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1 Introduction

There have been many fruitful results on representations of fuzzy numbers, differentials and integrals of
fuzzy functions. The authors established fundamental results concerning differentials (e.¢., [5, 6, 7, 8, 9, 10,
19, 11, 12, 22]), integrals (e.g., {1, 20]), the existence and uniqueness of solutions for initial value problems
of differential equations (e.g., {15, 16, 18, 23, 24}]), the asymptotic behaviours of solutions (e.g., [3, 4, 13,
14, 17, 21]). In this study we introduce the parametric representation corresponding to the results due to
Goetschel-Voxman so that it is easy to analyze fuzzy differential equations. By the representation we can
discuss differential, integral of fuzzy functions and asymptotic behaviours of solutions for fuzzy differential
equations in an analogous way to the theory of ordinary differential equations. In a similar way we treat
fuzzy differential equations with fuzzy boundary conditions.

Our aim is to discuss the existence and uniqueness of solutions for the following boundary value problems
of fuzzy differential equations:

z' (t) = f(t,z,z), z(a)= A z(b)= B. (1.1)

Here J = [a,b] C R = (—o0,+0), t € J, and fuzzy numbers 4, B € Fgt ,which is a set of fuzzy numbers
with compact supports and strictly fuzzy convexity, and f : J x Fgt x Fgt — Fgt is an F2* —valued function.

Denote I = [0, 1]. In what follows a fuzzy number z is characterized by a membership function p, which
has four properties. We consider a set of fuzzy numbers with compact supports denoted by Fg*:

Definition 1
Fot = {p: : R — I satisfying (i) — (iv) below}.
(i) There exists a unique m € R such that p,(m) = 1;
(i) supp(pz) = d({€ € R : u(€) > 0}) is bounded in R;
(iii) p, s strictly fuzzy convex on supp(u.);
(iv) p. is upper semi-continuous on R.

A function p, is called strictly fuzzy convex (quasi-concave) on supp(p.) if

Bz (A& + (1 = N)&2) > minfuz(€1), p2(&2)] (1.2)

for 0 < A < 1 and &;,&; € J such that £, # &. In usual case a fuzzy number z satisfies fuzzy convex on R,
i.€.,

/"':()‘61 + (1 - )‘)52) 2 min[l‘z (fl)vl"x (52)]

for 0 < A< 1and§,6 € R. Denote La(pz) = {€ € R : puz(€) > a}. When the membership function is
fuzzy convex, then we have the following remarks.

Remark 1 The following statements are equivalent eaxh other provided with (i) of Definition 1.
(1) pz is fuzzy convex on R,

(2) Lo(pe) is convex with respect to o € I
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(3) pz(e) is non-decreasing in o € (—oo,m| and non-increasing in a € [m, +00), respectively;

{4) La(pz) C Lp(pa) for o> B.
In the similar way as [9, 10] we consider the following parametric representation of u, € F2’ such that
zy(a) = min Lo(p;), x2(a) = max Ls(u:)
for 0 < & <1 and that
x1(0) = min supp(pz), 22(0) = max supp(yz).

We denote a fuzzy numbers z by (z,z2), t.e.,2 = (x1,x2). Because of Condition (iii) and (iv), 21,22 are
functions defined on /. However, when the membership function is fuzzy convex, z,,z2 are not necessarily
defined on 1.

We treat fuzzy type of Nagumo’s Condition to (1.1) and give the existence and uniqueness theorems
to (1.1) by parametric representation of fuzzy numbers. Moreover we show applications of fuzzy type of
Nagumo’s condition to the Fredholm equation concerning (1.1) by applying the contraction principle and
Schauder’s fixed point theorem.

2 Parametric representation of fuzzy functions

In [21] we showed that a fuzzy number = = (z;, z;) means a bounded continuous curve in the R? space
as follows.

Theorem 1 Denote z = (x1,22) € F&, where 21,22 : I — R are the left and right end-points of the
membership function p. Then it follows that the following properties (i)-(iii} hold:

(1) z; € C(I),i = 1,2. Here C(I) is the set of all the continuous functions on I;
(ii) there exists a unique m € R such that
z1(1) = z9(1) = m, z;1(a) £ m < z2(a)
forael;
(iit) one of the following statements (a) and (b) holds;

(a) z1 is non-decrensing end z2 is non-increasing. There exists a positive ¢ < 1 such that zy{a) =
m = z9(a) for a € [c,1] and that z1(a) < z2(a) for a € (0,¢);

(b) z1(a) = z3(a) = m for o € (0,1].
Conversely, under the above conditions (i) -(iii), if we denote
n(§) =sup{a € I : z1(a) < £ < z2(a)} (2.3)

Then p, is the membership function of z, i.e., p € Fe.

When the membership function is strictly fuzzy convex, the function is fuzzy convex and (2)-(4) of
Remark1 hold. '
Proof. (i) Let z = (z;,z;) € R. Let linoloa,, = ag for ag € I. Denote A; = lim icngzl(a,,). We shall prove
n— n—

that A; > z1(0o). Suppose that A; < z1(ag). Then for any sufficiently small £ > 0 there exist a number £
such that A; — & < z;(a¢) < A; + € < z1(ag). Denote

M {a €l :zi(a) = z2{a) = m},
S(¢) = {ae€l:z(a)=consome interval} for c € R.

i

There are the three cases as follows;



(a) ag € M; (b) ap € 8(¢) for some ¢ ; (¢) ag & M U S(c) for any c.
In case of (a) we consider two cases: (al) cyg is an interior point of M, i.e., there exists a sufficiently small
number & > such that the neighborhood Uj;(ag) € M; (a2) op is a iscolated point. In (al) it follows that
m < Ay + £ < m,which leads o a contradiction. In (a2) there exist two integers p < ¢ such that

|z1(aq) = A1] <1/g <|z1(ap) — A1] <1/p.

Then min Lq, (1) = z1(0y) < z1(0p) = minLg,(¢) < m and this means that L,,(¢) C La,(¢) and
Lo, (1) # Loy (). On the other hand Lq, (1) O La, (1) because oy < g < 1. This leads to a contradiction.
In case of (b) the point ag is an interior point of S(c).i.e., there exists a sufficiently small number 4 >
such that the neighborhood Us(ag) C §(c). Then ¢ = @1(ax) < Ay + £ < ¢, which means a contradiction.
In case of (c), by Relation (3) of Remarkl, z;(e) is strictly monotonously incerasing in «. Consider a
sequence {s, > 0} such that €, > £,,; > 0 and that <, — +0 as n — co. Then

ag = p(x1(0p)) < p(Ay +€1) < p(zy(an)) = ay,

which contradicts with lim o, = aq. Therefore A; > x;(ap) and z; is lower semi-continuous. In the same
n—oc

way ) is upper semi-continuous and z, is continuous on I. It can be seen that z,() is continuous on I by
the same discussion.

(it) It is clear that the uniquess of m and that z1(1) = m = z2(1). Since the membership is fuzzy convex,
it follows that 2y (a) < m < z3(a) for e € 1.

(iii) Let M be defined in (i). In case that M = (0, 1], we have z;(a) = z2(e) = m for o € (0,1]. This
means that (iiib) holds. In case that M # (0, 1], because of the continuity of z;, s, denoting ¢ = inf M, it
follows that ;{a) = z2(a) = m for a € |¢, 1] and that z;(a) < z2(e) for a € (0, c), Wthh means that (iiia)
holds.

Conversely ( 2.3) means that the upper level set La{y) satisfies Ls(p) = [z1(8),z2(8)] € R for 3 € 1.
From ( 2.3) it follows that if £ € [z (@), z2(c)] then x(£) > o and that & & [z, (u(£) + €), za(u(€) + €)] for
each £ > 0. Then it can be seen that [z,(8),z2(8)] C La(u). When p(§) = B, from ( 2.3), it follows that a
& € [z1(B), 22(B3)]. When p(€) > B, then there exists an a € I such that £ € [z;(a), z2()] and « > 3, which
means that £ € [ri(a), r2(a)] C [£1(8), z2(B)]. Therefore we have Lg(u) = [z1(8), z2(B)].

From ( 2.3) it is immediately seen that (i) and (ii) of Definitionl hold. The a— cut set L,(u) is closed
for o € 1, i.e., the function p is upper semi-continuous on R. For a € I, L,(u) is convex, i.e., the function
e is fuzzy convex on R See, e.g., [25].

From (2.1), u(§) = @ means that £ = a(@) or £ = b(T). If suppose that a(@) < £ < b(@), which means
that p(€) > @. Suppose that there exist &,& € J and A such that £ # £,0 < A < 1 and u(&3) = #(E),
where & = A& + (1 — A2 and ;t(&) = min[x(&), p(€2)]. Then we have £ # £ and & = a(p( &) or

& = b(u(@), Le., a~ () = p(E) or b-*(&) = u(E). Thus we get, from (2.1), £ = a(u(F)) = a(a~1(8)) =
or & = b(b-l(g)) = €. This leads to a contradiction. Therefor p. is strictly fuzzy convex.
QE.D.
Let a metirc in F¥ be

d(z,y) = S‘éﬁ;(lzl () = ya(a)] + |z2(e) — ya()])
@

for z = (zlsxﬂ)’y = (yl»yﬂ)'

Theorem 2 The metric space (F3t,d) is complete.

Proof. Let a Cauchy sequence {z; = (:rgk),:cék) ) € Fgt k= 1,2,---}. It suffieces that there an
fuzzy number z, € FSf such that lim d(z,,,a:o) = 0. Since lim d(mn,wm) = 0, from the well-known the

Cauchy's theorem in Calculus, there exists an limit x5 = ( T§0)’ x; )) € C(I) x C(I) such that the following
properties(i)-(iv) hold.

(i) lim d(zy,z0) =0;
k-—+o00

(ii) zﬁo) and :céo) are non-decreasing, non-increasing on I, respectively;
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(iii) x( )(a) <m< z (a) for a € I and z, )(1) = zgo)(l).

Suppose that there exists a number n # m such that z;(1) = #2(1) = n. This contraicts with the uniform
convergence of the Cauchy's squence. Thus a unique m € R. satisfies Theoreml(n) Denote C = {a € I :

#{(a) = z{”(a) = m and & > 0}. In case when C = (0, 1], we get z} )(a) = :r(o)(a) mfor0<a<l,
which means that Theorem](iiia) holds. In case C # (0,1], by the continuity of z1, 2, there exists a real
number ¢ such that 0 < ¢ < 1 and that c satisfies the following statements (1) and (2) hold.

(1) z1(a) = z2(a) for a € [c,1]; (2) T1(e) < z2(a) for a € (0,¢).

This means that Theoreml(iiib) holds. Therefore, zo € Fg and the metric space (F ot d) is complete.
Q.E.D.

Denote a fuzzy function z = (z;,2) : J — F* has a variable t € J and the parameter « € I such that
z1,Z, are functions defined on J x I to R.. A fuzzy function z = (z1,z3) is called differentiable at ¢ if there
exists an fuzzy number 5 € F2¢ such that (d1) z(t+h) = z(t) +hn+o(h) and (d2) z(t) = z(t —h) + hn+o(h)
as b — +0. Here o(h) = (01(h), 02(h)),4.e., limjn o —Sg-H-'—-) = 0. Denote z (t) = 7. It’s called a differential
coefficient of the Hukuhara-differentiation (See [19]). It can be seen that z = (z,, 22) is called differentiable
at t if and only if z,(-, @), 73(-, @) are differentiable at t for any a € I and there exists n € F3' satisfying the

. above (d1) and (d2).

A fuzzy function z = (z,,z3) is called integrable over [t;,¢5] if 21,2, are integrable over [t;,2;] for any
a € I. Define

/-ta x(s)ds = {(./;2 z1(s, )ds, /ﬂh zo(s,0)ds)T € R? : € I}.

ty

3 Fredholm equations arising from fuzzy boundary problems

Assume that f: J x Fgt x F2t — Fg is continuous. Consider the following Fredholm equation

z(t) = w(t) +/ G(t,8)f(s,z(8),x "(s))ds

for t € J. Here a fuzzy function w € C(J) and an R~valued function G € C(R?) with G(t,s) > 0 such that

wiy — AB=D+Bl-a) 54)

b—a
{ G-de) (a<t<s<h)

—Q

b—s)(t—a) (GSSStSb)

—a

G(t,s) = (3.5)

Then we get w'" (t) = 0 and also w(a) = A, w(b) = B. It follows that

(b= a) BG(t s)ds < s 2
a 2

/ G(t,s)ds <

In the same way in theory to boundary value problems of ordinary differential equation the following propo-
sition are shown immediately.

Proposition 1 Fuzzy function x is a continuously differentiable solution of (1.1) if and only if z is a fived
point of T : C}(J; F&t) — C%(J; F) such that

[T(2))(8) = w(t) + f G(t,5)f(s,2(s), = (s))ds.

Here CY(J; F3*) is the set of continuously differentiable functions defined on J to Ff', etc.

In the same way in applying the contraction principle [17] gets the existence and uniquess theorem of (1.1).



Theorem 3 Suppose that There exist positive numbers K, L such that
d(f(t,z,y), f(t,u,v)) < Kd(z,u) + Ld(y,v) (3.6)

fort e J and z,y,u,v € Fland that

K(b-a)? Lb-a)
gt

Then (1.1) has one and only one solution in C?(J; Fgt).

<1 (3.7)

We illustrate the above theorem as follows.

Example 1 Let fuzzy numbers k = (k1,k2),€ = (€1,€2) in FS with ki(a) > 0,£41(a) = 0 for o € I and
k2(0) < K, £,(0) < L, respectively. Assume that positive real numbers K, L salisfy the inequality (3.6) and
pi 2 0,g; > 0 fori = 1,2. We consider fuszy functions f = (fi, f2) of (t,x,y) € J x F x Ft with
z = (21,22).y = (%1,Y2) such that

filt,z,y,0) = ki(a)e P zi(@) + £i(a)e ™" yi(a)

for a € I,i = 1,2. Then, for any boundary values (A, B) € F& x Fg, there exists a unique solution for

(1.1).

4 Fuzzy type of Nagumo’s condition

Assume that the following properties (i) -(iii).

(i) Function f = (fy, fa) : IX FEEx FEt — F& is continuous. Here ([}, f2) is the parametric representation
of f.

(i)) Let r; > 0,7 = 1,2. There exists a function h; : [0, 00) — [0, 00} such that
lfit, z,y, )| < Ri(lus(a)])

fort € Jya € I,i = 1,2, and |z;(0)] < ri, ¥y = (y1.y2) € FEE. Here z = (zy,22),¥ = (1,¥2) are
parametric representations of z,y, respectively.

 ndn
> 27‘,‘.
/-;o hi(n)

The above condition is applied to the fuzzy boundary value problem (1.1) in the same way as [2].

(i) Assume that h;, i = 1,2, satisfy

Lemma 1 Assume that f = (fi, f2) satisfies fuzzy type of Nagumo’s condition. Let r; > 0, i = 1,2, be in
Juzzy type of Nagumo’s condition and a solution = = (z1,2,) € C%(J; FEt) of (1.1) satisfy |zi(t, a)] < r; for
t1=12teJ ael

There exist numbers N; > 0,i = 1,2 such that |z;(t,a)] < N; fort € J,a € L.

Fuzzy type of Nagumo’s condition concerning z =0 .
In what follows we consider fuzzy type of Nagumo’s condition concerning z = 0. Assume that the
following properties (i) -(iii).

(1) f=(f1,f2) : I x Fgt x Fgt — F* is continuous.
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(i) Let r; > 0,4 = 1,2, and w is the function in (3.4). There exists a function h; : [0,00) — [0, 00) such
that

it 2,9, 0)] < ha(lyi(e) — wi(t a)])
forte Jyael,i=1,2, and
|zi(a) — wi(t,@)| < iy ¥ = (y1,32) € F.
Here z = (z3,73),y = (¥1,y2) are parametric representations of z,y, respectively.
(i) Assume that h;, ¢ =1,2, satisfy
o0
ndn_
+o hi(n)
Lemma 2 Assume that there exist functions h;,i = 1,2, satisfy (4.8) and (4.9). Let r; > 0, i = 1,2, be in
(4.9) and a solution z = (z1,z2) € C*(J; F) of (1.1) satisfy

2:(t, @) —wi(t, )| < 7

2"‘5. (48)

fori=1,2te J andael
There exist numbers N; > 0,1 = 1,2, such that

|z (t, @) — wi(t, &)} < Ny
forte Jyael.

In cases where hi(n) = 1, hi(n) = n® for > 0 it suffices that N; satisfies N; > 2r;, N; > 0, for (4.9),
respectively. ,

5 Applications of fuzzy type of Nagumo’s condition

In this section we show the existence of solutions for (1.1) by applying Schauder’s fixed point theorem
as well as we give the existence and uniqueness o’f solutions by applying the contraction principle under
assumption that Nagumo's condition concerning z = 0. Let r = (ry,r2) and N = (N, N2). Denote

Sulr, N) = {(z,y) € F x Fgt : |zi(@) — wilt, a)| < 73, lyi(a) — wi(t,a)] < Ni, fori=1,2,t € J,a € I}.
Theorem 4 Assume that the same conditions of Lernma 2 hold. Let

F . 2Nz 81";
lfi(t) T, Y, Q)' S nlln(m, Zb_..._s)

~a)?
forte J (z,y) € Suw(r,N),i=12,0c€l.
Then (1.1) has at least one solution = such that (z(t), = (t)) € Su(r,N) fort € J and any A, B € F&.

[2] show Nagumo’s condition of R", but they give no theorems of existence of solutions for boundary
value problems.

In the following theorem we get the existence and uniqueness of solutions for (1.1).

Theorem 5 Assume that the same conditions of Theorem 3 hold. Assume that there exist integrable func-
tions p1,p2 : J — [0,00) such that fort € J,i =1,2,(z,y), (u,v) € Su{r,N), ’

'fi(t’ z,Y, a) - fi(t’u’y v, a)l S. pi(t)(d(x! “) + d(yv ‘U))
and
b b
A= ?25’/; G(t,s)p1(s)ds +§161?/; %(t,s)pg(s)ds <1l (5.9)

Then (11) has one and only one solution in C*(J; F&t) such that(z(t),z (t)) € Su(r,N) fort € J and
any A, B € Fgt.
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Example 2 Denote fuzzy numbers k = (k1,k2),£ = (£1,£2), m = (m1,ma2),n = (ny,n2) € F such that all
k1(0), £1(0),m1(0),n,(0) are non-negative. Denote integrable and non-negative functions a;, b, ¢;,d; defined
on [0,00) fori=1,2. Assume that a1(t) < as(t), by(t) < ba(t), c1(t) < ea(t),dy(t) < da(t) fort € J. Let

filt,vz,y,0) = kfa)a(t)zi{a) —wi(t, )| + £i(a)b;(t)|zs (@) — wa(t, @)
+mi(@)ei )y (@) = wy (¢, @) + ni(@)ds(B)lya(e) — wy(t, @)
fOTt € J,:Z,‘ = (*Tl’r'l):y = (yla yﬁ) (S Sw(‘r’ N)!i = 1,2'

Assume that r;, N; for i = 1,2 satisfy the following conditions (i) - (ii).
(i)  There exist p1,p2 such that (5.10) and that

max(k; (1)a1(t), £1(1)b1(t), 2N1my (1) ey (), 21 (1)d1 (2)) < p1(8)),
nlax(kg(())ag (1), {3 (O)bg (t), 2Ngmg(0)62 (t), ﬂg(O)dg (t)) < pg(t)

forte J.
(ii) Suppose that

8r; 2N;
Ds ; 2 < min{ e =t
3ggp,(t)(r1 +ra+ N7+ Ny) < mm(b_a, (b—a)z)
fori=1,2 and that Ny > 0, Ny > 2r,.

We get hi(n) = 1% ha(n) = n for n > 0. It follows that [ o(n/hi(n))dn = [ (n/h2(n))dn = co. Then
conditions of Theorem { are satisfied. Therefore, by Theorem 4, {(1.1) has one and only one solution in
Sw(r,N) for any (A, B) € F&t x Fgt.
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