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ABSTRACT

By a parametric representation of fuzzy numbers, normal
strictly and upper semi-continuous fuzzy numbers with
bounded supports are identified with bounded continuous
curves in the two-dimensional metric space. We introduce
fuzzified oil well equation and discuss the stability of
solutions of the fuzzy differential equation (FDE) by the
method of parametric representation of fuzzy numbers.
We also show that the analysis of fuzzy differential
inclusions plays an important role in discussing similar
asymptotic behaviours to ordinary differentiat equations.
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1. PARAMETRIC REPRESENTATION

Let 7=[0,1]. We define the following set of fuzzy
numbers, where a fuzzy number x is characterized by a
membership function 4, as follows (cf. [1]):

Definition 1.

F={u :R—1I satisfying {)-(iv) below}.
(i) There exists a unique m e R suchthat u (m)=1;
(i) supp(u,)=cl({&e R:u&)>0}) is bounded in

s

(iii) w, is strictly quasi-convex on the compact support
supp(U,), i.e.,
B (A& + 1= 1)E;) > minpe, €)1, E,)]
for 0<A<land §,&, € J suchthat & #&,;
(iv) M, is upper semi-continuous on R.
In usual case a fuzzy number x satisfies quasi-convex on

R, ie.,
1. (A6, + (1= A)5,) > min[p, &), 1, €)1
for 0<A<1and £,£,e R. Condition (iii) plays an

important role in proving properties of membership
function [ in Theorem 1, where we show significant
properties concerning the end-points of the or-cut set
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Lw)={eR:p ) 2a}.
In the similar way as [1] we consider the following
parametric representation of i_e F,”" such that
x,(@)=minL, (u,), (1.1
x,(@)=max L, (u,), (1.2)
foo O0<a<1l and that x, (0)=mincl(supp (u,)),
x,(0) =max cl (supp (1,)). In what follows we denote
a fuzzy numbers by x = (x,,x,).

By applying the above extension principle and the
representation of fuzzy numbers we get the following
results.

1) Addition, Let , x=(x,x,),y=(,.y,)€ F.
We get the addition

Koy, @ = sup minfu,(&),u,E))]
&=&+6

=sup{lae I:§=¢ +&,, & € x,.8,€ y,)
=sup{ae I:x@+y @) <E<x, @)+ y, (@)
(1.3)

which means that

x, =L, (1) etc.
2) Subtraction. It follows that

x+y=(x+y,x,+y,). Here

up—y (5) = Sup min[ux (51 )’p’_v (52)]
=6-¢

=sup{a e 13§=§1 =&, & e %58, € Vo)
(1.4)

means that x—y=(X, = y,,X,~,)-
3) Product. It follows that

U, &) =sup min[u &).u,E,)]
2

=sup{ore 1:£=£¢&,, & e x,.é € y,)
(1.5)

means that the following relation.
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xy1,%,y,) (0<x,0<y)

(x2715%,y,) (0<x,y,£0<y,)
(x2y1:%y,) (0<x,y,<0)

(5,2, %5y,) (%, £0<x,,0<y,)

J (min(x,y,,3,9,),

min(x, y,,x,y,)) (x, £0<x,,y,£0<y,)

(x2y1%31) (%, S0Sx,,y,<0)

(%5, %) (x,<0,0<y,)

(*5y2%y) (x,50,y,505y,)

[((X2Y2. %) (x,50,y,50)

By the above parametric representation of fuzzy
numbers we get the following theorem concerning
properties of end-points.

Theorem 1. Denote x=(x,,x,)€ F,’, where x,x,:
I — R. Then the following properties (i)-(ii) hold:
@ x,€Cd), i=12. Here C(I)isthesetof all

the continuous functionson I;

(ii)  There exists a unique me€ R such that
xx(D=x,)=mand x (@)<m=x,(c) for xe I;
(iii)  One of the following statements (a) and (b) holds;

(a) Functions x,, x, are non-decreasing, non-
increasing on I, respectively, with x, (&) Sm < x,(¢x)
for O<a<l;

®) x@=x,(@)=mfor O<as<l.

Conversely, under the above conditions (i)-(iii), if we
denote u (&)=sup{ae I: x@)sE<x,(@)} then
W, is the membership function of x,ie, u, € F,' Let
a metric between x=(x,(),x,()), y= (y‘(),yz()) be
defined as follows.

d(x,y)= suII)(]x, @ -y, @|+x, (@ -y, @) (1.6

Then we get following result immediately (see [2,3]).

Theorem 2. (F,”,d) is complete metric space.

2. CALCULUS OF FUZZY FUNCTIONS

Consider a function x:R— F,. Then x(t) is

said to be a fuzzy function. In [7] we find the following
definition of fuzzy functions.

x(t,) = {(x, t,0), x(t,&))” € R:ae I}

2.1
= (xl (t’ ')’ xz(ti')) ( )

for te[t,t,]. Denote x(t)=(x,(),x,(t)).

A fuzzy function x(f) = (x, (t,@),x(t,®)) : R —> F,*
is H-differentiable at t in the sense of Hukuhara if there
existsan Re F,” such that (i) and (ii) hold as k — +0.

(i) x@+h)=x{t)+hn+o(h);
i) x@=x@-h)+hn+o(h).

Here  o(h) = (o,(h),0,(h)) € C[0,e]xXC[0,e]  with
€> 0, which means that
lim m =0. 2.2)
s JA]

Then x(t) = (x,(t),x, (1)) is H-differentiable at t if and
only if x, (t,0),x(t, a) are differentiable in t for each

o€ [ suchthat 7= #)E_T

In [4] the author discuss the integration of fuzzy
function x(#).

Definition 2. A fuzzy function
x(t,") = (x,(2,),x,(t,)) is called integrable over (1,,t,]
if x,(t,0) and x,(t,@) are integrable over [¢,f,] for
ae I. Define

| [ xsyds=1(] " x(s)ds, [ xy(s)ds)” e R

3. FUZZY DIFFERENTIAL EQUATIONS

In [5] they discuss exponential decay problems, e.g.,
machine replacement and oil well extraction, etc. They
analyze optimization problems for each oil well to
determine its optimal replacement schedule. Denote the
quality remaining in the well at time ¢ by x(¢f) and
denote the rate of oil extraction by D >0. Then they get
the following rate of oil extraction x'(f)=-Dx with
x(0)=v. Then x(f)=ve ™

In what follows we consider the rate of oil extraction
D as a constant fuzzy number D=(D,,D,)e F,
where D, (@) is the left end-point of the a-cut set and

D(x)>0 for e I. Then we assume that the oil

quality x(f)=(x,(0),x,(t)) e F,' is a fuzzy function
which means the quality remaining in the well at time ¢

:oel}

and V€ _’f,,”. Consider an initial value problem of fuzzy
differential equation
éﬁ ) =—(Dx), x(OQ)=v. @3.1)
dt
The above problem has a unique solution
. .
x()) =v + [ (~(Dx())ds. (2)

See [6].
It follows that as long as x, (1) 2 0, by the extension
of principle



d
Et_(xl (t)’xz(t)) == D1 :Dz)(-xl yxz)

=—(D,x,,D,x,)
=(=D,x,,~D,x).

(3.3)

Then we have two ordinary differential equations such as
x()=-Dx,, x,#)=-Dx, G4

with x(0)=(v,,v,) € F,*. Therefore

D. ~ (DD, t D. DDyt
V, + V3DV +(v,»VZJT,Iz)e 0

x ()= ,
1 () 5 >
(3.5)
(Vi +V,)e VP! Vi3 —Vvy)e’?
x2 (t) = - ’
2 2
(3.6)

for t20. These solutions, x,(¢) and x,(?), decrease
with an increase in time, and x, attain zero at the time

1 I D%).Vz t+v,

t,= 3.7
’ 2'\/D1D2 D%).Vz -V

After this time?,, we must use other system of the
differential equations available for x,(#)<0. Then it
follows that for x, (#) <0, by the extension of principle
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g;(x, @), %, =D, D,)(%,. %)

=—(D,x),D,x,)
=(-D,x,,-D,x,).

(3.8)

Then we have two ordinary differential equations such as

x () ==D,x,, x,(t)=-D,x, 3.9)

1.2

0.8

NI ARE

Fig. 1. Triangular membership functions for

x(0) and D used for the computations.

Fig. 2. Computed results of the fuzzy differential equation (3.1): (a) curves of solutions for each
@, (b) temporal evolutions of the bounded continuous curves indicating the membership function.
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Computed results of the fuzzy differential inclusion: (a) curves of solutions for each ¢,

(b) temporal evolutions of the bounded continuous curves indicating the membership function.

with x(t5)=(0,v,,) € F,'. Therefore

X (t—t)= 1’522(5”2‘”“ —eP),  (3.10)
v
x,(t—1))= —2ﬂ(e"’=""°’ +ePw). @)

Then we get the unstable result of solution x=(x;,x,)
such that

}_i»t{lod(x(t),O)=+°° 3.12)

where 0 € R, as well as it follows that

lim suply D, @), (1,0) + 4D, @)x, =0 @13

(see [3]).

To provide the graphs from these results, we consider
membership functions for the initial value x(0) and the
constant D as shown in Fig. 1. The temporal evolutions
calculated are shown in Fig2. It is found that fuzzy
differential equations enlarge its fuzziness of the system as
time increases. Although the center of the fuzzy number for
the decaying system described shows the exponential decay,
other fuzzy numbers show asymptotic behaviors with
x,(t,00) > —oo and x,(1,x) > +oo as t—>+oo for
a#l.

4 FUZZY DIFFERENTIAL INCLUSIONS

In this section we introduce the idea of fuzzy
differential inclusions in [6,7,8,9].

Example. Consider an initial value problem of fuzzy
differential equation (3.2). According to the idea of fuzzy

differential inclusions in which a family of differential
inclusions plays an important role in finding some kind of
fuzzy sets of (3.2) (See [10]). Let

F¢.0)=[-D,(®)¢,~D, (@)1 R
defined on Rx T to the set of compact and convex sets
K. in R. Then one can solve the following differential
inclusions

e FEa), &, 0)e L,(v) @D

where L (v)=[v,(®),v,(ex)] for ae I, which means
that differential inequalities

-D, (@), (1) <&, () <-D (@), (1) 42)
Vi@ <E,0)<v,(@) 4.3)

for e I. Then we emphasize that the function &, is
R-valued function defined on R without information on
the grade of fuzzy number x, so &,(¢) is a real numbers
but not fuzzy number. By basic calculation we get
E, (e 2@ <E () <E (0™ with &, € Ly(v).
Therefore we have &,(f) € [v,e” 2@, v,e @'} for

ae I, te R, which is called a solution set denoted
by S, (L, (V),1) =[v, (@)e >, v, (@)e *™]. The
solution set S,(L,(V),?) is the a-cut set of the parametric

representation of a fuzzy number (V,e’D”, v,e 2.
Thus we get a fuzzy solution of (3.1) as
x(@0)=W,e ™, v,e™) 4.4)

for t€ R. The temporal evolutions calculated by the
fuzzy differential inclusion are shown in Fig.3.



5 CONCLUDING REMARKS

In classical analysis of the initial value problem (3.1)
we observe the unstability of solutions by the method of
parametric representation of fuzzy numbers. By applying
differential inclusions to fuzzy differential equations (FDE)
the same results of FDE as those in theory of ordinary
differential equations. Much richer properties in fuzzy
differential inclusions is significant but, in considering
Ki-valued function F(£,&), one treats each fuzzy

number x(f)e F.'x(t) as a real number x(f)e R.
Finally, we get solution sets which are the o -cut sets of a
fuzzy set. By treating many practical modeling of real
systems with uncertainty we can get better conclusions on
comparison between fuzzy differential inclusions and the
parametric representation of fuzzy numbers.
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