A Functional Equation with the Definite Kernel

By Tunezô Satô

(Received October 1, 1935)

I. We use the following linear operators

$$(\varphi, \psi) = \int_{a}^{b} \varphi(x) \psi(x) dx,$$

$$(A\varphi, \psi) = \int_{a}^{b} \int_{a}^{b} A(x, t) \varphi(t) \varphi(x) dt dx,$$

$$(\varphi, \psi) = (\psi, \varphi), \quad (\varphi, \varphi) = \int_{a}^{b} [\varphi(x)]^{2} dx.$$

Especially, let A(x, y) be symmetric, then $(A\varphi, \psi) = (A\psi, \varphi)$.

Now we define the real function, K(x, y), of two real variables x and y over the fundamental square

$$Q: \begin{bmatrix} a \leq x \leq b \\ a \leq y \leq b \end{bmatrix}$$

under the assumption that: they are continuous throughout Ω and symmetric as to x and y. Arrange the characteristic constants of K(x, y) in the order of magnitude of their absolute values:

$$|\lambda_1| \leq |\lambda_2| \leq \dots \leq |\lambda_n| \leq \lambda_{n+1} \leq \dots,$$

where each λ_s is real. Put every corresponding characteristic function to each characteristic constant

$$\varphi_1(x), \varphi_2(x), \dots, \varphi_n(x), \dots$$
 respectively,

then these functions $\varphi_n(x)$ will form a normalized orthogonal system, that is,

$$(\varphi_i, \varphi_j) = \begin{cases} \mathbf{I} & \text{for } i = j \\ \mathbf{0} & \text{i} \neq j. \end{cases}$$

Our present problem is to determine $\omega(x)$ so as to satisfy the following functional equation:

$$k = \int_{a}^{b} \int_{a}^{b} K(x, t)\omega(t)\omega(x)dtdx,$$

when k is a certain given constant. For convenience let $(A\varphi, \varphi) = A(\varphi)$, then we have

$$(1) K(\omega) = \int_a^b K(x, t)\omega(t)\omega(x)dtdx.$$

If we denote (2) $u(x) = \int_a^b K(x, t)\omega(t)dt$,

the above equation (1) becomes $K(\omega) = (u, \omega)$. We now apply the Hilbert-Schmidt expansion theory to the right side of the equation (2). It becomes

(2')
$$u(x) = \sum_{\nu=1}^{\infty} \frac{C_{\nu}}{\lambda_{\nu}} \varphi_{\nu}(x),$$

where (3) $C_{\nu} = (\omega, \varphi_{\nu}), \quad \nu = 1, 2, 3, \dots$.

The series in (2') is absolutely and uniformly convergent on (a, b). Therefore we have

$$(u, \omega) = \sum_{\nu=1}^{\infty} \frac{C_{\nu}}{\lambda_{\nu}} (\varphi_{\nu}, \omega) = \sum_{\nu=1}^{\infty} \frac{C_{\nu}^2}{\lambda_{\nu}},$$

namely by (1)

$$(1') K(\omega) = \sum_{\nu=1}^{\infty} \frac{C_{\nu}^{2}}{\lambda}.$$

Apply the Bessel inequality to (3),

$$(4) \qquad \qquad \sum_{v=1}^{\infty} C_v^2 \leq \int_a^b [\omega(x)]^2 dx.$$

On the other hand from (2')

Furthermore if we apply the Schwarz inequality to the right hand of (1), we obtain the following relation:

$$[K(\omega)]^2 \leq \int_a^b [u(x)]^2 dx \int_a^b [\omega(x)]^2 dx,$$

while by computing the value of $K(\varphi_i)$,

$$\int_{a}^{b} \int_{b}^{b} K(x, t) \varphi_{i}(t) \varphi_{i}(x) dt dx = \frac{1}{\lambda_{i}} \int_{a}^{b} [\varphi_{i}(x)]^{2} dx.$$

Hence we have

(7)
$$K(\varphi_i) = \frac{1}{\lambda_i}, \quad i = 1, 2, 3, \dots .$$

Now when we take $\omega(x)$ so as to satisfy the condition

$$\int_a^b [\omega(x)]^2 dx = 1,$$

from (5), (6) and (7) we have

$$[K(\omega)]^2 - [K(\varphi_i)]^2 \leq \sum_{\nu=1}^{\infty} \frac{C_{\nu}^2}{\lambda_{\nu}^2} - \frac{1}{\lambda_{i}^2}.$$

But by (4),

$$(4') \qquad \qquad \sum_{\nu=1}^{\infty} C_{\nu}^2 \leq 1,$$

whence $\sum_{\nu=1}^{\infty} \frac{C_{\nu}^2}{\lambda_i^2} \leq \frac{1}{\lambda_i^2}$. Put this relation into the above inequality, then

$$[K(\omega)]^2 - [K(\varphi_i)]^2 \leq \sum_{\nu=1}^{\infty} \left(\frac{1}{\lambda_{\nu}^2} - \frac{1}{\lambda_{\lambda}^2}\right) C_{\nu}^2.$$

For the further discussion of this inequality, we rewrite the right hand in the form

Now $\frac{1}{\lambda_2^2} - \frac{1}{\lambda_i^2} \ge 0$, for $\nu \ge i$, $i = 1, 2, 3, \dots$, by hypothesis.

Therefore

and

$$[K(\omega)]^2 \leq [K(\varphi_i)]^2 + \sum_{\nu=1}^{i-1} \left(\frac{1}{\lambda_{\nu}^2} - \frac{1}{\lambda_{\nu}^2}\right) \cdot (\omega, \varphi_{\nu})^2.$$

Specially, take i=1, then the above relation becomes

$$[K(\omega)]^2 \leq [K(\varphi_1)]^2 = \frac{1}{\lambda_1^2}$$
, or $|K(\omega)| \leq |K(\varphi_1)|$.

Thus we have the following

Theorem 1.—For any continuous normalized function $\omega(x)$, there exist always the following inequalities:

$$(8) \qquad [K(\omega)]^2 \leq [K(\pm\varphi_i)]^2 + \sum_{\nu=1}^{i-1} \left(\frac{1}{\lambda_{\nu}^2} - \frac{1}{\lambda_{i}^2}\right) \cdot (\omega, \varphi_{\nu})^2,$$

(8')
$$|K(\omega)| \leq |K(\pm \varphi_1)| = \frac{1}{|\lambda_1|}$$
 (*i*=1, 2, 3,.....)

Since the second member of the above inequality (8') does not depend on $\omega(x)$, we have the following corollary to Theorem 1:

Corollary 1.—For any continuous function $\omega(x)$ which satisfies the (a)-condition: $\int_a^b [\omega(x)]^2 dx = 1$, the maximum value of

$$\left| \int_{a}^{b} \int_{a}^{b} K(x, t) \omega(t) \omega(x) dt dx \right| \text{ is equal to } \frac{1}{|\lambda_1|}.$$

Remark. When we consider two appreciations (8) and (8') for $|K(\omega)|$, we see that the one is relative, the other absolute; hence the following inequality must hold:

$$\frac{1}{\lambda_i^2} + \sum_{\nu=1}^{i-1} \left(\frac{1}{\lambda_{\nu}^2} - \frac{1}{\lambda_i^2} \right) \cdot (\omega, \varphi_{\nu})^2 \leq \frac{1}{\lambda_1^2} \quad (i = 1, 2, 3, \dots).$$

We can also show easily that the above inequality may give the following results:

$$\sum_{\nu=1}^{l-1} (\omega, \varphi_{\nu})^{2} \leq 1, \text{ for any } i \text{ by } (4')$$

$$C'_{\nu} = \left(\frac{1}{\lambda_{\nu}^{2}} - \frac{1}{\lambda_{\ell}^{2}}\right) / \left(\frac{1}{\lambda_{1}^{2}} - \frac{1}{\lambda_{\ell}^{2}}\right) < 1 \text{ by hypothesis};$$

^{1.} It is clear from the construction of $K(\omega)$ that $K(\omega) = K(-\omega)$ for any continuous function $\omega(x)$.

hence
$$\sum_{\nu=1}^{i-1} C'_{\nu}(\omega, \varphi_{\nu})^2 \leq 1$$
 for any i .

Next we take Green's function, instead of K(x, y), which belongs to the linear differential equation of the second order. Schmidt has shown that the results of the Hilbert-Schmidt theory of continuous symmetric kernels still hold for a discontinuous kernel if

- 1) $\int_a^b K(x, t) f(t) dt$ for f continuous, is continuous in x on (a, b).
- 2) The second iterated kernel of K(x, y) is continuous and does not vanish identically. These conditions are satisfied in the present instance and thus all of the Hilbert-Schmidt theory, as well as Theorem 1 and Corollary 1 remain true. Therefore by putting i=3 in (8) as a special case we have

Corollary 2.—If K(x, y) is the Green's function which belongs to the differential equation $y'' + k^2y = 0$ with the boundary conditions y(0) = y(x) = 0, for a continuous function $\omega(x)$ such as satisfies the (a)-condition, then

$$[K(\omega)]^{2} \leq \frac{1}{3^{4}\pi^{4}} \left\{ 1 + 80 C_{1}^{2} + 65 C_{2}^{2} \right\},$$

$$C_{\nu} = \sqrt{2} \int_{0}^{1} \omega(x) \sin \nu \pi x dx.$$

where

Corollary 3.—For the Green's function of Legendre's differential equation $[(1-x^2)y']'=0$ with the boundary conditions y(-1)=y(+1)=0, i. e. $K(x, y)=\log_2-\frac{1}{2}-\frac{1}{2}\log[(1\pm y)\cdot(1\mp x)]$ for $x \le y$,

$$(K(\omega))^2 \leq \frac{1}{36} \left\{ 1 + 35C_1^2 + 3C_2^2 \right\},$$

where $C_{\nu} = \sqrt{\frac{2\nu + 1}{2}} \int_{-1}^{+1} P_{\nu}(x) \omega(x) dx$ and $P_{\nu}(x)$ means a Legendre's polynomial of the ν -th degree.

Generalizing the (a)-condition, let

$$\int_a^b [\overline{\omega}(x)]^2 dx = x^2,$$

then for such $\overline{\omega}(x)$, we take $\overline{\omega}(x)/z$ for $\omega(x)$ in the above results. Hence we can conclude that

Theorem 2.—For any given constant z^2 and any such continuous function $\omega(x)$ as satisfies the functional equation

$$z^2 = \int_a^b [\omega(x)]^2 dx,$$

we have always

$$[K(\omega)]^2 \leq \frac{\varkappa^2}{\lambda_t^2} + \sum_{\nu=1}^{t-1} \left(\frac{1}{\lambda_{\nu}^2} - \frac{1}{\lambda_t^2}\right) \cdot (\omega, \varphi_{\nu})^2,$$

(9')
$$[K(\omega)]^2 \leq \frac{\varkappa^2}{\lambda_1^2}, \quad (i=1, 2, 3, \dots)$$

We return now to our original problem and will solve the following functional equation:

(10)
$$k = \int_{a}^{b} \int_{a}^{b} K(x, t)\omega(t)\omega(x)dtdx$$

under the assumption

$$(a) \qquad \qquad \mathbf{1} = \int_a^b [\omega(x)]^2 dx.$$

For this purpose, it first becomes necessary, on account of (8'), that the value of k should be given as $k^2 \le 1/\tilde{\lambda}_1^2$. We consider the particular case where $k=1/\lambda_i$, while since it has been shown from (7) that $K(\pm \varphi_1) = 1/\lambda_1$, two functions $\pm \varphi_1$ will be ω -solutions in the present But it might be that another solution exists. examine this possibility.

If we put i=2 into (8), by using $[K(\omega)]^2=1/\lambda_1^2$, we obtain

$$\frac{1}{\lambda_1^2} \leq \frac{1}{\lambda_2^2} + \left(\frac{1}{\lambda_1^2} - \frac{1}{\lambda_2^2}\right) C_1^2; \text{ that is, } \left(\frac{1}{\lambda_1^2} - \frac{1}{\lambda_2^2}\right) \cdot (C_1^2 - 1) \geq 0.$$

Now let $\lambda_1^2 + \lambda_2^2$, then $C_1^2 \geq 1$.

On the other hand by (4') $C_1^2 \le 1$. Therefore $C_1^2 = 1$. Then from (1')

$$K(\omega) = \frac{C_1^2}{\lambda_1} + \sum_{\nu=2}^{\infty} \frac{C_{\nu}^2}{\lambda_{\nu}} = \frac{1}{\lambda_1} + \sum_{\nu=2}^{\infty} \frac{C_{\nu}^2}{\lambda_{\nu}},$$

which is, by hypothesis, equal to $1/\lambda_1$

Hence we have
$$\sum_{\nu=2}^{\infty} \frac{C_{\nu}^2}{\lambda_{\nu}} = 0.$$

Now if we suppose that $\lambda_{\nu} > 0$ for all $\nu \ge 2$, it will follow for all $\nu \ge 2$ that $C_{\nu}^2 = 0$; in other words

$$(\omega, \varphi_{\nu}) = \begin{cases} 1 & \text{for } \nu = 1 \\ 0 & \text{for } \nu \ge 2. \end{cases}$$

And besides, if we suppose that the system $\{\varphi_{i}\}$ is complete, we have the equality $\omega = \varphi_t$. Thus we can conclude that

Theorem 3.—For the functional equation

$$(10') \qquad \frac{1}{\lambda_1} = \int_a^b \int_a^b K(x, t) \omega(t) \omega(x) dt dx$$

there exist two and only two continuous solutions $\pm \varphi_1(x)$ under the assumptions:

1)
$$\int_{a}^{b} [\omega(x)]^{2} dx = 1.$$
2)
$$\lambda_{1}^{2} \neq \lambda_{2}^{2}.$$

$$2) \qquad \lambda_1^2 + \lambda_2^2$$

- 3) $\lambda_{\nu} > 0$ for all $\nu \ge 2$.
- 4) Functions $\varphi_{\nu}(x)$ form a complete system.

It is clear that, in the above theorem, the positive definite and symmetric kernel satisfies assumptions 3) and 4). Accordingly the following corollary holds:

Corollary 1.—There exist two and only two functions which maximize $|K(\omega)|$ with the (a)-condition, and the maximizing functions are $\pm \varphi_1$ under the following conditions:

- 1) K(x, y) is symmetric and positive definite.
- (2) $\lambda_1 = \lambda_2$.

where

We shall now assume that our kernel K(x, y) is positive definite. Suppose $\lambda_1 = \lambda_2 \pm \lambda_3$. Then from (8) in Theorem 1

$$\left(\frac{1}{\lambda_1^2} - \frac{1}{\lambda_2^2}\right) \cdot \left(C_1^2 + C_2^2 - 1\right) \ge 0,$$

Hence $C_1^2 + C_2^2 \ge 1$. On the other hand from (4'), we have $C_1^2 + C_2^2 = 1$. Thus in the proof of Theorem 3, we obtain

Corollary 2.—When in our present problem $\lambda_1 = \lambda_2 + \lambda_3$, the required functions are given by $\omega = \cos\theta \cdot \varphi_1 + \sin\theta \cdot \varphi_2$.

Analogically we can conclude that

Corollary 3. When $\lambda_1 = \lambda_2 = \dots = \lambda_s \pm \lambda_{s+1}$, the required solutions $\omega(x)$ are given by the following linear form

$$\varepsilon_1 \varphi_1 + \varepsilon_2 \varphi_2 + \dots + \varepsilon_s \varphi_s,$$

 $\varepsilon_1^2 + \varepsilon_2^2 + \dots + \varepsilon_s^2 = 1.$

II. From results of the preceding section, we can show that **Theorem 4.**—The simultaneous functional equations

$$\int_{a}^{b} [\omega(x)]^{2} dx = 1, \quad \int_{a}^{b} [u(x)]^{2} dx = 1,$$

where $u(x) = \int_a^b K(x, t)\omega(t)dt$, have the two and only two continuous solutions, and the two solutions are given by $\omega = \pm \varphi_1(x)$; moreover necessarily $\lambda_1 = 1$ follows.

Proof. Since we see that the integral equation of the first kind $\varphi_t(x) = \int_a^b K(x, t) \omega(t) dt$

has a continuous solution $\omega(x) = \lambda_i \varphi_i(x)$ as the unique solution, it follows, if we denote

$$D(u) = \int_{a}^{b} \int_{a}^{b} K(x, t)\omega(t)\omega(x)dtdx = K(\omega), \text{ where } u(x) = \int_{a}^{b} K(x, t)\omega(t)dt,$$
 that

$$D(\varphi_i) = (\varphi_i, \lambda_i \varphi_i) = \lambda_i (\varphi_i, \varphi_i) = \lambda_i$$

will exist. Hence we have

$$0 < D(\pm \varphi_1) \leq D(\pm \varphi_2) \leq D(\pm \varphi_3) \leq \dots$$

by hypothesis $0 < \lambda_i \leq \lambda_{i+1}$, $i=1, 2, 3, \ldots$.

While, from the theory of the boundary problem on the linear differential equation of the second order, it is well known that if we give the condition

$$(\beta) \qquad \qquad \int_a^b [u(x)]^2 dx = 1,$$

then by (1') and (5) the following inequality will be proved:

(II) $D(u) \ge D(\pm \varphi_1) = \lambda_1$ for any continuous function u.

Therefore it follows from Theorem 1, (6) and (11) that

$$1 \ge \frac{1}{\lambda_1} \ge D(u) = K(\omega) \ge D(\pm \varphi_1) = \lambda_1 \ge 1$$
.

Consequently we have $\lambda_1 = 1$ and $K(\omega) = D(\pm \varphi_1) = K(\pm \varphi_1) = 1$.

Thus by reason of Theorem 3, we can conclude that our theorem is true.

Q. E. D.

Next we consider the following functional equation in the place of (10'):

(10")
$$\frac{1}{\lambda_i} = K(\omega), \quad \text{where } (\omega): \quad \int_a^b [\omega(x)]^2 dx = 1.$$

We have seen by (7) that $\omega = \pm \varphi_i$ are solutions of (10"); but further we wish now to see whether equation (10") has another solution or not. For this purpose from (1') we take

$$K(\omega) = \sum_{\nu=1}^{\infty} \frac{C_{\nu}^2}{\lambda_{\nu}};$$

while by
$$(10'') = \frac{1}{\lambda_i}$$
.

Now let us choose $\omega(x)$ so as to satisfy $C_i^2 = 1$, then there would be $C_{\nu}^2 = 0$ ($\nu \pm i$). Since the system $\{\varphi_{\nu}\}$ is complete, we must have $\omega = \pm \varphi_i$. Hence we have the following

Theorem 5.—The functional equation

$$\frac{1}{\lambda_{i}} = \int_{a}^{b} \int_{a}^{b} K(x, t)\omega(t)\omega(x)dtdx$$

with conditions: 1) K(x, y) is symmetric and positive definite. 2) $(\omega, \omega) = 1$. 3) $(\omega, \varphi_i) = 1$: has two and only two continuous solutions given by $\omega = \pm \varphi_i$.

For the case where λ_i has the index s, we can obtain

Corollary.—In Theorem 5, if $\lambda_i = \lambda_{i+1} = \dots = \lambda_{i+s-1}$, the required solutions will be

$$\omega = \varepsilon_1 \varphi_1 + \varepsilon_1 \varphi_2 + \dots + \varepsilon_s \varphi_{i+s-1},$$

$$\varepsilon_1^2 + \varepsilon_2^3 + \dots + \varepsilon_s^2 = 1.$$

III. We shall now discuss the most general case where k is any given constant, namely we consider the functional equation as follows:

$$(1) K(\omega) = \int_a^b \int_a^b K(x, t)\omega(t)\omega(x)dtdx,$$

which satisfies the (a)-condition $i = (\omega, \omega)$.

But since it has been shown that even in the particular case where the kernel K(x, y) has only a finite number of characteristic constants, there will exist an infinite number of solutions, we demand here such a special solution as the following form:

(12)
$$\omega(x) = \xi \varphi_{h-1}(x) + \eta \varphi_h(x),$$

where ξ and η are certain constants to be determined. Put (12) into the (a)-condition, then

 $\mathbf{1} = (\xi \varphi_{h-1} + \eta \varphi_h, \xi \varphi_{h-1} + \eta \varphi_h) = \xi'(\varphi_{h-1}, \varphi_{h-1}) + 2\xi \eta(\varphi_{h-1}, \varphi_h) + \eta^2(\varphi_h, \varphi_h),$ hence for ξ and η , we must have $\mathbf{1} = \xi^2 + \eta^2$. On account of

$$\int_{a}^{b} \int_{a}^{b} K(x, t) \varphi_{i}(t) \varphi_{j}(x) dt dx = \frac{1}{\lambda_{i}} (\varphi_{i}, \varphi_{j}) = \begin{cases} \frac{1}{\lambda_{i}} & i = j \\ 0 & i \neq j. \end{cases}$$

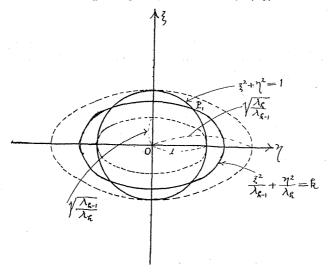
from (7) we obtain

$$K(\omega) = \frac{\xi^2}{\lambda_{h-1}} + \frac{\gamma^2}{\lambda_h}.$$

Now from our functional equation

(10)
$$k = \int_{a}^{b} \int_{a}^{b} K(x, t)\omega(x)\omega(t)dtdx \quad \left(k \leq \frac{1}{\lambda_{1}}\right),$$

we can show that for a given constant there exists such a number as satisfies the following inequality: Hence by (13) we must have



$$\frac{1}{\lambda_h} \leq \frac{\hat{\xi}^2}{\lambda_{h-1}} + \frac{\eta^2}{\lambda_h} \leq \frac{1}{\lambda_{h-1}} \quad \text{and} \quad \hat{\xi}^2 + \eta^2 = 1.$$

On the other hand we see that in general four pairs of values of ξ , η may satisfy above these relations (see Fig.). Consequently we have the following

Theorem 6.—For the functional equation

$$k = \int_{a}^{b} \int_{a}^{b} K(x, t)\omega(t)\omega(x)dtdx \quad \left(k < \frac{1}{\lambda_{1}}\right)$$

with the condition $(\omega, \omega) = 1$, there exist such four pairs of solutions as $\omega_1 = \xi_1 \varphi_{h-1} + \eta_1 \varphi_h$, $\omega_2 = -\xi_1 \varphi_{h-1} + \eta_1 \varphi_h$, $\omega_3 = -\omega_1$, $\omega_4 = -\omega_2$, where ξ_1 , η_1 gives the coordinates of one of the points at which the unit circle $\xi^2 + \eta^2 = 1$ and the ellipse $\xi^2/\lambda_{h-1} + \eta^2/\lambda_h = k$ intersect each other on the (ξ, η) -plane; and the number h is determined from the constant k.

In conclusion the author wishes to express his hearty thanks to Professor Toshizô Matsumoto for his kind encouragement and for observations made.