A Theory of the Annual Variation of
Temperature of Ocean or Lake

By Tadao Namekawa

(Received July 27, 1933)

Abstract

It may be admitted that the chief controlling factor of the annual variation of
temperature of ocean or lake is eddy convaction, but it is very doubtful whether it
will satisfy, as has been believed until recently, the simple diffusion-equation. The
problem is elucidated when the transfer of heat is taken into consideration, i. e., when
the occurrence of instability in the cooling stage, and the vertical transfer of heat at
the time of its disappearance are taken into account. For this purpose, adopting L.
F. Richardson’s view that the equation varies according as an instantaneous value or
a mean value of the temperature is taken, and regarding our observed temperatures
as showing mean values, the writer has found a new form for the diffusion equation,
that is as near to perfection as possible, and, comparing his solution with actual
examples, he found that his new theory was justified. Thus the author believes that
this theory has brought the physical esplanation of this subject to completion, and
has also thrown a light on the method of reduction of the records of the observed
water-temperature.

I. General Consideration

Many scientists are of the opinion that eddy convection is the
main factor controlling the actual distribution of water-temperature in
the layer which is subject to annual variation. The researches of H.
Jeffreyst and J. E. Fjeldstad® were made from this point of view. W.
Schmidt,® though of the same opinion, noticed that, contrary to his
expectation that better results would be obtained from annual variation
than from daily variation, the results from the former were rather

worse. These investigators carried on their work on the supposition
. 0 0 .
that the eddy equation has the form ()6; = 06 (Kz 00 ) in the usual
z z
notation. A certain measure of agreement between the actual obser-
vation and the theory concerning the distribution of temperature may
be arrived at by the application of the above equation with certain

appropriate conditions. But, when the transfer of heat is considered,
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Fig. 1 : a contradiction will be met with. If
Jist TemPags oo : 2 the above diffusion equation is valid,
the annual variation of the water-tem-
perature ought to be of the same
nature as that of the ground-tempera-
ture. Whereas, as shown in Fig. 1,
the vertical distribution of the annual
mean temperature of ocean or lake is
not uniform as that of the ground-
temperature is, but higher in the upper
layer. Moreover, this annual mean
temperature is to be regarded as the
temperature in a steady state. If the
state is steady, heat must be trans-

20'&- 170

mitted permanently from the upper to the lower part of the water.
No evidence is found of this transmission, at least not in ocean or lake in
the temperate zone. And, from a theoretical point of view, such a
state, although not impossible, presupposes a somewhat extraordinary
structure. In fact, it is most reasonable to suppose that the heat is
carried down from the upper layer of water to the lower during the
warm half-year and that the reverse process occurs during the cold
half-year, the total exchange of heat flux, coming in the end to zero
for the whole year. Thus, in the cooling stage, there must be an
‘upward flux of heat. Then, according to the generally accepted theory,

0 e
, the distribution of temperature
2

in the winter season must generally show

since the eddy flux of heatis —4£

>o (z: positive down-

0
0z
<o (though very near zero)

ward) ; while actual observations give

>

in this stage. In the case of the ground-temperature, the theory and the
actual state agree very well. Why, then, should the above mentioned
contradiction be found in the case of water temperature? It is clear
that the transfer of heat is not due to the eddy convection alone.
Direct radiation has its effect, but this effect is limited to the surface
layer, and to a very small portion of the whole layer subject to annual
variation. Idence its influence may give a little correction only for
the thin uppermost layer, but it cannot obliterate the doubt above
stated in so far as the main body of water is concerned. Now, the

reason why ~%ﬁ-—>o does not apply is clear, since g‘a <o (p:

Z Z
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density of water) means instability, and generally -ai——éo according
ol7} . . . .

=0. To make matters simpler, our discussion will be confined

as

o
s

have the relation above given. The gen-

s z
2 z

)
to cases where a‘o and
rality of the problem may be preserved by making a slight alteration
in our estimate according to the difference of relation. In the cooling

stage, >0 for some time, but, this state, being unstable, cannot

o
P

last long. Intense mixing must occur immediately, subsiding into the

=o0. This is confirmed by actual obser-

o

0 .
state ~—-—p =0, that is,

vation (m regions near the water surface). It must be noticed, however,
that heat is carried spontaneously upwards in this process. Since,

. . .t 0,
during the intense mixing, #; has a rather large value, and 3 ~ >0,

a considerable quantity of heat is carried upwards. This process may
also be considered as an eddy convection, if we use the instantaneous

0 08, ot
: é;"‘("i‘—a? ) The data which the author is going to treat are, however,

values of 0, and /%; and express the eddy equation as

of a different nature. Theyv are either a wontidy wiean temperature
or a temperature observed on a particular day which may be adopted
as the zearn for the month concerned. Such being the case, if we
a9 0
ot 0z
of both # and #, what has just been stated about the eddy convection
due to instability is not allowed for anywhere in the equation.

I.. F. Richardson' expresses a similar opmzon in his study of the

. . a .
use the ordinary equation (A g ) with the mean values

atmospheric eddy. Starting from (Z’ = ()d \ 9, ) and putting 6,
=0+, k=7F+F#, he gets ?)0 =9 (/ ?)(3 + & g‘? ) Here, ¢ and

k£ are the monthly mean valies of 6’, and /4 respectively, and &/

il
oz

£

o,
is the monthly mean value of /e’mj(zm. The last term means the flux of
ds

heat occurring when instability disappears. There is no doubt, of course,
of the existence of the process just described. It has, hitherto, been
treated as a thermal transfer due to convection—whether regular con-
vection or eddy convection has not yet been made clear. Nor has

I. ‘Weather Prediction. pp. 87-88.
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any scientist discussed its nature, so far as the author knows. What

y 00"

dz ,

Here we are brought to an impasse, as L. F. Richardson says. To

get out of this difficulty, the author is obliged to make a rather bold

assumption, upon whose basis he frames up the problem in a practical

form which leads to a solution. Comparing the solution. with actual

example, he wants to show that his theory can explain the real nature
of the actual variation of temperature in ocean or lake.

will be the value of this quantity, 4 It is not easy to find.

2. The Problem and its Solution

(i) As the equation of eddy convection, we take

;f = ddg . </e ZZ + 2 ()dzl> where f is the monthly mean tem-

perature, 7 the time, z the depth from the water surface and /% the
eddy diffusivity, and we consider the most simple case when £=const:
(independent of # and z).

(ii) For the unknown convection term due to the rapid mixing
process occurring when the instability of the layer happens in the
cold season, we boldly assume as follows:

. /
k’_i:qe’“’gpl(wt) where ¢ and o are constants, and

0z
o(wh)=sinw? when o<wtIw
=0 when —a<lwf<o,
the time origin being taken at the autumnal equinox.
pi(wt =——I——{I + -2 sinwt——2—cosz wt ——2—cosg wt—...... }
T 2 2"—1 4" 1
w=-2 = 2T ==2x% 1077 ‘where 7" is the period (one
r 305% 24 x 60.% 60
year).
» . of
(iii) For the surface condition, we take —/% 3 = gei(wt)
=0
where @ wf)=o0 when o<wi<m
==sinw/ when —a<lwlf<o
g
goz(wzf):—l—{x — 2 sinwt——2cos2 wt——2_cosqwi—...... }
T\ 2 2—1 4*—1

(iv) 6=0, at z—oo (bottom condition).
(v) 6(¢, 2)=0(¢t+ T, ) (stationary condition).
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The solution of the above problem is very simple, and we can
write as follows :
0=40,(general solution)+ fyparticular solution)

and Oy=e"*{C,+ i Cysin(nzewt+0,)}
e=]

o I ; ®.
where (= , C=-1 -, tan 0y =———;
7z'/r“a 2w bt o’
1+ ,
w
ga 2 1 — ot
C,=-4 . —, tan0,= ————
THE 17— ka’ \ 720
rt+ | ——
' 72w

when nz=cven integer, C,=o when n=odd integer.

01—0‘,—}—2_3“( Buzsin(rzcwf — B2+ €,) where 8,= ~/ 77;”
w1 2/
and the constants 5, and e, adequate to the given conditions can be
found by the aid of the following equations

Bicosg=— 1 a[ + Ccosd; +sin 51)]
2 B L 2ka

Bysing =— m[

+ Cy(cos dy—sin 5,)]‘

20

T a
fB,Lcosen:: el

20 4 C,(s nO,,+co 0,,]
2 B, [(72 —1)kra (sf s0u)

l_BnSin En™ — L —‘q“["“_’(]*"'— + Cn(Sln 671 00557;):]:
<2 B L= 1)kre ,

when 7 is an even integer, and /5,=0 when the integer is odd.

3. A Numerical Example (Verification of the
Theory by Observed Data)

The method of treating the actual data will be illustrated by an
example. Temperature records off the coast of Shionomisaki are em-
ployed for our present purpose.'

(i) The annual mean temperature (f) has the theoretical form
f=0,+ Cye=*. Though the value of 6, can not be found directly from
our data, it may be estimated at about 17.0(C°) by reference to the
value of the minimum temperature at 200m. depth. The observed
temperature values at different depths give the two constants C, and
a, and we get (,==6.0(C’), a==o.5%x 1074,

1, Taken from K. Suda’s paper. Jour. Ocea. IL, 491.



244 Tadao Namekawa

(ii) The amoeunt of annual exchange of thermal quantity ¢ can
be found from the observed data. In fact

H R
Qz[j‘ a-pﬁ(l’z] -—-[g Upﬁa’z]
0 Sept. 0 Mar.

where op is the thermal capacity of water and ep>=1 for rough calcu-
lation. /A is the depth of invariable layer, and the suffixes Sept. and

H
Jar. indicate the respective epochs. The value of L Ods for autumnal

and vernal equinox can be simply found by measuring the area of the
isochronous curve of the temperature-depth diagram for these epochs,
and, in our present case, it is estimated as Q=s1.3% 10" (cal.)

wi=T
On the other hand Qz——g gsin wtdt,

wt=0
= wQ . 2x107x1.3%10°

2 2

E=1.3X 1070

we can find the numerical

(ili} From the expression (= ,
Tha

value of #, A=—0 = L3 % 10"“ =13.8 (C. G. S.)
maCy mX0.5%X107°%6.0

(iv) If we take the estimated values £=13.8, g=1.3%X 1075 o=
0.5x 107, Oy=17.0(C’), as the proper constants for the ocean considered,
the annual variation of &temperature can be found by the present theory.
The constants of the solution become

Co=06.0(C).

C=1.6(C°). 0,=80"20 =4.07(C").  g=144"20
Co=0.34(C°). 0,=355705' Br=1.17(C").  e=220"%0"
Ci=0.03(C)  cvvvriiieeene U

........................

Neglecting the higher harmonics, the calculated temperature approxi-
mately becomes
0=17.0+4.1c~B=sin(wl + 144" = fiz) + 1,207 Bsin(2wf + 220"~ fiz) + {6.0
+1.6sin(wf+80") +0.351n (2wt +355") ™™

where a=0.5% 1074, f;=0.85x 107" and B=1.20 X 107" and /=0 at the
autumnal equinox (or in September).

To compare the actual observed data with these theoretical results,
both are put into the harmonic series

0="0,+ arsin{wit+ @)+ assin(2ot+ @) + ...
The comparison of the harmonic components is listed in Table 1.
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Table 1
B, (C°) - a (C°) k4 a (C°) P2
Depth. cal. | obs. | cal. | obs. | cal. | obs. | cal. | obs. | cal. | obs.
om 23.0 | 22.9° 4.9 4.5 | 128° | 107° ! 09 0.5 | 235° | 148°
gom 217 | 220 3.6 3.6 | 107°| 97°1 04 | 0.3 | 194°| 350°
100m 20.7 | 20.7 | 2.6 2.2 90° | 86° | o.2 0.4 | 126° | 321°
1

The coincidence for the constants of the main term @, and ¢
is very good, though some discrepancies may be seen for the con-
stants @, and ¢, Remembering the bold assumption adopted in this
theory, and seeing the fair agreement of the observed variations with
those calculated, the writer believes that the suggested mechanisms of
the variations of temperature are correct, at least qualitatively or semi-
quantitatively.

4. Conclusion

(i) Applying L. F. Richardson’s equation of eddy transfer of heat
for mean state, the author adds, to the ordinary eddy diffusion equa-
tion, a new term of the upward flux of heat due to the spontaneous
mixing occurring only in the cooling stage of water.

(ii) Though he adopts a bold assumption for the unknown terms
of the upward flux of heat above mentioned, he finds comparatively
good agreement between the theory and the observations.

(iii) In this paper, readers may find a physical explanation of
the vertical distribution of the annual mean temperature; also a new
method of finding the mean value of eddy diffusivity from the data
of the vertical distribution of the annual mean temperature and the
amount of annual heat-exchange of lake or ocean. He believes that
his study will throw some light upon the method of reduction of the
accumulated observed data of the annual variation of temperature of
lake or ocean. '

In conclusion the author wishes to express his hearty thanks to Dr.
T. Nomitsu, Professor of Oceanography of our Geophysical Institute,
for his encouragement and criticism during the study.



