and only one conlmnons solution. Swuch a solution 1s groen by

o(x)= sin ( T%Tif,‘",)f? A

Now we should like to look again at (8/) from another view-point,
Apply the Dirichlet’s formula for the double integral to the equation
(&), and since by using the transformation s =g + (x — )/

(" ¥ ’si - (83)dls,
(s ’{'“*’S ; sy :S plsaddsy
‘ +“S¢( ) o (= )a(s, —sy)% o (A —s)mta— o
71 - — g
\ —es{ — /)—au,r/::y,,l!( —a)l(—a) S (2 — )1 —ase(5)ds,
J o Hi—ay—ay) Vo
the equation (8’) may be written
(s") | = spetas=rio) (>p> =),
+0
where JSx)= (1 = 0= o) Ax), f=1—a—an

1~ o) 11— o)
This is the same form as the equation (5), previously given by Mr. R,

Rothe, hence on account of (), we have the following
Theorem 2. For any choice of such a nwinber p>—1 as p+p+1=m

0m+[ )
C)x,,”rm}x(f ) /l) exist, the

second repeated Abel’s mmtegral equation has one and onlv one contin-
ous soliutron 1 I and ths solution is given by

(w2 any grwen non-negative mteger), tf

1

(= a) I —ax) (o + s+ 772 — 2)
O‘m, +1 ta i o “ iz
";;;;:T"" +0<.'1/ ""S) 1Hayt ff(f)(/‘?.

p(x)=

Particularly we seek a solution of (8”) which satisfics the limiting
condition

(10) lim s@(s)=G (G being any fixed number)
&> 0 !

when o< f<s. Then after Mr. Rothe' we can casily obtain

1. Loe. cit., p. 378,
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i —m—a) sin (o + o) S'(+0)
(1) #l)= (t—ay—a)yr  H(—a)ll(—a) {

+ wxal +;2 TR S Sx (x— S)“‘—*'a?f”/(s)dy}

oyt oy agt e Vg

xl—a—a

and this is the unique solution (continuous in /) of (8”), accordingly
of (8’). Iurthermore at the same time the condition &¢=o will neces-
sarily follow.

Now if we put y==2 into Theorem 1, we have

o(x) = sin agrsin w0y — 1) 1l(az— 1) {f(%_ohlaﬁ_%_g

7 o+ oz — 2)
‘{... A.M,r{i(,,.:t.c_),)_«\;ta] “+ay—I + - »/.,/( + O) At “+a,
a -+ as— 1 (o + a2 1)y + 2)

-+ 1 ED}x .///, ta } :
(o) +om— I)(’/-x + az) (7, at+az)

when the above ¢(x) satisfies the limiting condition (10), from
o>mta—1>—1, A+o)=o0 will be followed. Therefore

ox)= sinagsinegr oy — 1) {0z—1) {Af’( +0)
= oy +a—1) AT—a—a,
PRl . £
+ (o) yoba oL S (x—s)mta M (5)ds,
ot ay ooy Y

whence the above thus obtained solution must be identically equal to
the expression (11). But we can easily ascertain this identity by pro-
perties of the Pifunction, namely

11(1 —a— ax)-sinfoy + an)r
(1 —ay— )z I (— o) 11 (— as)
_ HG—o—a)
(+ —a— o) (= a ) I — a) 1 — a — o) {1ty + 3 — 1)
— (I "'ax"(la)”(l “fll"‘az)
T (1 —a—a) 1 —a) [1(— a) (ot + = V) 1(1 — o — )

- 1
[1( e a,)]]( "“(l—_))]]((ll_ +a2 -1 )
= Ho—1)sinar 1 e;—1)sin gz I
= 7 gy +ay—1)
When we suppose that limits /{+o0), /(+0),....... , and f(+0)

and the integral ML/, o+ az+v—2) may exist in Theorem 2, then
clearly Theorem 1 will be derived.
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Now in general we consider the previously stated integral equation
o Pl

( g ) (x \SVS! . 8‘37:—1 90(8‘7,)[1{5‘,,{7,8‘7,..1. cees .HI.S‘! :/(X)
+0V 0

wo (= s)m(s = sa) (S — 5

TFirst, put
$1 ¥ Su-1 S, s ?7,(27 S,,_. (77 2
(o ottt
w0Y 40 +0 (H“"co) (V)“"S‘o)a«l ...... (5‘,, i V,)a"
then (8) will take the following form
j ) ,_59,.1,(‘91)”,“‘! =7(x) (o< <)
w0 {r—s)m
while, the solution of the above equation is given uniquely by

LS m—1).

sin e,

1% (x)=

e
Thus generally if we put

'\‘u \"H S*w-i P($)AS, e ndlsiyg

+0¢ 10 +0 (‘95 - 3:‘-!—1)“”1 ~~~~~ (Sn—-l - Sw)a"

=0(s1),
then we shall get

[ G —o ), =), p)=el)

+0 (x "',\‘)ai

and this solution is given uniquely by

sﬁ’;(.ﬂf):‘M "‘(‘)(2“9)}1(?;,_.1, a;— 1 ).
T X

Thus from these results, it is evident that if <,o,~,_1(x) be continuous in
7, ¢ x) will be also. Hence we have the following

Theorem 3. [Wien —%?ﬁx(f, 3 —1) 75 findte and continuons n I,
x

the n=th repeated Abel’s integral equation (8) has the wngre continu-
ous solution and that solution will be written

()= 1] singwr 0 S”‘ =, 0
7 dx . (r—z,)t—e 0z,
& @2y 9 r? _ SE)da
Yo (~5’n"5n—1)1~a7"" .... 02y J 4o (32“51>I”a‘ ’

Next we look again at the same Abel’s equation (8) from another
point of view ; namely by using the Dirichlet’s transformation for the
double integral ‘
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K j et plsa)dsdsa
R J‘n—x)“""l(&lq — 8y, )Bn
I Sn-2 s,
= SM so(s,,.)aiv,,jsn (s Sna)n=1(5 1 £
= M(=a-)ll(=a) S T a5, ) s,
NG —aps—an) Jio
hence we have
S‘Xﬂ ” Vm “25 G go(x”)[i?ﬁ{,/‘?",:lfé&! :
Jro Yo Yo (-“n—!t S ~"2)a"“2(sw—‘-’ - !)a,, - ‘(“":Ml - Sﬂ)a“
M= DU forefo Ps,)dls,
- (1~ (;,,_1 - ) 3 20 dao (Spog— Sumn)®n~2(8, o — &, -1 %=1

o M=o )(=a) M=) ~a=a)
I](I Oy -1 _an) 11(3 ‘_‘au—"_’—.an-l“an) ’

T
" (.Y;., - .?7,)2 Tt T Lt TR St “71'5‘9(5‘”)0’&“_
MY

Thus repeating these processes, we arrive finally at

I(—a) (= a)... 1 — o) g (2 — sy ey tam e )5 = A ).

Hn—r1—ai—az—...—a,) 4.0

This has the same meaning as (8). Then in the above equation, by
changing in notations

N 11(8) )
S G v7 s T A |

B=n—1 ==t esi =@y — 1 = > M,
pres

Abel’s integral equation (8) will become consequently

(8" S ’ (v — $)o(s)ds=1(x),
+0
where n—1>8>—1"

Therefore corresponding to Theorem 2, we have
Theorem 4. For aney choice of a nmmber p>—1 which satisfies the
equation p+B+1=m, where m berng a certain non-negattoe integer

7

. . omt .
and grocmn suitably, when w‘ﬂ}z( S, ) exists, then the n-th repeated
A"

Abel’s mntegral eguation (8) has one and only one continons solution
and the solution s given by

n 7
1. Tor since o<l Ma;<n, we sce at once n2—1>n—T— Boag>—1,
i1 =1
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1 gmt S“ v
*= x =) (s)ds,
S‘O(Y) ”(*”h)”(—az)...l](——a,,)ll(p) o™+t +0< ) f( )
where ﬂ:ﬂ — — Z(/-i-
=1
Remark. Sizce n—1>p>~1, pta>p+p+i=m>p  Iince for
any p n>m—p>o.  While NMax(me—p)<m+rx, therefore n>

2+ 1. From this remark, we have the following

Theorem 5. 7z the previously stated Theorem 4, if W/, ) be any
polynomial of the higher order than the n-th, there will never exist
any trivwal solution.

2. We consider a new integral equation, which contains the classical
Abel’s integral equation (1) as a special case, as follows:

(12) jx O, O O (0<a< 1),
w0 [7() = 7(s)]"
where z(x) being defined over / to be monotone increasing and con-
tinuous with its first derivative, furthermore the limits 7(+ o) and z/(+o0)
exist. We begin with multiplying both sides of the equation by
(x)dx
[r(e) — ()]

have

, integraiing with respect to a from +o to 2, so we

r j" () (x)dxds :j * Ax)e{(x)da

Jeod o [2() = ()] e () —2(9)]* Vs [(e) = 2(a)]"
Apply the Dirichlet’s transformation for the double integral to the left-
side, then we have

= # o/(x)dx
R e = Forso
And besides if we transform the integral variable a into / by
1) {T(%) = r(s)i%- [e(z)—=(s) )¢
(x)da=[7(z) — «(s5)]dt,
the above integral will be written

jq at —LI(—a)fl(a—1)=—Z

w0 (1= sinar

+0

Thus the present problem may be reduced to the dependence on
the existence of the integral in the second member of the above equa-
tion; While, from the mean-valued theorem
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~1
[

(x)—=(z)=(x—z)7'(§) (z==b=x).

Hence the following equivalent relation will take place

lim V Se)e ()a ~11m[r’( )] Se)d

so ola)—(z ) ke >0 N )
=[z/(4+0)]"1 m}) DA/, a—1), (x)=o in 7.

2> 40

Therefore we have
Theorem 6. If M/, a—1) cxist, the inteeral equation (12) has one
and only one solution and the solution is grven bv

- N sinar 0 [* SE)7(=) -
(13) )= = dx J, [e(x)—2(z )]‘T”’

Now for avoiding complexities of expressions, we establish the
following notations :

“(z)
, Fie)=r),
() ] 2 (2)=[2(z) — o(+ o) '(2).
=l ) = F(H0) e N qiy Sima2)
AT o ™ ey MO

then we obtain a pa.raﬂel result to (4).

Theorem 7. I the Limits 7(+0), 7{+0)couun... , and f,(+0), and
morcover W fy, a-+n—~1) are permissible to exist, then (13) will be
expressible as follows

(14)

[/,(S)"“ j_il"‘( ) T T SO ,

& {,f(+0)ra f(;f’()) et &i:?i Toprt ..

Sil+0)
ala+1)...(a+rm—1)

(%) . () —o(2) |1
“datr).(atn—1) +§ ];( )[( )= ()] {}}

Particularly when we take z{a)=/lx (K >o0), then (U) becomes
Lo firdz) . fital(2) S =)
S)=—2), [filg)=-= = =.,, ==L
A=, = L) = S i
(+o)=o0, (+o)=k, 1,=i"",

'
Tasn~1T

y
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hence instead of (14) we have

, N sinar o] f(+0) ’f’(+('>,) /f”’(+oy)m_' at1
(147) o(x) - 1«{ o + LA a~—~——-(a+‘) +...
- -f<71)<+o) 1,0!+11—-1
Calat)(atn—1)
1 i+1) d*'n—-ln],,
* ala+1)...(atn—1) gwf (=)o =2) }

This is the previous formula (4) itself.
Now we prove briefly Theorem 7: Ifrom integrating the second
member of (13) by parts

A GG B SR
jw [e(x)— ()}~ [ (x)—7(+o)]%/(+0)

w—_(;-ﬂ HOLORLOINE
Accordingly
__ sinar . " ¥ JN(=)dz .
)= I o) @S]
while, in the last integral on the right,
.r ‘ S(e)dz :S" A=) ‘ /(z)ds
o ()= cOF 7))~ (@1

=— ....::_r 0/1(”)%42‘(;\) —r(2)]%ds,

again making use of the integration by parts

:‘,,Ziﬁiﬁ’)m [r(x)—1(+0)*+ _;1: rf 1)e(x) —(2)] .

e

Thus the above ¢(x) may be written as follows :

o(x)= _sin a_i—~{f(+o)ra o+ f\(+o)V

L OREC >Jw~}
In the like manner, making use of

| ﬁ(s){r(x)—r(:)]wrj 8 ()~ (o)1 ()

==t ) L) e
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= LLEO) [ela) e+t ﬁ Ae(0)= (e

then the above just obtained ¢(x) becomes

So(x):_j}}};{; { A4 0)eams + /’l(jO) ot J(: ((”:01)) st

o s RO ROl

Hence we can conchude that the equality (14) will be true in general.
Q. E. D.
Tn the second place we are going to generalize the integral equa-
tion (12) after Mr. Rothe; namely we compute

() | )= P ets=A0), (3> =)

Y0 :
for the present case, multiply both sides of (135) by [7(z) —z(x)]"*/(x)
and integrate with respect to a, then

| (@) = e 20— clels

Yoo

=" (@)=
+0

let us take the Dirichlet’s transformation for the double integral on
the left, and evaluate by the transformation (T), and besides choose
p>—1 as p+f+1=n (2 being any given non-negative integer), then
finally (15) may be written

(15) ¥ ,_L_ng%'i(ﬂ—sp(v)n’v

Yoo

= i ) O

For simplitying the preceding computation, we make the following
notations

A = [#E) = (P () AN

Yoo

vV 7 1:A~._lg_.,,_q__, P
(V) Sz ) () o Srei(z, p2),

Az, )=t
== 5

0 .
o -z, £, =N, 2, 3 , 7.
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~1
<

Whence, we can show that
Theorem 8. If we lake it for granied that -—5{)—]‘"(3, 1) exist, then the

integral equation (135) has @ wintgue continuous solution which is given by

[ d -
(16) ( )= ”(,U)[I(/?) (),:c Sl ),

where prp+ =

The proof is very easy; for, by differentiating {15’) up to A-times

O LakiO)) R
5 oo (=) ’0(“)'&'77("511(@ Sl

In the above equation, particularly put r(x)*‘x then 7/(x)=1, accord-

ingly it follows that fi(z, p)= )0 S ps(5, p) = /(J, #).  Hence (16)
0z
becomes
()n+1
o' )= ¥, 1), ++i=m
(16) () Y0 S/ ) p+pti=n

‘We see that this represents (7).

Now we desire to show a certain example.
Example 1. In the study of radiation the following functional equation
will take place

(A) I(g)=2.Vd. §f<ﬁ> —pCOSPCOSE gy
[r +p—-°/ocos¢cosy]

where A#) is unknown ; morcover the following relations
. P [, 40 - . 4
cos ¢ cos ¢y=-+"=qa (const.)
7

O =¥ COS @ Cos ¢
[# 4 p*~— 20r cos @ cos ¢ ]?

cos = —

are given.

For the first instance let cos gcos ¢=p be, then Jdp= —cosgsin P,
TR OO0 P CO8 ¢ = - —=K(n), and cosf=
[#+p*—20rcospcos gt [FA+p*—2rppld '

L=re Therefore since @ is expressible to be a function
Al

of p, if we denote G(g)=/(f), then th(, equation (A) may be reduced
to the form
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Sws,&owo

(A" — (@) cos p= G(p )K(;u) d/x,

wherc H@)y=1Lg)/ 2Vd.S.
If we put cos ¢=/ here, then morcover (A’) may be written

, b A p)dp
A L(Z 25 e
(A") 0=
while Z(#)=/M¢) and I{p)=G(p) K1)
Consequently our present problem under consideration will be

reduced to the discussion on the existence of the solution of the fol-
lowing integral equation

$)ds
& e

We see at once that this equation is none but the special case when

=/(x).

a=~}»'~, z-(x):xﬁ in (12)'
2

Hence by means of (13).

o

must become a unique continuous solution of (17).
Remark: A# this iustant it s wortley to remark that lhere docs not
ever exist the lonit fi(+o0) e Theorem ;.

o)==

T x

3. We proceed now to the following ihtegral equation

(18) Stm wﬁggé‘—w«)li{_x‘f(x), ola<l1, z(+o)=o.
[z(x)—s]*
7(x) has the same meaning as previously stated; accordingly z(x)
is a one-valued function in 7.
Change the integral variable by the transformation s=t(u) e. g.
s~r. Then (18) becomes

s el _ g

Naec=raai

And besides by simplifying this,

) [ =,
vo |

o(x)— ()]
where Dle)=7"(et)g| v(er)).
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Thus a unique solution of (18) may be given by
I -
(19) o)== P p( )],
p(x)]
where @ satisties the integral equation (18'), and p(x) is the inverse
function of =(x).

Next by generalizing the above (18) after Mr. Rothe again, we have
re(x) )
(0) | T —sPepldde= ) (8>
+0

Since this is also treated in the same manner as (18), a unique con-
tinuous solution of (20) becomes

(21) olx)= mw[l’(ﬂc)] >

while @ on the right satisfies the following integral cquation

(22) S [e(x) = 2(s)TPD(s)ds = A x).

J 40

Remark : 77 &5 known that f(x) in (18) may be expressed by flo(x)].
Example 2. The following integral equation has been treated by Mr.
Nakagord Hirakawa'

24

(23) kmx= ( Vonx—% @(€)dE.

Yo
The above integral equation (23) will be reduced to the special casc
when in (20) Alx)=tmx, t(x)=mx, /(x)=um, accordingly p(x)=x/t,
A=1/2, hence from (21) the unique continuous solution of (23) becomes

(24) olr)=—L-0(-L),

772

where @ satisfies (22), that is,

o 3

3 {22~ 18| @(5)ds = fean x.
0

A unique continuous solution of the above just stated integral equation
by (16)

)=t 7= A,

1. Loc. cit.
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—

where 3:7z:ﬁ+/1+1=—1~%;/1+1, ioe. p==

2

From (V)

[

e
&2

fl(:, I> /tm‘“”g (z—x)ixdx=-2

g Y40 3

A 1
-C%—/'l(z, ~L~) = s

2

123—‘ s

12
Replacing these results into @,

1 .—,:l’,
&z )-ww/e//ﬁ s

Moreover replace the above function into (24), then
2k 1
T Vi

This obtained result coincides very well with Mr. Hirakawa’s one.

plx)=

In conclusion the author wishes to express his hearty thanks to
Professor Toshizd Matsumoto for his kind encouragement and criticism
during the study.



