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I. We use the following lincar operators
= b
(¢, )= gl

b b
(Ao, 9/)):S S A, Dol )e(x)dtdx,
b
(0. O)=(¢, ¢). (o ¢)=S(‘[¢(-’L')]‘f/-@\%
specially, let A(x, 1) be symmetric, then («lo, ¢)=( 1¢&, o).
Now we define the real function, A (x, ¥), of two real variables
& and » over the fundamental square

Q. [‘Zéxg’]

a=y=0
" under the assumption that: they are continuous throughout & and
symmetric as to & and ».  Arrange the characteristic constants of
K{x, v) in the order of magnitude of their absolute values:

l=1h = =|hlshal=........ ,

where each 4, is real.  Put every corresponding characteristic function

to ecach characteristic constant
(), @) eeennnin s O] yerniiin respectively,
then these {unctions ¢ (x) will form a normalized orthogonal system,
that is, .
(¢s %)Z{é for 7.
Our present problem is to determine w(x) so as to satisfy the
following functional equation :

b Y
Kr:g S K(x, Ho(D)w(x)dtdxy,

when 4 is a certain given constant.  Tor convenience let (g, ¢)=
A(p), then we have
b
(1) ],\L’(m):( ‘ K(x, Deod)w(x)dldx.

b
1f we denote (2)  wa)y=\ K(x, Ho(t)dt,
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the above cquation (1) becomes A{w)=(x, w). We now apply the
Hilbert-Schmidt expansion theory to the right side of the equation
(2). Tt becomes

(2) u(x)= 35 0u(),
V=1 2V
where (3) C=(0, @), v=1,2,3eeercs .

The series in (2/) is absolutely and uniformly convergent on (e, 4).
Therefore we have :
@ C‘ . o (}‘2
G v el XY )
(Yéy w)—-xs._l (‘t’;‘h Ll))-*}_, z 1
=1 2, V=i 4,

1

namely by (1)
(1% Klw)=Sr%2.,

IS

Apply the Bessel inequality to (3),

@D (0
(4) 2ici=| o))z,
vl I3
On the other hand from (2)
"h N :{' (:‘2,
(5) |G =2

IFurthermore if we apply the Schwarz inequality to the right hand of
(1), we obtain the following relation :

b (D
(6) [lf(w)]z:\;“[’Zt’(x)]"’ziif\[w(x)]!d;\f,
while by computing the value of A{g),

b 0
S g(.[((:c, /)wi(/)ga,;(x)(z’z‘d:czv-m;-g

FRAL
3

h

(%) Pdx.
Hence we have

(7) ff(gﬂc):——;-, FZ21,2, 3peverannns .

23

Now when we take w(x) so as to satisfy the condition
I3
(a) j [w(x)fdx=1,
@

from (5), (6) and (7) we have

&)~ LK) P2 —

‘v 2

But by (4),

o0
' 2
(4 2=,
y=1
& O3 1 5 . . . .
whence D3-7Y-= . PPut this relation into the above inequality, then

v=1 /7 7
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[K() = [K (e )]-<v( / »-/L)c |

H )
IFor the further discussion of this inequality, we rewrite the right
hand in the form

> L-_-_>C +2( ..... 47)6‘;".

PESY /: A‘ FETES /(4 A7
- 1 i :
Now ————=Z0, for v=/, =1, 2, 3,eeieiinen , by hypothesis.
A P
Therefore

i—-1
(K@ =LA+ 3~
A
Specially, take z=1, then the above relation becomes
[&()F=[K (o] :—j_ or | K(w)|=|K(e)]-
gl

Thus we have the following
Theorem 1.——For any continuous normalized function o(x), there
exist always the followmng nequalities

(8)  [K(@PsIAGEpF+ g;(—/.:;-— L) o0

(8 | Kw)| =| K ()] = “q! 1521, 2,3, cennenen )

Since the second member of the above lxloquahty (8" does not
depend on ofx), we have the following' corollary to Theorem 1 :
Covollary 1.——/For any continuous function o(x) which salisfies the

fh
(a)-condition j lwlx)Pdxe=1, lhe maximum value of
. L3

l S[’Sh]\"(x,f)(u(z/")w(x‘)dldx l; -
ada Ay

Remark. When we consider two appreciations (8) and (8/) for | A(w)],
we see that the one is relative, the other absolute ; hence the follow-
ing inequality must hold :

I 2
> ) (w, @, ).

33

s equal to

1 i—l( i > . ;
LS (=L Yo = (=1, 2, e :
lf ;:.J: /‘.i AL ((I SO ) Al ( 1,2,3 )

We can also show easily that the above inequality may give the
following results :

i-1
E(m, o, f=1, for any 7 by (4)

and Cy= —I———ff—‘r) / (—I—————>< 1 by hypothesis ;'
A I+ V' 2

1. It is clear from the construction of Afw) Lh 1t A{w) == A{—w) for any continuous func-
tion o(x).
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i-1 ) .
hence > Clw, ¢,) =1 for any 7

vex
Next we take Green’s function, instead of A, #), which belongs
to the lincar differential equation of the second order. Schmidt has
shown that the results of the Hilbert-Schmidt theory of continuous
symmetric kernels still hold for a discontinuous kernel if

13
1) S]x"(x, 1)AD)dt for f continuous, is continuous in a on (a, ).

2) The sccond iterated kernel of A(x, ¥) is continuous and does
not vanish identically. These conditions are satisfied in the present
instance and thus all of the Hilbert-Schmidt theory, as well as Theorem
1 and Corollary 1 remain true. Therefore by putting /=3 in (8) as
a special case we have
Corollary 2.— 77 K{(x, ») &5 the Green's function which belongs to
the differential equation v'-+Py=o0 with the boundary conditions
wo)=x(1)=o0, for a continuous function o(x) such as satisfics the (a)-
condition, then

[R (o) =—L {I+800§+6503},

4,
37

_qt h
swhiere C,=1"2 Sw(x)sinwrxdx.
L]

Corvollary 3.—/For the Green's functron of Legendre’s differential
cquation [(1—x2)) =0 with the boundary conditions {(—1)=1(+1)=
1

. . 1
o, i.e. K{x, v)=logz———
2

we have  [K(o)f= jé {1 +35Ci+3C },
o]

log[(1 =)« (1 F )] Sor 25,

’ NI 2
swhere C,= N/ _.2L+_I..S P(x¥)o(x)dx and PSx) means a Legen-
2 -1
dre’s polynomial of the v-th degrec.
- Generalizing the (a)-condition, let

() (tapax=r,

Ja

then for such @(x), we take (x)/z for w(x) in the above results.
Hence we can conclude that ,

Theorem 2.—7vr any given constant 7 and any such continons
Junction o(x) as satisfies the functional equation

= gi[(u(x)]za’x,

we have alwavs
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i—1
(9) [A(w)F “*"7‘"’1 ”’/j’“"*)"-) (@, ¢.),
(9) [A_’(w)]‘lé_;‘?. (i=1, 2, 3,)

1
We return now to our original problem and will solve the follow-

ing functional equation :
Dl .
(10) i=| 3 K, Delelx)dldx
under the assumption

() 1= Tolx)idr.
J
For this purpose, it first becomes nccessary, on account df (87),
that the value of % should bhe given as /e"él//'f;'.‘ ,\V [ cdnsider the
particular case where 4=1/2, while since it has been shown from (7)
that A(=¢)=1/4, two functions==¢; will be w-solutions in the present
instance.  Dut it might be that another solution exists.  We must
examine this possibility.
If we put /=2 into (8), by using [A{w)]=1/4, we obtain

——-Irgmf_;—--{—(——lm«—————)(,l, that is, (—I—~——-~—~) (Ci—1)=o.

A 3 A pd % 2
Now let A==4, then Cigl
On the other hand by (4’) C'f Therefore Ci==1. * Then from (1)
AN(w)=—"~ ¢ +>__, ...... .»+\“ Gy ,

A =22, )l w-)

which is, by hypothesis, equal to 1/2,.
o pid

Hence we have STy =,
oA, .

Now if we suppose that 4, >0 for all vz-, it will follow for all viz2

==y
that Ci=o0; in other words
N e =1
(o, gay)—{o for =1,
And besides, if we suppose that the system {@,} is complete, we have
the equality w=¢,. Thus we can conclude that

Theorem 3.—For the functional cquation

{10) —;«—X j K(x, Holt)w(x)dtdx

there exist two and only lwo continvous solutions (X)) wunder the
assuntplions
"l
1) j [o(x)fdxr=1.

2) /l—r—)_
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3) A >0 for all v=o.

4)  Functions ¢ x) fornt a complele system.

It is clear that, in the above theorem, the positive definite and
symmetric kernel satisfies assumptions 3) and 4). Accordingly the
following corollary holds : '
Corollary 1.—TZVicre cxest two and only two functions which maxinise
| K(w)| with the (a)-condiion, and the maxtnizing functions are =,
under the following conditions :

1) Ax,») o5 symmetric and positive definde.

2), Al ‘

We shall now assume that our kernel A'(x, ») is positive definite.
Suppose 4 =4%4=+4A. Then from (8) in Theorem 1

(L) (i ci-n)zo,

VA
.

Hence Ci+ Ciz=:1. On the other hand from (y/), we have Ci+ Ci=1.
Thus in the proof of Theorem 3, we obtain
Corollary 2.—— Where 2 our prescnt problew: A =2=Er, the reqeved
Sunctions are given by w=cost » ¢ +sinf « @,

Analogically we can conclude that

Corollary 3. When A=lk=...... =2E A1, the vequired solutions w(x)
are grven by the following lLinear form

g tewt.n + &0,
where g+e+.... +e=1.

II. Trom results of the preceding section, we can show that
Theorem 4.—7%e simullaneons functional cquations

gi:[w(z)]qtl’:& =1, Si[u(x)]”dx =1,

13
where zz(x)zju]\i'(x, Ha(t)dt, have the two wed only two conlinuous
solutions, and the two solutions arc given by w=elx); morcover
necessardy =1 jfollows.
Proof.  Since we sce that the integral equation of the first kind

i) = (Zf,ccv, NPt

has a continuous solution w(ax)=1Ae(xr) as the unique solution, it
follows, if we denote
h D *h
D('//):S S K(x, Holt)w(x)dtdy=K(w), where A‘)ZS A, Ho?)dt,
that
])(9”&) = (991, )n'.SDL) :)\A(SO;, Sﬂz) =1
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will exist. IHence we have
ol D(xp)=D(xp)=D(xe)=.........
by hypothesis o<<A=2.1, /——1, 2, Fyerreneeeenns
While, from the theory of the boundary 1)101)10111 on the linear differ-
ential cquation of the second mder, it is well known that if we give
the condition y
(B) L[z/(,x)]”"dx: 1,
then by (1) and (5) the following incquality. will be proved :
(11) D(w)=D(x¢,)=2, for any continuous function .
Therefore it fol ]ows’ from Theorem 1, (6) and (x 1) that
13— 7 L= D)= K(w)=D(*xe)=h=
)

Consequently we have 4=1 and A{w)=2D(%e)= ]\(+g.n,)—1
Thus by reason of Theorem 3, we can conclude that our theorem is
true. O.E.D.
Next we consider the following functional equation in the place
of (10"):
(10") '--)I———zlx.'(w), where (a) : j [o(x)dx=1.

(4
We have seen by (7) that w=z=¢; arc solutions of (10”); but
further we wish now to see whether equation (10”) has another solu-
tion or not. Tor this pu1posc from (1’) we take

“l
A

Vrsl

while by (10”) m)«.

Now let us choose w(x) so as to satisfty Ci=1, then there would be
Ci=o0 (v==¢). Since the system {¢,} is complete, we must have w=
¢, Hence we have the following

Theorem 5.7 functional equation

*h b
__;m:& gl Alx, zf)w(/)(u(:&’)dl‘(f;\f

i v
with conditions: 1) K(x, v) is svimmelrie and positive definide,  2)
(0, w)=1. 3) (0, @)=1: Las two and only two contrnuous solutions
green by o= *£g.
IFor the case where Z; has the index s, we can obtain

Corollary.—7u Zheorcm 5, of 2i=2i= ... =ipanr, e rvequired
solntions will be
=g te@st ... + &fPisamts

D) D) 3
solere sttt +ei=1,
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III. We shall now discuss the most general case where 4 is any
given constant, namely we consider the functional equation as follows :

(1) A’((U)=XZS:]§;'(x, Ho()w(x)dtdx,

which satisfies the («)-condition 1=(w, ).

But since it has been shown that even in the particular case
where the kernel A{x, ») has only a finite number of characteristic
constants, there will exist an infinite number of solutions, we demand

here such a special solution as the following form :
(12) (0(37)25%4(3’)“%’ 70u),

where § and 7 are certain constants to be determineid.

the («)-condition, then

Put (12) into

1 :(550/,,—1'*"059/;, 59%-1’*‘ 7}99/,.):§:<99/L~1, SD/L-1>+ 2577(90/1-1, QD/:,) -+ ’Og(ﬂﬁm 9011,)7
hence for & and », we must have 1=&+7. On account of

b b e
(”S"j\y(;\"» If)spi(f)@j(«’\f)(ff(ix:——}——(905, Soj) = 2 for
* 0
from (7) we obtain
(13) Kw)=-5 4 7.
o1 )‘/L

Now from our functional cquation

) . oo :
(10) /6-—”:\\ X[f(x, Bl )w(t)dtdx (/z’é-}l—«)

\
!

/=

14/,

we can show that for a given constant there exists such
as satisfies the following inequality : Tlence by (13) we must have

M

ot

number
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(]

)
1 [~ 7 1 &) )
— + A =—— and &+y4=1.
A luei 2 Ayt

On the other hand we see that in general four pairs of values of &,

7 may satisfy above these velations (see Ifig.). Consequently we have
the following '
Theorem 6.—7Zvr the functional equation
"D
Kf:j S]\'(.'\f, Halt)w(x)dtdx (l’< 71»)
@) a

o1
weth the condition (w, w)=1, there exist suck four pairs of solutions
as o =& @1 7, (03:~51¢h_1+77159h, W= =y, = —wy, Where &, 7y
grves the coordimates of one of the pownts ab which the wnt crrele
Evgi=1 and the cllipsc /b i+7/h="r wntersect each other on the
(&, p)lplane ; and the wwmber b s delermined from the constant .

In conclusion the author wishes to express his hearty thanks to
Professor Toshizd Matsumoto for his kind cncouwragement and for
observations made.



