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Abstract

This paper has been prepared from my previous papers on the ¢ Coast effect
upon the ocean current and sea level ”, in order to serve for investigations of the
“Tunamis caused by the typhoon that attacked ‘the Kwansai District of Japan on Sept.
21 last year. At first, a correction is given to the ordinary formula for the steady
value of surface elevation in shallow water, discarding the customary assumption that
the elevation of surface is negligibly small compared with the total depth of the
water. Next the development of tunamis and seiches under the condition of bottom-
slip is dealt with in the case of varying causal action, and also extended to the case
of progressive action. The viscosity of water, of course, is taken into accountso that
cven for a perfectly ‘resonancing action we can deduce reasonable results such as that
the surface fluctuation cannot be amplified over =/2 times the steady value during half

*a period (or one -crest) only of the causal force.

Intréduction -

On September 21 last year, a terrible typhoon attacked the Kwan-
sai District and caused disastrous tunamis along the coasts of Osaka Bay
and the Ki-i Channel, and also produced unprecedented ‘undulatidns!
of water surface of I.ake Biwa. The writer soon began to inspect
and survey these tunami and seiche phenomena with his students and
to collect mareo- and limnograms. In order to adjust the results thus
obtained and explain them, an adequate theory of meteorological
tunamis and seiches is highly desirable. IFortunately the writer’s paper*

n “Coast effect upon the ocean current and sea level ” satisfies the
demand with slight modifications, and may be taken as.a théorytof
tunamis and seiches produced by wind and barometric gradie,nt.,'_Tho
said paper will show that when a constant wind or barometric gra-
dient begins to act upon a water basin and when after a time : f it
stops suddenly, then there occurs a rise of mean sea level générally
accompanied by oscillations somewhat like those of F Tig. 1, which ai‘e
nothing but seiche oscillations; and if the level of the surfacc rises
to such a degree that the water inundates the coast land, it may be

I. These Memoirs, 17, 93—141 and 249—280 (1934)
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called ‘a tunami. Thus the meteorological tunamis and seiches are not
essentially different in nature, and may be discussed together. Similar-
ly we should expect the corresponding fluctuations of the water level
whenever the motive forces incirease or decrease suddernly.

The previous paper, however, was written from the view-point
of ocean currents, and as a practiCal theory of tunamis and seiches
Fig. 1

o
- wind

there remain several points to be modified or supplemented, while in
some respects the theory may be simplified. TFor instance, in the
theory of ocean currents the surface elevation may be considered neg-
ligibly small with respect to the depth of the sea, but, in the case of
tunami it cannot be neglected, nay, it becomes rather greater than
the usual depth of the shallow water near the coast. Ior the ocean
current we may be content to consider the motive action as constant,
but, when the problem of tunamis and seiches is under consideration,
a varying or progressive force should be dealt with, resonance-effect
playing an important part in the discussion.

On these problems, Dr. J. Proudman has written two papers.
One' is very excellent as a theory of meteorological perturbations in
a viscous canal with “ no bottom-current ”’, but I believe that a rapid
current in a shallow sea such as tunami must have considerable slip-
velocity. Proudman’s second paper® is also very original in dealing
with the effect of progression and resonance due to the barometric
change. Since the water there, however, is assumed as an ideal fluid
(viscosity p=0), the method cannot be extended to the case of wind
action, and even for the barometric action some® of the results will
not necessarily coincide with that in the case g—o0, especially when
the barometric wave has a velocity 1/ }77 resonancing with the water
depth . '

1. Proc. London Math. Soc., 24, 140 (1924)
2. Month. Not. Roy. Ast. Soc., Geophys. Suppl. 2, 197 (r929)
3. Eq. (2. 3) and (2. 4) in his second paper. R
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The present paper has been prepared {rom my previous papers
on the coast effect, and contains some improvements and supplements
s0. as to cover the investigation of tunami due to wind and baromet-
ric change over a lake, a bay or a strait. In Chap. I, the steady value
of surface elevation in shallow water is obtained without the ordinary
assimption that the elevation is negligibly. small’ compared with the
total :depth -of the water. In Chap. II, the development of tunamis
and seiches accompanied by the condition of bottom-slip, is déalt with
in the case of varying causal action, and also extended to the case of
progressive action. The viscosity of water is taken into account so
that even for a perfectly resonancing action we can deduce reasonable
results such as that the surface fluctuation cannot be amplified over

n/2 times the steady value during half a period (or one crest) only
of the causal force.

We shall here add that the rotation of the earth is neglected in
this paper because the problem of meteorological tunamiis, generally
speaking, important only along the coast of a very shallow sea or in
a long narrow bay.

I. Corrected formula for the steady value of the tunami
produced by wind along a shallow-water coast

§1. Customary formula and the necessity for its correction.
Both in the empirical formula of Colding' and in the theoretical for-
mula of Ekman®, the surface elevation ¢ in a canal produced by wind

dz T
S Gl (1)
iya ool
where 7 denotes the surface slope, /7 the depth of the sea, 7" the
tangential stress of wind, ¢ the acceleration of gravity, p the density
of water respectively, and 7 is a coefficient which becomes 3/2 with
Ekman’s assumption of no bottom-current.

According to the writer’s paper® on the coast effect, the coefficient
will take the value #=1 for no bottom-friction. In the case of finite
bottom-friction, putting w=o0 in the said paper, we shall get

1+fpllfa2pn

7= if bottom-friction=7"pe s reees aaa 2
I +f"n}:[/3,u et ( )
and

7z=~i~{1+ fp:jg [( N/ +-2 fpf]“'T>}‘ ...... ( 2')

1. Kgl. Danske Vidensk. Selsk. Skrifter, 1, 272 (r880).
2, Ark. f. Mat. Ast. o. Fys. 2, No. 11 (1995). 3. op. cit.

may be expressed in the form
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if bottom-resistance=7puj, where 75 denotes the slip-velocity at the
bottom. All the above formulae, however, were derived on the sup-
position that the level rise ¢ is negligibly small compared with the
depth of the seca,.and hence they are obviously not applicable, as they
stand, to the investigation of tunamis so high as to invade the land.
For instance, if the sea bottom make an inclined plane, formula (1)
will give infinite y and consequently infinite elevation of water at the
coast (H=o0). To avoid this impropriety, as some investigators have -
done, if we divide the sea into several portions for each of which for-
mula (1)-is applied with respective mean depth, and if we take the-
sum of the elementary rises of level 4¢ thus obtained as the height
of tunami ¢ at the coast, then we shall get a finite rise, but the value

will be indeterminate according to the degrec of division of the sea.:
Really the last landward portion of the sea of inclined plane bottom,

however narrow may be taken, will give an identical value

de=n AL =7 2T (0= Angle of inclination of the bottom),
> epH2 gp-tand .
which is independent of the length of that portion of the sca. Thus,
for the purpose of rough estimation of the order of tunami we may
simply put the mean depth of the whole hasin for /7 in formula (1),
but in order to discuss more precisely the tunami problem at the coast
we should first attempt to improve the formula, without disregarding
the level rise ¢ in comparison with /7 '

It may here be added that the steady value of the surface eleva-
tion due to the barometric gradient will not differ from the statical
value even for very shallow water.

§2. Corrected formula for a sea of no bottom-current. If, after
Ekman, we assume no bottom-current the motion of water in a one-

directional canal in a stcady state will be expressed in the ordinary

notations, as follows: M 0” —g‘o——{{c-:o ............ (3)
_ : oz* dx
with the conditions — p02/0z= 17" at the surface (z=—¢)...(4)
°®=0 at the bottom (z=/4) ...(5)
14
- and .S‘ES UAZT=O  erreiiiiiernnaeeeae (6)
where positive z is taken downward from the undisturbed water-
sutface and the disturbed surface is put as s=—¢.
Now the first integral of (3) is /A%t—sgp—dc—z-}-zl ......... ¢
which combined with (4) gives I'=gp ;’C LA .(8)
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The second integral is pae=—L -Z,"Lz"'-l-Asﬁ-B ...... (9)
2 A7

which becomes by the condition (5)
pn=-5L %(f—mﬂﬁ(s—y). ............ (")
2 x ,

Then the equation of continuity (6) will give

R
A 2ATHESHEE . (10)
dx (H+e)

o=y

e ar 3 VA
. Eliminating A from (8) and (10), we get - =2

(8) and (10) o AWl (11)
This is the corrected formula for the surface slope due to the wind
and shows that precisely we must use the actual depth A+¢ mstead

of Z in eq. (1).

§3. Case of bottom-slip. If some slip-velocity #y cexists at the
bottom and the bottom condition is replaced by

— | 0uf0z| jyoe=/FP2tr e (5"
instead of (5), then the first integral (7) will give '

T:gp C C A ( ) __—/’IP””:g‘p.{—I;—CT-H—*‘,fL -.-(12)
The bottom-current #y is also obtained from the second integral (g)

porg=-5P_ ZC--]{“'+AH+B .................. (13)

2 £h .

Eq. of continuity (6) will give by substitution of (g) -
gp  d¢ HP—HCHC + 4L 11=¢ + B=o0...... (14)

2 dx 3 2
The above four equations (8), (12), (13) and (14) serve to deter-
mine four unknowns A, B, un, aC -=7.  Specially, if there is no

=

bottom-friction and #'=o, the surface slope can be obtained from (8)

: at 7

and (12) only, namel .= = e Iia
(12) only y e (114)

When f'=Fo generally, however, we proceed as follows :—

From (8) and (12) —flpun=gpy(H+¢)— T,

and from (8) and (13) ‘ ,u.zm=ger(~—ZL+C)— TH+ B.
2

Thereforc o= gpr[7f‘{)_(f1+ O+ H (TH + C)] - T(_jﬁf—p + H) + 2.
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Combining this with the following relation

gp 7-[ H'*{’[CHZ +(H—c)c]~%(_f[—c)+z;:o

2 3 .

obtained from (8) and (14), we have

_d T
r=——=u e (15)
=14 LPEHO (L SpEEE) -
where (1+ o )/(1+ . ) ............ (16)

Thus we see that the more precise formula for the surface slope is
Iob_taiﬁéd by putting /A+¢ instead of all A’s in the formula given in
'§1. The same may be also said when the bottom-friction is equal to
Spiir. :

It is here to be noticed that the coefficient 7 will reduce to 1 if’
/'=o0 (no bottom-friction) and to 3/2 if //=00 (no bottom-current),
and that, with finite values of /7 and g, the value of 7 for a very
shallow sca (//+=0) tends to that for “ no bottom-friction ” and a very
deep sea resembles that of * no bottom-current . Morever, since £ in
the expression of 7 in (16) enters in both numerator and denominator
in a similar -mannecr, its effect will be comparatively slight so that we
may omit it for practical purposes, while ¢ in (15) may occasionally
have great importance.

§4. Evaluation of surface elevation ¢. In order to evaluate the
rise of water at the coast we must know the functional relation of /&
and x. If the relation Z/=/(x) is complicated, we divide the sea into
many portions and calculate ¢=X4¢ :Eﬂde. ......... (

gp(H+)

Of course, we begin with those portions in which ¢ is negligible com-
pared with 7/ and when we reach a portion such that the sum of
the preceeding 4¢ becomes comparable with /) obtain A+¢ for the
end of that portion and, by using it, calculate 4¢ and hence the next ¢,
and so on. When A=/(x) is a simple function, the direct integra-
tion of (16) in a finite form is much more convenient. The following
WO cases are very important in practice.

(BEx. 1) Uniform shallow water. 1f H=constant, taking the

origin of x at the place of {=o, we have C:f[{l\/r + 22 Z[;,_,x— 1}.
g&pi-

(Ex. 2) Sea of inclined plane bottom. 1f the shallow sea has a
plane bottom inclined at an angle & with the horizontal, take the origin
of x at the end of the plane bottom where the depth is A and the
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distance from the coast is Z. Then at any x landwards, the depth
of the undisturbed sea will be (Fig. 2)

H=FHy—axtanl=FH{(1—x/L) .ovrrieinrennen. (18)
Fig. =

AP e ‘f_s ______ IRy St

|
|
G i
R TRTETTORR TR '
e~ 2 -
oo "o
Z
and the integral of (15) will become
C-}—Eﬂolog{x — (&, +C——xtanﬂ)/€j{o} =C i, (19)
r 7
he ('_’ = j-— L=n—" 2
where 1, = op i, " gptand (z)

and ' is the integration constant. In order to determine the constant
C, the constancy of water in the whole sea, i. ¢., Scd 220 aaeans (21)

will serve generally. Ior actual scas we can often easily estimate
=& at zx=o ...(21) so that the constant C can be de-
termined. TFor instance, a lake with a symmetrical profile will have
no ¢ at the centes, and even for a common sea, the elevation up to
the place of depth 7/, (usually moderate depth) may be calculated by
the approximate formula (1) starting from the open deep part.
In such cascs, eq. (19) may be written

€, —(Ho+C0)

ot 1 o e rerrreceena, !
¢=a C 8 €z — (Hy+ ¢ —xtant) (19)
Let ¢, represent the elevation at the coast line (x=L7), then it
Fiy+ ¢
will be given by £u=0+Epm, 1og—)C—0—[£ ......... (22)
=L,

Specially, if &, is 0 or negligibly small,
C,/Eflo-{- IOg(CL/EHn'— I):]Qg([ﬁ/fﬂo—— 1) cveneneeen{22)
where £ 70 7L / op i, denotes the rise of wat r at the coast, supposing

the sea to be of uniform depth A, and 2£ A, corresponds to that given
by eq. (1) for the actual sea under consideration.
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Table 1 is prepared for practical convenience, by calculating in-
versely the corresponding values of /4, for given values of ¢;.

Table’ 1. Relation between &, and /4 when {=o

8r)2ln, o 0.25 0.5 0.75 1.0 | 1.5 | 20| 23 5
Crnfia, o 0.5 1 1.5 20| 30| 40 | 350 10
/L n, ' o 0.09 1 [ 3.24 8.30| 41.2 | 165 | 595 ‘ 198400

II. Changing state in a canal with finite bottom-friction

§ 5. Constant motive action over a lake or an enclosed sea.
The changing state dealt with in my previous paper on the coast
effect, II, corresponds to the steady value (1) in this paper, namely
it stands on the assumption that ¢< /77, and therefore it might seem
necessary to re-investigate the problem carefully, taking the water sur-
face as z=—¢ but not s=o. Irom the practical viewpoint, however,
this will be unnecessary. Ifor, although the final values of the exact
solution may be very different from those of approximate solution as
explained in Chapter I, the mode of development will not differ greatly.
Thus it will be practically sufficient to assume that, even in the accurate
solution, the functional relation to the time is nearly the same as be-
forc except that the steady valuc contained in the coefficient must
be replaced by the corrected formula given in the preceeding chapter.

Now, for the two extreme cases of “ no bottom-current ” and *‘ no
- bottom-friction 7 the development of surface elevation was discussed
in sufficient detail in the previous papers. Tor & finite bottom-fric-
tion ”, however, it was only shown that the development can be in-
vestigated in an entirely similar manner, the actual calculation in a
definite formula being omitted. IHowever, since the last case is ob-
viously most probable in reality, we shall here make definite the formal
solution given in the previous paper for level rise in a uniform canal
with finite bottom-friction, as a preparation for the investigation of
actual tunamis and seiches caused by the recent violent typhoon.

Consider a constant wind 7 or.a barometric gradient y, (measured
in water column) begin to act suddenly all over the water initially
at rest, and let a surface slope y=—0¢/dx be generated. Then the
cquation of motion will be represented by

Ou _  OFu
v

o T + ey for wind, v=p/p,
ST At -(23)

+o(z +7) for barometric gradient,

0s*
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with the conditions

at surface (z=0), — pdu/ds=7 for wind action
- (28)
=0 for barom. grad.,
at bottom (z=/),  —p0u/0z=Fpun, ..coccooviriiiiiiinnn.n. (25)
initially (¢#=o0) P =1 o R (26)
and eq. of continuity
O_C = — déw or 0_7:__ = 025‘ R
ot Oox ot ox*
[ S TTTTTTTIPROS (27)
where S :So uds.

Such « which satisfies egs. (23) to (26) can be casily obtained by
taking the limit when w=o0 in our previous paper, or by solving
independently though in a manner entirely analogous to that there

used ; and in any case we shall get

w=F3 A,cosfz(1—¢" l"D”-"f) + EB,,cosﬁ"zSO r(z)e™ =g .(28)

where ButanB H=/Fp/u=l(say), . veceviiiiiirrinnnnn. (29)
=7 for wind action '
; [ OO, (30)
=7 for barometric gradient,

= 3(‘?’-'- +{";) L for wind ]

H(BE++h pp G0
ol 32 2 o) d 31
= "(‘{j - +/[ ) . _gsingu /7 for barom. g‘rad.,J
H(B+ 7%+ vah
and B5,=g" 3(‘)ﬁ;,+"/1,‘) . _sinput7 . e, (32)
H (Bt 75+ 1 B

These may also be directly verified by substitution in egs. {23) to (26),
and A, corresponds to the coefficients when the steady value' of
pure drift or barometric current is expanded in such a series as
F3id,cosB,s. Now, the total flow .S becomes

" . L o
S = jo u([z:]?ZA"_,sl_rL@lé[__(I —~ Vpnf)
+EBM-SM[—307'(T)e_y'j"(t_1)dr, ......... (33)

7

of which, for the reasons mentioned in the previous paper, only terms
with z=o0 may be introduced in eq. of continuity (27). Then we get

T T
1. Steady drift current=—f—,p~+——(H—z),

[
Hr—2? 1

; H
Steady barom. current= gp'yo[—;}; + —2}1 )
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oy — a*F Aosmﬂn[[{ '—vﬁgt)
il dx® Fo :
+ B, sinf// S‘ 0’7'(:) e vi(e—7) dr, ... (34)
Bo Jo Ox

which combined with its second time-derivative, gives
____+ ﬁ sinﬂn[f % _ d*F  Asinf "
B o dr B
1f the ca.nal is of length Z, and if we put

s .r) e T " e\
7= ETmSIn L Xy r —2 TS _L X, Tm=— _( ) Tons

L
\ 6)
7F s , sz \* (3
F - Eu T ‘ =28 ’ ﬁ\rlnz —( E)u
ZSILAL py Esmlx 7

then (35) will give

LI 4o “’T'" + B, SO ( i ); Aouﬂnsnu?n[[( i )ﬁ
lit‘ ﬁ() .L

whose solution is cvidently

Tm(t):)—’m[ = c—{wﬁat{cosomi + u‘dﬁ Sin(f""/}J

2 (2

:7"’"[1 — 1 _aou+ OB /:_%"Bstcos(crm[~e)],
’)0-7"-
where o, _A/E(, sinfu/7 ( s ) ( v )"’
P N L A S (30)
‘v{i;';t

tane=vf;/2q,, damping factor=e™ ¥,
and 7,, though cqual to —yf;/7,4,/B, in mathematical expression,
is physically the final valuc of y,(#), so that it may be taken as the
element in Fourier’s series for the already known steady valuc of slope

F=nl/gp/d  for wind action } ....... (40)

=7, for barometric actiop.

Eq. (39) shows also that the development of the slope will be
oscillatory or non-oscillatory, according as

4 Bsinfo ( em > St oor <1
V5

Iinally it is to be noticed that the above solution has the same
form as that found in the case of ‘' no bottom-current” and described
in the previous paper, i. e., the mode of development of the phenomena
will be entirely similar, the only difference being in the final value 7,
according to the condition of bottom and the kind of motive force
(wind or barometric).
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§6. Variable action. If the motive force & is variable with the
time, 7, proportional to 7, varies also with time such that Fn=Fn({).
Then, applying the writer's newly established theorem to eq. (38),
we easily get

fm(f) 5 arm(?)[ —@cos{am(;_rz_ E}e—-z}vsg(f_.:)]dr-

20,
s Ceereieaeas (41)

Snmlarly the elementary surface-clevation ¢, corresponding to 7.,
will be given by
Cm(l‘) S (?Cm(r)[ _ 1/40,,'f+(u[3§)2 cos{am(¢~r)_—e}e“’l”'%(t—T)]dr

20,

=E.(¢)— 1 405+ (i)’ S ac"‘(T)cos{a-,,,(z‘— r)—eje b =) e,

2Cm

(42)

where £, is the steady value of surface elevation corresponding to 7.

Since the level change expressed by (42) is ‘generally of ocillatory
nature, which is nothing but seiche motion, and since it may become
tunami if the rise attains an exceptional height, we may take eq. (42)
as representing a general theory of meteorological tunames and seickes.

If the motive force /is a simple function of time, the above for-
mula may of course be integrated in finite form, as seen at the end
of my paper on the drift cwrent in the ocean, I. However com-
plicated the variation of the motive force with the time may be, the
mechanical quadrature of eq. (42) will enable us to determine the
change of surface level from time to time. The writer has made actual
evaluations for the tunami at Osaka and the abnormal fluctuation of
level of I.ake Biwa caused by the rccent typhoon, and the results will
be described in subsequent papers. Moreover, cgs. (29), (39) and {40)
will serve to estimate three unknowns /7, v and f,, by measuring the
amplitudes and periods of fluctuation from the actual mareo- or limno-
grams. Specially if f/=very small, (29) becomes vf;=/"/H; and
/' can be determined by the measurement of the damping factor only.

§7. Resonance effect. Eq. (42) includes of course the resonance
cffect when the motive force varies with a period nearly equal to the
proper period of the sea. For example, let us consider here a simple
case in which the motive force, and consequently £,, is a sine func-
tion of time, i. e.,

s Zsnta forostmh (43

=0 for /<o and £>¢,.

Then eq. (42) gives: For #< # (during the action of the motive force),
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o a( R
()= Z————x

ZG-"L
;-pﬁﬁcos(a" L+ a) + (ot o' )sin(a’t+ o)
ol - 1 —e 2B 07‘

gY e
( 2 .Vﬂo) +(0711+U)

vﬁacos(cr,,‘ —a)

- (U"L + a )Sin(a-m.t - U)J

I
(%vﬁ)_ +(on—0o') { —¢ "%vﬂat[_;_vﬁécos(amt +a) (442)
— (o —a")sin(a,.f + a)] JJ
For ¢>¢, (after the motive force has ceased to act), since

S: E(2)(—T)dr = S:cjm(r)gb(z —Ddr + S: ox $(i—t)dr
= S"au<r>¢<f —)dr,

)

'Cm.(t> = Z~7f —

—I—V,HSCOS(O"&‘-*— a)— (o, — o')sin(e’t -+ a) I

20,

— e f)[ —vpicos{o,t— (o, + o), —a}

1

(—;-vﬁi';)z +(omta')

- (0.7”' + O.I)Sin{a'm"l— <U-m + a-l)[l - ”'}:l
L—Z"'jut[ —vficos(a,.i — @)

\ — (& o' )sin(a,.f — a)]

_».}Vﬁa(r—n)[ivﬁgcos{am,f_ (00— )y 4z}
2

I

- ( , 3 —(o,,—a")sin{a,t— (o, — o), + a}]
—U‘B(;) +(apn—0o') L g !
? e [LV,B?)COS(O’,,,I,‘ +a)
2

— (0., — o' )sin(o,.t+ a)]

........................ (44b)
If y—o and /<4, (44a) gives
Cn= z [ o:: {sin(c’t+ a) +sin(a..f — a)}
+ u—g—’-"-w,{si n(o't+ o) —sin(a,.f + a)}] ...... (a4'2)
Tn—a - .
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(93]

which, when ¢'—a,,, becomes
C,,;:—g{cosa sind’t—d'fcos(a’t+a)). .o, (452)
2

For c0o>1>#, the corresponding formula will be

-

= i[sina-’z‘lcos{a’(z‘ —t4)—a} —o'ticos(a't+ a)]. ............ (45b) '

Thus, if 4 is large, the amplitude will increase greatly with time;
but when 7 is small, the amplitude will not be so much enlarged
even for a period of perfect resonance. TFor example, if Z=half a
period i. e. ¢’f;=m (only one crest of force), the maximum value of
Cw cannot exceed 377, and when 4= a complete period, the possible
maximum valuc is Cm=n2.

§8. Seiches and tunamis in a bay, a shelf sea or a strait. Al
the above. investigations have been restricted to an enclosed sea or a
lake of length Z, but they can very easily be extended to a bay, a
continental shelf sea and a strait. For a bay, it is unnecessary to say
that the phenomena will be the same as for a symmetrical lake half
of which coincides with the given bay. The so-called continental
shelf sea, whose depth diminishes sharply from the continuing acean
depth, will act like a bay in this respect, because both seas are equally
characterised by an abrupt contraction of cross-section at the entrance,
where level fluctuation must have a node. Thus the seiches and
tunamis of meteorological origin in a bay or a continental shelf sea
can be discussed by the foregoing formula, in which Z must be taken
as twice the length of the bay or the shelf sea.

Lastly for a strait of length Z, we expand the motive force /77
and consequently 7 and £ in forms

T

F=E]f}ucos-—7—j£1x, F= > F,COS Lr x, E=>.sin 72” x, (367

instead of (36). Then exactly the same equations as (38) to (45) are
obtained. _
§9. Progressive motive force in an endless canal. In order to

estimate the effect of advance of a motive force, let us consider the
case in which

E= Zsin(a't— Ix) o=t=/ } (46)
=0 <o and £>¢, R
with initial condition C=wu=o0 for /{=o.

Since E= Z[sino’t coslx+sin(a’t—x/2)sinix],
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{n=that in a bay (with a=0)+that in a strait (with e=—n/2)
={cos lx xcq. (44) with a=o}+ {sin/x x cq. (44) with a=—x/2}.

ot (%Ma)
L Q' sz Z s » 1 2‘ 2 e
m . . leﬁg) + (U'm +.0o )

%vﬁﬁcos(oj {—1x) + (0 + o’)sin(o'f — Ix)

1

X
- c"%ﬂﬁf)l‘[_i_yﬁgcos(o,,j +ix) = (0, +0’)sin(o,,t + Ix) }
1

. 1
- T ——vficos(a’t— Ix
(o) +law—o? | 2 )
2

—(o— o)sin(a’t — Ix)
il 1 e . (472)
—g Ty [Tuﬂacos(crmt— Ix)

—(om—0a')sin(o,t— lx)]
for £<4,. Specially if v—o, the above eq. becomes

L= il:———l——{sin(a’:f— lx)+sin(ot+ lx)}
2L 1+d /o,

+ ——I—————{sin(a’t—-lx)—sin(a-mz‘—/x)}], ......... (45'a)

1—0d/on

Farther when o'—a,,

Z [cos/xsina’t—a’t cos(c’t— Zx)] ......... (a7"a)

2

C m

For co>¢>/4, also, a similar procedure can be uscd.

Here we notice that all these equations in the present paragraph
will be obtained by putting —/x instead of « in egs. (44) and (45);
and eq. (47”a) shows that the resonance effect will be such as
explained in the preceding article. Eq. (47%a) coincides with that
given by Proudman, (2.4), and is valid only when a,~¢ > 348, and
/200, When 7/—00, however, the free waves with o, will dic away
entirely. '

Proudman’s cq. (2.3) for semi-infinite canal does not correspond
a motion started from rest a finite time before.” It has” a form
similar to our eq. (44a), which, when /—00, holds good only for
y=o0, and if vxo however small, frec oscillations will vanish for
#—00, as seen from (yia).



