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Introduction

S 1. The problem of analysing a light curve of the 3 Lyrac type
was undertaken by I4. N. Russell' in his celebrated work on the de-
termination of the orbital elements of eclipsing variable stars. According
to his method, the light curve is first rectified by using the ellipticity
constant determined from the slope of the curve near maximum and
then the ordinary process of the determination for the Algol type is
followed. A similar ellipsoidal form is hereby assumed for both com-
ponents.

It is casily observed that the light elements thus obtained depend
sensibly on this constant of ellipticity. Consider, for example, the case
in which two minima are observed, primary minimum corresponding
“to the total eclipse. I.et 4 and 4, be the brightness of these minima,
and « and 4 be the lengths of the semi-axes. Then the ratio, #, of the
radii of the two components is given by the relation,

= (_._{]._.—- 22>/21
a

when the stellar discs are uniformly brightened. Thus the dependency
of » on 4/a is clearly shown.

Moreover, each of the components will not in general be deformed
similarly and this dissimilarity can not be found with any accuracy from
a small part of the light curve near maximum. Rather, a weighted
mean of the ellipticity constants of the two stars is determined thereby.

§ 2. The main purpose of the present paper is to examine, for
Eddington’s Model, whether the effect of the tidal deformation on the
light curve conflicts with the observed data or not. It has been noted®
that the uniform value of #/a agrees remarkably well with Darwin’s
theoretical value for a hypothetical homogeneous fluid ; the darkened
stars show considerably less ellipticity than the lomogeneous bodies

1. Ap. J. 36 (1912) 60. 2. Shapley; Contr. Princeton Univ. Obs. 3 (1915) 113,
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for given separation. The predicted distortion will be much smaller in
a gaseous star than in a fluid one. It may be noted, however, that
since the surface of the star in radiative equilibrium is not uniformly
illuminated but is brighter nearer the centre, it tends to magnify the
phase effect due to the gravitational distortion,—that is, to increase the
apparent value of ellipticity and more so if we take the limb-darkening
into a{ccoun't. On the other hand, it behaves as if there were a central
darkening when we want to cstimate the dimension of the smaller star
from minimum of the light curve corresponding to the annular eclipse
and it results in a greater value for 7.

In a previous paper!, I calculated, in the first order, the phase effect
for the polytrope, =3, by taking into account both the variation in
surface brightness and the darkening to the limb. It was shown there-
in that the results for a semi-darkened solution satisfactorily accord
statistically with observations. Here we intend to compare them for
individual stars.

For this purpose we are not satisfied with Russell’s method of
rectification, but would like to find what is the effect of the dissimilarity
of the deformation on the light curve. The model star assumed in the
previous paper was used and the results applied to the light curve of
8 Lyrae. .

I. Loss of Light by the Eclipse

§ 3. Description of the model star. Take the centre of gravity
of the primary, J/—the eclipsed star—as the origin of the coordinate
system, the x-axis in the direction of the sccondary, J/'—the eclipsing
star—and the z-axis parallel to that of the revolution. Now we assume
that in our model star, the distance, 7, of a point on the surface from
the centre is given by

;7:'9,[1 —0.088 v+ -—i—( 1=+ {P.J(R) +p %)+ ‘9‘%/&(2)}7/1] (1),

and the net flux, 7// of radiation through the surface by

7 H=H{1 —( =)o — {2PA)+ 35. 20 + 473 P(2)} ) (2),
where 4, g and v are the direction-cosines of the radius vector and 7,
Hy, v and 7, arc constants, the mean distance of the two stars being
taken to be unity, and 2(2) being the lLegendre function of 4h order.
The shape of our model star is, therefore, distorted ellipsoid which is
more clongated towards the other component, and its swollen portion

1. These Memoirs., A, 17 (1934) 197.
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is less illuminated. As was shown in my previous paper (loc. cit. pp.
210 and 211), the relations, (1) and (2), represent to the first order the
surface nature of a gascous star in radiative equilibrium and the con-
stants are connected by the equations,
oy=7idd" /A } ‘ (3)
"7:'7:1;‘*'7/1 . .
To the same order of accuracy, the total emission is given by

18= 4:?['[,(1 — fl> | (4),

and the phase effects are
Qu<[ﬂs 71()): ﬁf]«)[ 1 + (713*. 1 )T’ - {21)—’(/") - 7/{[_)4(/;’)}7'1] ( 5 )u
and

~
2

Lo, 120)= ﬁl’fn[l + (_&_3_”5 - —9—>7J - {I—_()Pg(/n) + —g—%/’;(/u)}mj (5)e
, 3

5 3
respectively for the uniform and the darkened solution, where /4, wz,
and 7, are the direction-cosines of the line of sight.

Sa. Loss of Light by the Lclipse. T.et 7, and /; be the flow per
unit cross-section per second of the proper and reflected radiations
travelling in the direction, «, to the surface normal whose direction-
cosines are /, »z and 2. Then the loss of light by the eclipse is

Ji%:j(f, +75) cos a gdw (6),

where dw is the elementary solid-angle, and the integration is to be
extended over the whole eclipsed area. Iollowing the previous work,
we may take for the flow of radiation,
sk
1 3 :
V/I"—'—m--«w]](x + 25 cos @)

145 2

(7

==

{2 + 3'91/)::(2) + 3773 P{('{)}

s being the coefficient of darkening. Iinally we have
cos a== ly+ 112y + 1272,
2 Ve ~
7’ N 4 2 , 2 540
:L[x + <—-—] v—y )’ZJ + (2 - —-]“ ){PJ(A) + 7.0 (2) + ‘qdﬂ’(/.)}mj
(8),
where £/(2) is derivative of the Legendre function and

L=+ nigpr+ 1000 : (9).
We shall calculate, as usual, the loss in the proper radiation for

#* The accent is used in this paper to indicate the corresponding entries for the secondary
-—the eclipsing star, unless otherwise mentioned.
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two extreme cases corresponding to the uniform (s=o0) and the darkened
(s=o00) solution. By combining (2) and (8), the complete forms of the
integrands in (6) will be :
7 4 ’ - P,
Hy' cos a:f]l,[,[x + z'(—f% — I) + WIZ{Pzﬂ(Z) - —%P{ (k)}'ﬁ"] (10).
and

-1 cos'a= "L/%L[L + 2'{ 270w —(1 + v"’)}

4
+ mz{m(z) TP L — 2/‘,11'(1)}-7;—2] (10)
]

respectively for these two solutions.

As for the reflected radiation, we neglect the deformation of the
surface and reserve only the terms to the order of 7. Accordingly it
gives for the corresponding integrand

Ly cos a=Hpi LA+ 2. PfA) + 373 P(A)} (r1).

Now if we write J%,, d%, and 4%, for sub-integrals in (6) cor-
responding to these three, we have for the loss of total light

J8= L (4R, + 5 IR+ IL, (x2).
1S

S 5. Transformation of the Coordinate. To evaluate these in-
tegrals, it is more convenient to refer to another coordinate system (X,
¥, Z), in which X-axis coincides with the line of sight (4, 7z, 72,) and
Z-axis lies in xX-plane. To fix the idea we always take Z-coordinate
of the secondary to be negative, so that if we write (4, w, 72) and (4,
i, 72;) respectively for the direction-cosines of ¥=- and Z-axis, we have

h=o, nn=—mlb, m=u/l; (13)

b= —1v"1—105, = —mdo/ by 115=—nyls/ls } >

Now let (Z, M, N) be the direction-cosines of any radius vector
in this new system, then ’

A=l + LN } (14)

v=ptol A 100 M 4 11, N ’
and hence (10) and (11) can be expressed in A7 and .V, which are now
taken to be independent variables. Z is always positive as far as we
are concerned.

Further, since

Ldw=d3ldN (15),
we find
1

. . /¢ yi vV
A8, = Sciﬂjzz,’z\f[ 1+ 7){%‘ —1+ 7; : (///o‘—;;-[* - 710/0'“%“)}

4y

a
2



Theoretical Light Curves of Eclipsing Variables of the B Lyrae Type 51

+ T"[{ - u) 3 A T}

+ imm{/,)(z =300 L+ 211 — 5I)N—I(530N7

2

+3(508—1) = 50l7L5N7 ~ 3)

"'l!:

VA 2

2
L

+ { 1203 — 72 4 1 502 — 7B NT— 15051 — 7N

) .

3 Ed/linﬁ\'[ﬁ + 7'{ 2 7;“ (2o A~ 1200y N)

+(z-7;‘§:Y+< U )'+z Wity vy +723—2< 7/“ ):NJ)L

A /5

2

M=l NP+ 1 — 25— ( o )jlf}»

/-7

371‘{/01; 2 L NTE 4 (BN 4 1 — 613 L — 20, LN

[N

-+ 3 . {Zo[ +I-,/7/(u +<I"/ A* +I'—'IO/Q)/|\

+ (55N + 1 —2000) b NL — 20(555NV* — 1)}

+ z!,‘q?{éiliﬁls +70LlINL + {1053 N* — 3500

+ Ll 703N — 105 ) NT?
(BN = S dos BN 15 L= U 1N = N ]

2

and

(16),

42, = mﬂ{z + o P+ 3&/?,(2)}43/(&\* (16),.

§$6. Lguation of the Shadow Cvirnder. The range of integration.
is to be determined by the section of the surface of the primary and

the shadow cylinder of the secondary.
line of the latter will be

o

xX—% _ yv—¥ _ —

A P 720
where paramecters X,
point on the secondary and swe have
(Z—1)P+7+8=7"
and
cos @' =1"l-+ By + 7' ny=0
Tere by premise, the accent means the

The equation of the generating

(7).

7 and ¥ mean the coordinates of the tangential

(18)
(19).

corresponding entries for the
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secondary, and the bar denotes the tangential point. Since cosa differs
from Z only by a small amount of the first order,

L' =10+ ity +5'129=0
in the zero order. TFurthermore,

E—1=17, 7=5'7 and E=v7,
so that each of (17) is equal to

R
to the order of accuracy. Or by introducing our current coordinate and
by using the properties of direction cosines, we have as the equation
of the shadow cylinder

ZT—= W Z— DY+ Ll l
F=mn Y i Z—l)+ L'y (20),
g= m Y +nZ—b)+nlLy’ J
whence by squaring and summing up
P (Z—b)=7"=7"(1 +247) (21)
where
dp=—0.088¢ + ——I:~(1 —v )+ {]33().) +p P2+ 'g“{/?,()\)}z'l (22)

by (1). 2/ and ¥ in 47 are also functions of 17 and 7, as given in
(20) but here it is sufficient to take only their zero order terms.

S7. Section of the Shadow Cyifnder on the Primary. Since on
_the boundary surface of the primary

1= 2191 + dy) }

Z=Np(v+dg) )V
substitution of these rclations into (21) follows

A+ (1\’—— i): (.ﬁi)d(l +247)— 2.41'/;{11/2 + Z\*<‘\"— L)} (23),

. n /i a

the required equation which determines the range of integration.

It may be noted that we have always

AP NP=1 = [} .
and Z* is of the second order on the limb of the visible hemisphere
of the star, so that in order to find the total light, for example, the
range of integration can be taken for a circle in A37A-plane as was
actually done in my previous paper. But it is not the case for the
eclipsed area in general ; in fact the deviation is of the first order as
shown by (23).

Furthermore, if we write for simplicity ,

w=rn ) G,

—h=2N i/

the equation defining the eclipsed portion becomes
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A+ (N + No¥ =71+ 247) = 24p{r* = N(N+ Np)} (234),
where 47 and 4y are of the form (22) and there

/\u:/()];"i‘/glj\y
v=rL+ ”/’“ M~—Zf/“—/‘l~;\f’} ’ . (140),

P =I(N+ ND)
=0 gy b Ay (25).
7 7 2 ( o) J

§$8. The Range of Intcgration. T.etIin Fig. 1 be the projection
of the primary on A/N-plane
and II be that of the secondary.
Then the former is a circle of
unit radius and arc Q220 is a
distorted circle of radius, »,
specified by (23), and their cen-
tral distance O is N,

It is our problem to cal-
culate the light coming from
the shaded portion. Now if we
write

SN A)+ AN AT)
for the integrand in 4% at (16),
47 being of the first order, we can neglect the deviation of II from a
circle for the integration of 4/, MHence the required integral is

A — Ny (AT .
ae=(| j | ’Sl : )(f+ AF)INTIT
S o

Fig. 1

—ar, — a7,
+ 3;‘\“*’ [J.Jl;f]‘l[j Ay (26),
where ‘
M, =1"1— 7"
A7l =1/"r—(N+ N } (27)
L. =+ M~ M2
and /N is the abscissa of the intersection, @ and (¥, so that
— 2N Ny=1— 77+ N} (28).
437 measures the deviation of arc Q2 from a circle and from (23,)
MAM =747 — {7 = N N+ N dy (29).

Or referring to (22), (14.), and (25), we have

7 I*[x-/ o 9 70 V' a »9, > r\2
w.%7/(/%'_[4:A/f_-f]‘ : = [0.824;" ~ M+ (1?’9> {/lﬂ;—- BN+ z\,,)ﬂw'
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+ 2{ P(A) + 5/ PA) + 5 PN 7!
- [{0‘8 24— j‘-ﬁklg + (—7;“—>‘(ﬂ~//;k/2 - Z:-;/\’vz +2 /OZJ ‘NyLrZ: - [:.g;L:E:Z)}Z’

+ 2{ P+ PA) + i Py e Kt = NN+ A} (30),

where «
'2:2: = /OL:}: + ‘le\r } ( 21 )
1A = LN+ N °

and f.=1 and 3 L, respectively for the uniform and the darkened

solution. The first two integrals in (26) do not depend on the distortion
of the secondary. Hence, hereafter we shall call them * circular in- .
tegrals” and the last integral will be referred to as “ boundary cor-
rection . _

In particular when the cclipse is annular, A} is to be replaced by
—(Ny+7) and naturally the first circular integral should be dropped off.
TFinally it should be added that the eclipse is

total when 7—A33>1 (r>1),
annular 7+ Ny< 1 (r<a) (

and partial 7 rEN> 1> - N

§o. “ Crrcular Integrals” The integrand, f+ 47 is an algebraic
function of N, 47 and L, its general terms being Z*AN™ and L'N™A7.
But since

ar
S Y adar=o.
— A7

(e8]
o
N’

only the former form necd be considered.
Now put

pr=|

NP7 .
5 F RN NI

- "‘j’[}:-
e N AL o (33)-
=\ gy 33
I Joar
and Q=BT

Then we can express the circular integrals by means of these terms
but in actual evaluations it is much more convenient to make some
more rcformations of terms with an even upper sufiix such as

(l-‘_%;’: =2 ¢2n +1'¢2m, 42 + ((/::::)) } (3 4)
) (/::;:I—‘l = 3¢2n'¢2m, o+17 0 + ((/.;’171"—0 '
where

o _ (=) m—=3)... x{n—1)z—3)... . |
Pon (e 2) i +12—2)...... ‘ (35)
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whence™*
¢)"n+1'¢"’m 42 <2/”—— I)(Z//"—s e
2 U (e 2n 4 2 2me A+ 202). (204 2) (51)
Jetase
b (em—Yem—s)
T (2t 22+ 1) 2m+20—1).. {222+ 1)

Thus ¢ and ~2 o, mean the losses of light by cclipse respectively
2

for the uniformly brightened and the completely darkened star with no
~deformation.  Their values have already been calculated and tabulated
by Russell and Shapley.t Y

As will be seen later, it is most troublesome in numerical com-
putations to find values of @, and it is the merit of such reformations
to be able to pick up all the terms depending on it and bring them
together into a simple form. In fact, performing the integration and
picking up the coefficients of @, and o in the expression of A?,/ I, we
get: for the uniform solution

a1+ (s~ 1)o—{2PL0)— 7 (40} (36
and for the darkened solution

3 al'{l +( § 78— 6 )zr-— 16 P_v(/o>7'x}"‘(ln‘ I; P:'.(/n)"/ﬁ'x (3 7)4-

2 S

5 3
The forms in the bracket are quite the same as those found in the

expression of the phase effect, (5), except for the asymmetrical term,
/%, in the darkened solution, which is proportional to the eclipsed area.
Ieaving this apart, Russell’s method for the rectification of the curve
is thus applicable in the present case so far as we consider only the
terms depending on a, and «. :

Other terms in the circular integrals are:
for the uniform solution

2 4 , 2 , 3 i3
Yol — 3lolatr—y + 3[:(5 li— I)“U - ‘“Q““/n(’l—-t) + 2
2

— 7
2

/(,/f_-l((/?.[)}m

-2t 2 7 = 50
A= 3 + 30 = X (35
and for the darkened solution

o)+ () 1] (=2 )= (54 = Yo+ 22—} +

2 /§ 3 2

. Ap. J. 85 (1912) 333 and 36 (19r2) 243. #% In all subsequent notations with many
suffixes, the suflix 0 will be omitted save where it is final : for example, a,==a,° and ¢,=da . -
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+ 3 'Zfl[ 3{ Io(as) + Zg(af)} + 62yl ta— ey

J o

+

;’ 771{ 50a(a) + 15080(05) + 7(1 — 1028) () — 1003(e)
+ 15400+ 50505 + {1 — 20/3)0:’1}

i) — 1050605(ai)

o) 2% 2,07 o 28
PRI ) + 10537 ) + 35
2 2

— 3508(0n) + 70kk(Laus+ 2365)
— 35ki(305m + L3o) + 1 slnfgaf)}J (39)a
St10. Y Bowundary correctrons” are given by single integrations. If we
write for simplicity
7 m '--]V()+7‘ BTT AT™ r
Jyre= MELLN™d N (40)
: i
and
- =Ny . . )
]ﬁj'g,:\ MELAN+ N AN N
J A (41),
(R)= (= N3 It = Nl
we get from (30)

—"[‘I/;;*(Jﬂ,)(, = Z’/{O.S 247'2]_10 - [10 -+ <~7*;f—>‘([m - /3 i‘im)}

o N so SR 7
-+ 7'1’[3(”“‘"““) IZ~T + 71'{5("{"’) I3 £ [/«m}
v 7 7
I e FARN o \azo
) + _'-/j ]{35< . ) [—10— JO(-—:-“)‘I;IO * SI‘IO}J
4 7 7

2

—of 08247~ (T + (2 (70— A7) = By + 207}

=y [3{ 08 L) + 2007 —10) + 15 F210) p — (7—s)]
e S{Ae) 4 BT )+ 30T + B2

~s{atr st + L350
S BT )+ 61N T2s) + 4d L I5) + 24 f:@}

. ;,o{ B(Tss) + 20 ) + 5 /‘Em)} + 3(]_10)] (12).

The first half depends on the distortion of the sccondary and the
second half on that of the primary and hence these terms may be
combined with the circular integral when we calculate their numerical

values as is actually done later.
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The algebraic expression of the corresponding integral for the
darkened solution will be given if we increase y-suffix for all 7 by 1

and multiply them by -3,

2
S11. Reflexion Lfect is given by (16), and there the integration
should be extended over the same region as in the circular integral.
THence using the same notations, we have at once
Agr . ’ . 2 ’ 2 2
—==r =i+ balo + 93 3l + 2hdee + D) — o
Ity

+ —3~'ﬁ{5(/ ot -+ 3050 + 300503+ Licin) — 3l + /ﬂn/)} (43).

The total reflexion in the direction of the line of sight, if uneclipsed,
is also given by the same integral taken over the whole circle T in Fig.
1, thus:

0=t = g af+ 7 i A - ] (49).
3 4

where

— /y=sin @,

Our chief concern is in the net reflexion effect, ¥,.— 4%,

II. Construction of the Tables.
S12. Reduction of the Tntegrals lo Flementary Forms., Put
i

qsmvz(f):s fm(] 1 "‘f‘)"~1(/f (45)‘

which is a kind of 3-function' and in particular

¢P(1)=-"~,.. when both m and 2 are even,
e

- (46)
d)nm( I ) = (l)mn Otll@l'\\'iS(3
and
¢~zn+1(f) = ¢2:z+1‘fgfi)25'( I— /3)i
" 4 (47)-
¢27:(f) = d)en{f2¢zf.—-x'( L— Ifg)L—"j + Sin“‘f]
Then we have
. n=l g3 A ( Al )
| taar=zarzs, s ().

In the present problem, required integrals (33) are those for which
M=, or A7/ ; in the former case

1. K. Pearson, Tables of the Incomplete Beta-Function.
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m °¢11+1( )g jlf“"-l \de ’\7"" 2¢n+1( ){ my 71+?(*/’\7i) + ¢m, 71+‘.’(I)} (49)
and in the latter case

7";1_‘ 7¢’71+1 Z¢”(n—-t) ]‘: 1, 2(n=—&)
-n—-l B 95.7» {qunl—l ’(71~z), 1, 2i—1 + ]—[7‘77)1}

where

(50),

”

7 8’ "MEMILENTAN
N \/
‘ (51).

gt
= g ﬂ;{ ij’(sin'“’%—)z\”"’dz\f I

The last integral can be reduced a little more; since

.o A NI, “—}—j\ ﬂ[“ "
dsin2E = — dA 52),
ST AT L (52)

we have by integration by partt

, ,
IT= =0 i N, )+SA NLy + NIl g,

MENT 7 m, -71+1(A7)”"\T (53);

1
where
T
0,=—- or o
2
according to whether the cclipse is partial or annular; for in the latter
case NV} is to be replaced by —(#+ A,). The sccond term in (53) can

»

always be expressed by a combination of /g, in particular

][.’n: - 01¢2n+1(1?\1) + ¢2n+1’_>:;¢2z'<[§(i——1), -1,1 + Z\?E\[/‘_’i, -1, ——1)

) (54)-
][‘.’7:—

, {(1 — NV, — T v — Nalauats, <1, =1
?(/H- 1)
Thus all the integrals can be expressed in the elementary form,
w8+ wWhich, in turn, can be reduced to simpler forms when « is posi-
tive, the only one with negative a heing Z,, ¢ in /4, : namely since
by premise '
Mi=1—N=L,+23 } (
or Li=1—7r+Ni+ 2N\ N=L+2 NN
we have at once

’m 77
'(z Z( ) ( 7'>I‘_‘CL+‘.’£
o
];?J',Ls,T:Z< ?)fﬁ'izg,mzc—m: J <56)

55).

=0

. 2
2N 05,07 Loa, v 00— B, 0,



Theoretical Light Curves of Eclipsing Variables of the 3 Lyrae Type 39

and

=0

1137 =3 ("l

&=

;'::E L( I) (7//)[](714-0

In short, our elementary integrals are /, ;and /. ;1 Some of
them can not be evaluated in a closed form and must be calculated by
means of numerical integrations or scries expansion. In this casc the
most troublesome is /_. —4,1; for it is easily seen that although these
integrals depend on two parameters, .V, and 7, 7;,, can be transformed
into an integral containing one parameter with a coefficient of a simple
function of .V, and », while it is not the case for /7., .y, or morc
directly, this contains an elliptic integral of the third kind. But fortu-
nately it is unnecessary to find it anew, since it appears only in ¢, of (38)
eventually and its numerical values may be taken from Russell’s table
cited before.

Now we show the circumstances more closely. Comparing (50)
and (54), we have at once

2

][21L + —fgizr—l = (;bﬂn-bl'{al + z%(lb'.’i'( [‘_’:?(L'—'l), —-1,1 + *\7‘)["—’5, =1, "1)} (58>
and referring to (57) and (49)

[[:Z"‘i“‘*“& ”:"_1“2(—' I) (//1>{[L()L+L)+ T

2, ——¢’(n+1)

n

I9‘(71+L,'1} (59)

Further, if we write

<[[’n) ][n+ —_"_[9 =17 "““'¢‘n+1 (23

22, 2

= (f>ﬂn n‘{Z(f);’i'([.'%z——x), —,1 T 4\/0135, —1, ~1) — ~‘3~’[u}
([/:)): - ¢2'(3 i+ VANES ./\’I)[:*, ~1, —1)

(60),

we have
£ e N “"
(=3~ x)”(”?)( Dhnss) =TT — i =3 s e
i=a) Z 24),_,“ 2
(61)
and hence referring to (31) and (50)
(”,‘;;’:— l): 2 270 {S (l)’v—-l 7)(7'1):‘—"0, 1, 2i~1 + ([j:;:')} (()2)'
Quite similarly, we find
7 “
(lngxl = 2¢2;L'{21¢25~1 *Znibl), 1,211 ([[:ZLH } (6 5),
&=

where



60 Shin-ichiro Takeda

([[m) I+ ! ,3;7.—-1: ([_71,~1,1+‘/V0];’(n+1),—-1,—1)
26s, °(71 +1)
»
(17 =3 = 1) N i)
“
(64)-

Thus /- -y, is not involved in (i) and 2 and moreover we
need not calculate y and B separately for these circular integrals. IFurther
it will be observed that for circular integrals with even lower suffix,
A comes out in place of (/4,).

Finally it may be added that all integrals contained in boundary
corrections and reflexion effect can be expressed by those obtained in
this article, so that further considerations are unnecessary.

S13. Normalization of fy;. Now introduce the following trans-
formation :

N= = Ny+7(1 — 28 (65),

/ being a new independent variable, then
dN= —grtdt ‘

ME=947(1 1) “(66),
Ly =" = F) .
where
A= —=(r— N } -Y.
/u ———47\ l’/.{] (6/)’
and 7=o0,1 and Ai™! (68)
respectively at NV=r—2, —(+ Ny} and 2V, so that the limits of in-

tegration for Z become (o, £,), %, being unity when the eclipse is annular
and 27" when it is partial.
The result of the transformation is

Fo=2027 P AT, . (69).
where
2 v M
.75,,7,:30l5“([ =" (=) dt (70),

A3 being always odd in the present problem and S4+7y<13. 73 can not
be evaluated in finite terms when 7y is odd. It was found to be most
convenient’ for numerical computations to cxpand some of them into
a series in & or 7' and to find others by recursion formulae.

a) Ammlar»oclipsc. (£<a).

T .
5,7 ('— I)( l >¢g{+1+2£,ﬁ+1(1)'/"‘& (7 1),

where s=L when y is even and o0 when it is odd. In the latter
2
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case it will be scen from (335) that

(— 1)( ) (— 1) Pagimy,2n  for 27 ) (
On the other hand, there is a recursion formula,

Toa=(B = 1) T4, 1t (2= 2) Lo ez = I T2, 14 (73)
so that it is sufficient to evaluate 73y by (71) only for y <2 and 3<5.

b) Partial eclipse. (£>1).
If we take % to be a new variable, its upper limit in (;0) becomes
unity and hence

T~ () TS Yo (72)

As for the recursion formula, changing the arrangemont in ( 73), it follows

so that in this case it is only 71y to he calculated in series. [urther
£ n 75, was actually kept apart and brought together with the
constant factor in 7. (69).
14 Special Case— Central Eclepse. Here we have
=lh=f=o0, A=F=1—,;
[ﬁ T”'¢ﬁ+1‘“/' LAY, Sye=o0, Lo =

(23 N e ny
( ) I 8,7 3,7

<
to
5

(76)

i"

and can easily show
Uy = ~‘-‘:’""—71'(1 e e ’) \

72+ 2

In

((/‘n

5

((1‘371-%1):: "i_._v..[_l (1 —_ ,l.’n)

pa
O

(d3)=— ——err",fl‘*

£
Hence inserting these values into equations ( 06)—« (39), (42) and (43),
we obtain

(Ji/u) - { 1 — Y- (2 el f1)¢, }'—' (3«-‘17/’[ + 5‘,137/{)711 (78)u»

7 ‘rf]{,
6 16 3 15 =2
A"" '_‘( T 4 ) 1 —_4-'1 e M AVE
*rf A (=1 5 s ( ) g
4+ [ o+ {»—— —(g— 5A':)ﬁ}J — ; P (17— 10 )p0
2 3

]

(78)¢2,
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1 — 2040 3 e\
(48, )y =0.3247 — (1 - gl)u{
rrl, 4

~(0-824~—I—7'2>7/—2{1%(A)+vll"s(fl)Jr'ﬁR(A)}ﬂx (70)

(;JSJ}(!)[, = 3 ./fll(dfg'n)h (79)d
and '
8, =rH éﬁ{——zw(t — )P 3+ 34[”7"’7‘} (80).
3 2

Similarly in the case of inner contact, these are found in explicit
form, but are too long to be given here.

S15. Explanatiwon of the Zables. Klementary integrals, /. have
been computed in unit of 7 for given values of NV, and 7, and then the
circular integrals and the boundary corrections have been constructed
for a few different values of 7y, the suffix / meaning the larger star.  So
far .V, and » were measured with in the unit of a mean radius, 7 of
the primary—the eclipsed star-—(ref. (24)), but it is convenient hereafter
to take that of the larger componcent to be unity throughout. Further
in the following tables numerical corrections are given for residual
light, and not directly for loss of light, separated into the rotational,
AR (coefficient of n/7») and the tidal terms, 47 (coefficient of z/w,).
In cither case the parts of the boundary corrections depending on the
deformation of the primary arc combined with the circular integrals
and the remainder {(coefficients of 7/%7" and nlw,') are given separately.
We must further divide the rotational terms into two parts, those
depending and those not depending on the inclination, but the former
corrections are in general negligible. Finally, zero order terms in the
circular integrals and constant part in the rotational trems are set aside.

Hence the predicted light curve of the binary can be expressed in
the form,

] :nfz,[(x a1 Fefa) b AT ATy

+ { AR+ Jzen( 40 >} o+ {JR’ + AR, (—79—)} z"]
. /i u

v+ f+ A D)) (s1),
but for the reflexion effect, which will be considered independently.
Here
Ta== oy, Ju=1 1
2 8 a 6 3
OF M=y, [ —ily— e (82)

2 S 3
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according to whether the star is uniformly illuminated or completely
darkened towards the limb. It is, however, unnecessary to preserve f,
in this expression as it is constant for the same star, and hereafter we
may neglect it by writing

Q=rlf(1+/0w) ; "~ (83)
in place of m/, without disturbing the accuracy. 4J/z means the tidal
corrections in (5), and 47 takes the same form outside of the eclipse.
The usual method of rectification takes z,=9," and 7= 4//{(1 —u) and
neglects all other corrections. But it was found that the difference,
A7 A1 —a) is not insignificant.

Now 47 and 4R, are functions of .\, » and 7, 4/ being inde-
pendent of 7,, and we have actually computed them for different values
of these threc parameters. It is, however, too voluminous to print the
whole result here, so that we give their values only for »,=o0.45 and
their increments for dy=o.1. Interesting cases are those in which the
value of 5, is not far from this, for the deformation will not be great
for its smaller values and our calculation fails for larger ones. Accord-
ingly linear approximation for different 7, is sufficient for the present
purpose.

For convenience’ sake, 10047 and 1004AR are tabulated, their in-
crements for dy=o0.1 being printed in a smaller type. Steps of » and
Ny are self-evident; Ny—r= —ir,_r — 27 and 1.0 correspond respectively
to the central eclipse, the inner contact and the outer. The upper half
of each table corresponds to the case when the primary is larger, and
the rest to the case when it is smaller. The uniform and the darkened
values arc given separately. IFor completeness we add the tables of

ay and —2—g, taken from Russell’s paper.
9 .

§16. A direct method of the use of these tables is as follows :
if we find approximate values for ¥, &/, », 7,  and the common ellipticity
corresponding to 7y, we can rectify the observed light curve by means
of these tables and then get better approximations successively.

In this connection, it is more convenient to rearrange the tidal
terms. Jirst we consider the case in which »,=o0. Iet the maximum
luminosity be unity and 4, be that of the minimum corresponding to
the total eclipse. Then we have

1=3+8+ .87/15115{? -+ E’zf;'zl]]’_%

,@,,:lo——(EZ’ldf[;)t (84)7
85 =i ]0 - (87’1/1[[_’.;_ + 8’2'1’L][[’_§_) + (87"1:—’},{0)1
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where suffixes / and s respectively signify the larger and the smaller
component, and the accent the secondary as usual. Inserting these
relations into (81) we obtain for net phase effect

A=1—2a+d+ 75470 +8a/d7" + the rotational terms (85)

/J'[_':——~(A[7[+J[J’)k_g+a(df‘]z)o+JZH—AZK .

A7= (dH,~ A[-]l)_gu%—a(A[Z)u—l— A1 — A5, (86)
when the primary is larger and

A=1—(1—2)a+d75+ T2 + L/ d7"+ the rotational terms (87)

AT = —(dH+ AH") = (1 — a) —~ (dH)a+ d T+ AH }

: - (88)

A= (4~ dF) = (1 —a)—(d e~ AT+ A1

when it is smaller. In either case
27 =(82) + (%21): } (89)
22 =(%0)— (o), o
In an ideal case 4, corresponds to cne of observed minima. When
72y does not vanish, we must first find the value of 4, which, in turn, is
calculated by (88), from minimum light. But so long as 7, is small,
the correction thus introduced is also small and may well be neglected.
Outside of the eclipse, it becomes simply

A=1+dHT + dpio (90),
a relation which gives total phase effect. Referring to (5) we find

AdH = A1+ AF (s +7)gh, } (1)

A= AdH{1— "'2)7}31 *

A= —2{1 +2(h)}
} (92)u

AH= —-—-g— + P(4)

for the uniform solution and
JH:A[‘[liA][‘[J(I“‘/’)'/jU } (91)1
J,I:]: i‘."df[}(l +7’)011 ' c

AH=—3.2{1+2P{l)} }

A= ~_I§§. (%) (92)a

for the darkened solution. In (g1), the upper sign is to be taken when
the primary is larger and the lower sign when the primary is smaller.

A7 and A7 are tabulated in the same manner as the rest but as
for d/7 and 477 their components, 4/, and 4/, are given for different
values of —4A=1Vym, It will be seen that 4 T or A1 is exclusively large.

§17. As for the reflexion effect, we have computed only its terms
of the lowest order (coefficients of £77) in (43) and (44), and rearranged
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them similarly to those in the preceding article. Namely we divided
the net reflexion effect, 8,— 48, into the symmetrical, @4%, and the
antisymmetrical term, w48, and adjusted them to vanish at quadrature
and mid-totality. Then

.

=

v=%f@%+8%3
- (93)

=L (T~ T7)

- 3(1 - a)} - (/0(1-1 + /ﬂn/)

15

2%, = —i—{(?’" — 20)fy— 2/,

N (94)
TTJE&;ér = ﬂ'./;) - (/n(ll -+ [_1(/!|)/)
3

where ma=a, or o according to whether the primary is larger or not,
and in general @ changes the sign before and after maximum.

These correction terms may be added simply to (86) or (87), if
required.

§18. In actual applications, there are some difficulties concerning
the terms defining the deformation. The usual method assumes a similar
deformation but we prefer ‘to differentiate it for each component. If
we know the value of the mass-ratio, we can estimate them theoretically
in connection with the- dimensions of the two stars, but generally this
is not the case.  Moreover, our intention is rather to compare the
results of our observation with such an estimate.

Tt is relatively simple to find the approximate value of ¥ from the
uncclipsed part of the light curve, but at present we can not hope to
estimate z by actual observation for reasons that will be obvious later.
Accordingly we turn into account more safely

7’17'1/:(771'71/>3 ' (95),

a theoretical relation which may be trusted to some degree. If this is
taken for granted, we can find ¥, ¥, #, and z/ for given %, and 7/ in
connection with the luminositics of maximum and one of minima which
correspotids to the total eclipse.

In general there will be two solutions which satisfy this relation
and give the observed value for #. If there is only one solution, we
may say that in a sense the stars are similarly deformed. Otherwise
our theory fails ultimately.

In the first case it may be possible to see further which one follows
a light curve in better conformity with the observation. At any rate
when the solution is possible, we can find corresponding mass ratio by
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means of (3) and see whether it is plausible or not. Closer examina-
tions of the circumstances will be given in the following section.
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Puast Errrcr FOR UNIFORM STARS
Cable I,. 100471 (‘71,—*—“0.45) and its Increment for dy=o.1

SN No—7
— —0.8 —0.6 —04 —0.2 0.0 0.2 0.4 0.6 0.8
r \ :

0.4 | 830 85¢—2m| 92(—2y| 100(—25) 103(—2s) 100103 100C—36)
5 | 48¢-m 57c—on| 70(—any) Td—m) 83¢—an| 89¢—m| 85¢—m
6 | 2029 20¢—21) 47¢-20)| 43c-sn| 53¢ 65¢a) 73¢-w| 69—
7 8c—21> I0(—21) I5¢—28) 23¢—s%) 34¢—a0) 47— 56(7;3 §2¢—-7)

8 16¢—16) | 16¢—16) | 25¢—1%) o I¢—o0)  5¢=59)] 10— 30— 38—m) 34—

9 45¢— 0y | 46¢-10) | O(—15) | I2(—e1)— T4(—a0)— TI¢—sm = I(—a6)  T2¢~a0)| 2T¢=mm  T4(-7

10 | 85— 5y | I5(— 1) |—7cm12) |— TOC—20) — 25(=30) — 25 (i) — [T (=4 — 43|  3—60|— 0=

9 O¢ 6y | O9¢m 6y |~ IOGm12)— 20(—a2) — 22(py — IO(~anp— 2(=30)|  T2(—a%) 127
8 O¢ ;; 5(— 5| — I2(—14)|— I9(—24y — I0¢—ny— I(—i6)| I8¢—am)| 27¢~o)
7 O o  2(—6)— IL4<—1 i}~ I0¢—a7) = 3100 . 2T(—48) 4055
6 0C 0= 2~ o — 15(=10)— Sc=m)| 9= 49—
5 T o¢ o= = - 13— 12¢-3%)  54¢-i6)
4 ” O¢ o; —I0(~10)— I(=80) 53¢—

Ny—7
- —7 —0.8 —0.6 —0.4 —0.2 0.0 0.2 0.4 0.6 0.8
0.4 1z Iz 12 12 12 -1 —4 =6
5 18 18 18 18 3 —2 -5 -7
23 23 23 | =3 [0 | 1| =3 | =6 4 =
7 28 28 28 9 1 [ —4 -0 —
8 32 32 32 | | g 3 | -t | -4 | =7 | -8
9 34 # 0] 12 |y 6 N A et T AR N B
1.0 - 14 14 It 8 5 2 —2 —5 — —8
9 o 14 10 v 3 o —q —_ -8
8 o | o | 13 9 5 ro| -3 | -7 | -9
i [¢) o 12 8 3 —1 -6 —q
6 o o | o | 1 6 I -3 -9
3 i o o o o 4 -3 -8
4 0 o o o -7

. These tables have been computed mainly by Dr. R. Kamiya.
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Table IIT,. 10047R,(5,=0.45) and its Increment for dz=o.1

Ny—7
N —7 —~0.8 —0.6 —0.4 —0.2 0.0 0.2 0.4 0.6 0.8
04 o o ooy — 8¢m — 9o —IICH) 9 ® D) 4¢ 0
5 o 0 | —Taen| —I5(n| —18¢n|  I6Cn|  10(2) 7CD) 40
6 o 0y o w —25am| —20am| 2o 18¢o  Twm|  Gnl 3o
7 o 0 —30an —42am 529 20w Liem Tocn|  bcof 3o
S o w 0wy —O6dan I00ae  47cw  26cn I6cwm| IoCn  5CD) 3¢
9 O¢ o —Ioogey I85¢sy  7ADI 39m 23 D 9¢ o) 5¢ 0, 2¢m
Lo oC o 230ce) 95w 52 ® 3w 20cmn IXD 8¢y 4¢ o) 20
9 ocoy 49y 58¢e 40w, 26cwf  I7cm IOC(D 5¢ o)) 3co
8 ¢ 0y ocm  Tdenl 42c 32w 22AH I 7o 3¢
7 ocoy O T 34w 20cay)  6em| 9w 4o
6 ’ o, OC 0 ocoy  I3¢m 29Cw| 22w I 6¢ 0
5 booce) ocey  Ocey  I6¢myl 25¢m| o 6wl 9
4 o oCoy 0¢ 0) oco  Oce  T9cm 22 13w
Table IV,. 10047 "(p,=0.45) and its Increment for dp=o0.1
N i | - i
, \\\ — ~0.8 -—0.6 0.4, —0.2 0.0 0.2 | 0.4 0.0 0.8
0.4 16¢ 0y 16 o 3¢ o I5¢ o ¢ o 7= -1 -0
5 24¢ o 24¢ o 231 22~ 2= T 3= O=D
6 34¢ o 30 o 3= 33— S I G- - =T D
7 45(— 2 43¢- 2y dde- | 24— I0~ o TO— D -~ 0= T3=H
8 ST¢— 3 37— 57~ 30~ ) 2Mm | W=® = 2= —2- 5] =5 b
9 TI— 2y 71— )| 35¢- 0| 25~ I8 =0 5¢=6 —I=0 =506 =/
1.0 85—l 35— m| 28—l 20=n - T Temsy —d= | 8= 0= D)
9 o o 29— 25~ 0 18— 9 =8 d—8 —3= 9 —8=9—I0=n
8 o¢ o OC o 26¢- ¢ 22— I3~ T O »f —7= I %
7 oC o HMC;(“MO; 24¢— sy 19(—10)  ITg—11) 2110  3(-10)i— 10— 9)
6 oC o o o O o 23— T-1n] T8 3l 9=
5 o » O ® 0 o 22-in| 3=1m|  L-toj— S
4 o o o o o o 0 o 20 Sy~ 61
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Table V,. 1o00dR

S N7
, ~ — —08 | —06 —0.4 —0.2 0.0 0.2 0.4 0.6 0.8
0.4 -5 -3 -5 -3 -3 -2 -~ 3 -3
5 -8 -8 | -8 | =8 =4 | =4 | —4 | —4
6 —12 —12 —1z -3 -6 -6 — 6 -3
7 —16 —16 -7 — 8 ) -9 — 8 -
$ —21 | —2r T~ | —tx | =11 | —11 | —10 | — 8
9 —20 —26 —13 — 14 ~14 — 14 — 14 - 12 —10
1.0 —32 -7 —17 —18 —18 —18 —17 —16 —14 — 11
9 N P S B —22 —22 —22 —21 —20 —17 —13
8 o | o | —26 —27 —27 — 26 —24 —21 -1y
7 o 0 —31 —33 -—32 —30 —27 —20
6 s} o] 0 —37 — 40 —38 —35 — 26
3 o) o 0 —46 —49 —45 —35
4 o o o o —6o —62 —350
Table VI,. 100dR(3,=0.45) and its Increment for dz=o.1
—r —0.8 —0.6 — 0.4 —0.2 0.0 0.2 0.4 0.6 0.8
~ 2t — 2y — 21— 2=p — 21 < 3o OC ol IC o

5 = 3D — 3=-n| — 3~ — Fe-np— D I~1) Ic o
6 | = 4= = 4= = I13-0 - -0 -0 A-n =D
7 - 5 =24(-p — 3.~1 (-1 31 210 2D

- 3D $-n) T HCeD A1) 31 -1y
8e—ml  Teeml Omp d4e-n 3D KD

1.0 — 10— 75~ M- 0= 13- PICE O¢—2) 42 20— I¢—-n
9 oC @ I40(—m  45¢-m| 200w [2=m| 0 Senl denl 2w I-1)
] o o o 0 92 32 e 9= 5= A T(—2
7 OC o Ocﬁtn 49¢—-n|  24c—n]  TI-, 3¢ 20— O(—2y
6 oC oo OC m o o 3| Te=n| 50 -1y — L=
5 O vy OC oC »f  I5-® 5S¢y = I(=ay —3=D

4 ocml O O e O w  3-ny —=n —06-m
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10047 (y,=0.45) and its Increment for dp=o0.1

Ny—7 .
7,\ — —-0.8 —0.6 —0.4 | —o0.2 0.0 0.2 0.4 0.6 0.8

04 |—5180) — 51820y — 518¢o2y — 5 I82m| — 526¢am) —494¢am) —400¢ 5| —427¢ 70
5 | =498 ~ 4982y — 502¢a0) — 512¢3) — 489 — 46950 —440C 61| —399¢
6 | 488 — 4882y — 492¢263]  500¢303] — 482¢a0] — 4630495 —44Tco0y| —412¢ 21y — 368¢ 96
T —498e —499¢z| — 51220 4816 — 45904 — 438601~ 414 —383¢ s —336¢D
8 | —5300)| — 3300 — 537n —491¢0] — 40410 — 43860 —413w@n| — 387G —353¢ 9n| —302a2)
9 1 —589¢s)i — 580cim| — 5225y — 48332 ~ 449¢)] — 417wl —389¢am! — 360¢sey — 322¢i00)] — 266¢115

10 | —5750n| — 565an| — 5 W) — 4721 —433cs] — 39603 — 3640 — 332w —289am| —227q165)

1.0 o¢ oyl — 03¢ 7y — 87y ~— 11025y — 1430y — L7 I¢sn)| — 201y — 224¢an)] — 230020y — 206¢165)
9 o0 — 5I¢ 7 — 8216 — IT0cany — T53c4) — I90¢n) — 224¢s0)| — 247¢10m)| — 24T(1s) -
8 O o)) ‘*’I—c—o-) — 406¢ 5y — 82qamy — I24¢amy] — I70G1)| — 217 —257¢ )] — 27T
7 O¢ 0 deoy — 42¢ ) — 8beazy — I39¢am)| — 20060y — 259¢ 2) ~— 295106
6 I¢ 0) 7C0 — 41— 96¢ary| — 168¢as)] —248¢ 7)) —3TIC 92
5 O¢ 0 4¢ 0 10¢ 4y — 43¢y — LIS —221¢ 56y — 3I9¢ Ty
4 of 0 I¢ ) 7Co  I5¢ 4 = STamyl —I66¢ amy —300¢ 65

Table VIII,. xooAZ’(m,zo.q.s) for Increment dp=o.1
Ny .
7_\ —r —0.8 —0.6 —0.4 0.2 0.0 0.2 0.4 0.6 0.8

0.4 79¢ 1% 79¢ 1 T4 1 00C 1 33¢ my 28¢ = I4¢ D 2 5)
5 96¢ 21 96 203 82¢ =y 54¢ 1) 50 1 3d¢ 1y 16 m 2=
6 | 103 ) 103¢ oy 94¢ 2 67¢ sl 70¢ 2| 58 1w 40¢ 1 20¢ B )
7 90¢ 20y 87¢ =l 66¢ 20y ST¢ ol 77¢ =y 65¢ 1) 45¢ 1] 23¢ » S¢— 2
8 54 1] 54¢ 1 43¢ | 76¢ 1) 84¢ myf 82¢ =i TIC ) 50¢ my 20¢ 5y T 1
9 = 7¢ ©—I0C @ 50C 1 75 1 87w 87¢ =y OC my 5d¢ 12y 30¢ @ 10¢— 2)

1.0 oc of 6 ® 46C wy 73¢ o 87¢ 1 99 ) 80¢ 1| 5i¢ 1w 32 v 0~

Lo o¢ o= b 5y —40¢—11)— 7 3(—13)j— 87 (=17 — 9O¢—21)|— 8O(— 17~ §7¢~11)| =~ 32— 1) — IO+
9 0C 03— TO(— 23| —46¢— 8] — 7 2(—1)| — 8b(—172| — B T—10)| — 63(—13) —38¢— 7 —14¢— 0
8 I o)) TT(m ) =48 55|~ 2=t = T9—10|— 6817y~ 44c—10) —T19(~
7 OC o 4C 0 TI¢= 5~ 50(— 6) = 7 H(~1) = TO(=17) = 50(—15) —23(~ &)
6 1¢ of G 0= T4(— 2}~ 54¢— = 6911 ~35¢—16) —26¢— 9
5. OC o  4¢ o I0¢ H—I8 0 —58¢— 9 —59%—1mf —3L~10
4 oC o IC o 6¢ oy IS¢ o—25¢—2 —38¢n) ~36-1p
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Prase Erreer ror DARKENED STARS
Table IX,,. xooAT('/;,l=o.45) and its Tncrement for d'g—*:o.i
~ Vy—7
- \\\ —7 —o0.8 —0.6 —0.4 —0.2 0.0 0.2 0.4 9‘6 0.8
04 255¢ 255 0 252¢— of 247¢~-13) 240(—21) 243(— 103 229(— 59 190(— 5D
5 I94¢— 7 I94¢— 33| 103(—13)] I96¢—263| 202¢—s0) 204¢— 52| 190¢— 70| T156¢— o)
6 139(—1n)| 139¢—11)| T40(—10)] I4dc—on| 152=sn] L67¢—s0) I74c~ o) 63— | 120115
7 95¢—1) IOT(—10)  97(—19)| T02(=s1) TI7(—45)| I33¢—00) T4Ic— 7oy T29(— o7  Bd¢—120)
8 65¢—10) O5¢—10) 63¢—11y| O3c—22| 73¢—am) SOc—sm| 100(—a0y 108¢— 80 9dc—tom|  46¢~130
9 47— 42~ 30— 4T 48— ST 70=im| 70— 60110 St
Lo O o) 24¢~ 4 28(—1n 2029 20(—gm| 33¢—6) FT(—smy H—102) 260120y — 3T(—135)
9 O o 2I¢—ay| 20019 27—y 32—s0) 4d—rn} 58— sl 53—u|  T2—1w)
8 oc o O o 19— 241 28sn| 4T—aw| 63— 75— o) 48¢—12m)
7 o o O o 18—l 2315 34— 00— 88— sm|  8Ic—1n
6 oc o OC o O o I—0) 2520 49¢~ a0 9Lc— | T08(— gy
5 OC ®  OC 0  OC 0 Ii¢—s) 34— 8T— 56| 126¢— soy
4 o o o¢ ® O & O o -1 55— ) I32(— 85
Table X, 1004dR
\No*"‘ ,
- —r —0.8 —0.6 —0.4 —0.2 0.0 0.2 0.4 0.6 0.8
0.4 13 13 Iz 9 3 -4 - 6 -3
5 18 18 Ig 7 -2 — 6 —_ -5
6 22 22 20 I 2 -3 - 6 —_ — 3
7 25 24 15 5 (¢} — 4 — - & B )
8 235 23 it 9 ‘0 — 4 -7 — 8 —
9 20 15 It 8 - I -3 — 8 - 8 — 6
1.0 0 Iz Ir 8 4 -~ I -3 -~ .8 - 8 -6
9 o 12 It 7 2 -3 -7 -9 -7
8 o} s} 12 10 5 — —_6 -9 — 8
7 o o 12 9 3 | —4 -8 — 8
6 o o} o 12 7 0 -7 -9
-5 0 o o 1T EY -5 —10
4 o o . o ¢} 1o ) —10
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Table XTI, 1004R,(7,=0.45) and its Increment for dp=o0.1

WNy—7]
;‘\ -7 —0.8 —0.6 0.4 —o.zy 0.0 0.2 0.4 0.6 0.8

0.4 oC 0y O 0 Sco  Iogsm|  Ticw IS 8¢ o) 30
5 o¢ oy 16¢ ) I8¢ml 30cey  25¢m I D) 7¢ 0) 3¢
6 OC 0y Ocoy  3Tae 53¢ 40wl 23 14 ¢ 0 3o
7 o¢ 0y syam| 94w Olco  34ca  2I(mf 12D 6¢ 03 2¢ 0
8 ocl  Ocoy 192w Srce 46w 28co|  Bem|  Tocnl sl 2o
9 ocoy 535¢T I02¢cay  54cm 35w 24w IS 9¢ ) 5¢o 2¢ 0

1.0 o¢ (,)i —7¢D 39¢D 30¢n|  27¢w 20 13¢ 1) 8o 4C» 2Cm
9 ocw| —4zcol 23w 28¢al  23cs 01 101 5¢ 0 2( 0
8 ocey  ocel —27¢m» 18w 24em 20w IXD 7C 0 30
7 oc o) ooy —I6cay Ifcml  2iem  I6C 9¢ 0y 4¢ 0
6 ocey oo ool —Scm  I8:  Igcml  Izcm|  5(m
5 o( o) O ) ocoy —3¢o  I8csy  I5c2) FC0)
4 ooy OC®  OCoy ocoyl -+ 5o 18w 9 »

Table XII,. AT’(7LZ=O.45) and its Increment dp=o.1
Ny—7
- —z —0.8 —0.6 —0.4 —0.2 0.0 0.2 0.4 0.6 0.8

0.4 22¢ o 22¢ o 2I¢ o I8 o -1 -0 3= -1
5 31¢ 3¢ o 28~ 201 = T 2= O—»
6 40(- 1y 40— | 3%-n] 292 B-n I=n 5= I=n— L=
7 49¢- 1 48~ o 37~ 2w = W=w =D I Di— 2=
S 52—y 52— 42— m 30%- D 22— IS=6 T8 = 3D 4D
9 40¢=m 40— 3le=m 25— I8 -9 4= 9|~ 2= D= = o= 50

.o o o 24| 25-8 2= T TN 0= »= 5= 9= 8= 0= 7=
9 o wf 2h=df 23-7 w0y -1~ 49— 8 D= -5
8 oC w0 0 0= 200 IS =1~ K== 7= 9= S
7 o¢ o O o I9-7 20— I 2~ O~ 8-
6 o w O o O o I I8 T~ 31— 8-
5 OC W OC o O 0 20¢-zy I5¢-1%) I~ S-12)
4 O¢ o) OC o O o O o 21(»—15) 9e—am)|— O¢—1m)
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Tahle XIII,. 1004dR’
\1\70—-7'
, — —0.8 —0.6 —0.4 —0.2 0.0 0.2 0.4 0.6 0.8
- - ;
04 -7 ~7 | =7 =6 =4 —4 ) -3 =2
3 —10 —10 —10 -7 - 6 -~ 6 -5 -3
6 —14 —14 —13 —10 — 8 -9 - 8 — = - 4
7 —17 —17 —13 —1I —12 —12 —II — 8 - 3
8 —1I9 —19 —14 —14 —15 —16 —1I5 —1I3 —10 - 6
9 —17 —14 —16 ~18 —20 —20 —18 —16 —12 -7
1.0 o] —15 —20 —22 —24 —23 —22 —19 -1 - 38
9 0 —18 —24 —27 —28 — 20 —23 —17 —I0
8 o o —22 —30 —33 —32 —29 —22 —13
7 o | —27 | =37 | —40 | =37 | =29 | —1F
6 o o o —34 —46 —47 ~39 —~23
3 ° o o | -4 | -8 | -s3 | =34
4 o] o o] o —62 —7 —52
Table XIV, 1004R,/(7,=0.45) and its Increment for 4yp=o.1
G 8 6 6
— —0, —0. —0. -2 0.0 0.2 0.4 0. 0.8
> \ 7 4 4
0.4 — 2(—1) — 2= ~ =D — 2~ — 40 O 0) I¢ o IC o
5 =31 - 3= — 5= — 9=~nj — -1 2¢-» 2¢ o Ic o
6 | —4c — 4oy LI —I7¢=Dl = 2¢=D|  H-D =Dl 3-n T o
7 =52 — 5¢=)f ~36¢- L2 7(~2) 7(-1> 5¢-1) 3¢-1) e ®
S —6—my — O=3) —87¢—z O X2—my T3 9= 5= -» o
9 —5e—| —3I9¢—2y, 422 350 23w T4 9~ 5¢-2> 3¢-1> )
1.0 o¢ oy 206c—ny  78¢-m  4I=m 25 IS 9(-3) 5¢-2) 3¢-D I~
9 o¢ o T4L¢—ny  63—m  34¢=m  I9¢-m  II¢-m|  O-m 3~  L-D
8 o¢ oy O m  S4—mf 45— 24(~p  IX-d]  T=» 3 -0
7 o¢ o O o 30(-m 30— 0= Te-n|  2-m] 0=
6 oc o  Oc oy OC ) 30—n Ii-m  T-5 K-n —I-n
5 oC o O¢ W O oy I5-% 0=  O(-t) —2(=b
4 oC o  O¢ ey O @ 0= O —4(-9 —O¢-
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Table XV, 10047(7,=0.45) and its Increment for dyp=o.1
Ny—7
, -7 —08 | —06 | —o04 | —o0.2 0.0 0.2 0.4 0.6 0.8
04 | —9T52) —gT50m] — 9081 —890¢ sy| —865¢ an| —826¢ sy —770¢ am| —686cussy
5 | =874 —87 32y —862¢sm —844¢ 4y —814¢ o5y —TTTC s —~7I9arny —63Tay
6 | ~8430m) — 8430y —838csn| —823¢my —796¢ a3 —767¢ sy —728ct0n —668cimm| —574a5n
7 | —8250w0) —830¢amy| —8IIcan — 78I —752¢ 7] —720C aw| —079¢1203 —OT5¢153| = 515ca0m)
8 | —823¢umy ~ 823 —810¢uy| — 78| —746¢any ~—7TI¢ s —675camy —629¢sm — 50Ty —455¢2s)
9 | —827¢s) — 818 — 786cy — 751w, — FI2¢wm)| —671¢ ory —630¢e0y —580cumy —5OT(se)| — 394cemny
1.0 | —79Tes) — 797 ¢y —769¢i] — 7290 —681¢sy —03300m| — 587y — 532102 —452205) — 331200
1.0 O¢ oy — 60 oy ~I2Tcasy — 188essy — 253y, —315¢ sy —300c1s) —403at5)| — 39T¢20) — 317czom)
9 OC 03 — 54¢ 6y — 12420 —199¢a2y —270¢ vy —35Tcaony — 412 —430a7e)| —380¢zss
3 O¢ 0y 200~ 52¢ ) — 128 ~2T8¢ sy —3T2¢ a1 —400¢e] —45dcum| — 4380
7 O( 0 Geml— 53¢s) —I43¢ 50 —252¢ a0y —370¢ om)| —463c12sy — 48617y
6 ocny 2o 7co — 50c1m —I68¢ss —309¢ | ~449q0n —522as)
5 oL 0) 4eoy T2 m — 066¢ 1) —2I5C a0 —402¢ s —542¢19y
; 4 o 2¢ ) 7D 17¢ o — 84¢ 22 —303¢ o] — 5350
Table XVI,. IOOA‘T(‘?U:O../} 5) and its Increment for dy=o.1
SN Vo7
. Ny . -7 —0.8 —0.6 —0.4 —0.2 0.0 0.2 0.4 0.6 0.8
04 =230~ 1) —23(~ 3>!~27< o —23¢ 7 —28¢ 1] —33C 1) —34C 20 —2I¢ 50y
5 2¢ 4 Te 5y OC @ — 4¢ 1) —T0C 20) —20¢ 23 —23C 28) — 9 5%
6 16¢ o 160w T3¢ 1wy M4¢ 1w IS¢ eS¢ e — 7¢ sy —II¢ sl — S¢ 40
7 16¢ 11 12¢ ) 20¢ 13 30¢ i 28 o I9¢ aw 7C 5% 3¢ 4 20¢ )
8 2wl 2 ® T 29¢ 1 38wy 40¢ sp| 3T sy 20( & I7¢ 43 35¢ 5%
9 j—e2ic o= IT¢ 6 T3¢ 1 3T 1 44¢ 29 50C 58y 44¢ 4| 33C 4! 3IC sy 49¢ 5h
Lo oc o= 9¢ o 8¢ m 200 m 48¢ ey 38¢ w55 aw|  46¢ 4  45¢ 4 66¢ s
1.0 0 9~ = 8¢m o= 20017 —48(-20) — 58y —55(-a0)| —47(-d) —45(~1) ~O05c—a5
9 OC 0 9~ 2~ 9~ S~ 3L-17) =480y —50(~50) —4I(~19) —34(—ar) —47C-5n
S OC o 2¢ 0 9~ D—II- o — 3419 —45¢-s0 —37¢~50) —25(—am)| — 3350
7 OC O  4¢ 0 IO 0 —Iq¢- oy —35¢-21) =30 —20(-3) —I9(-1r)
6 o w2 o 7o Io¢ o —I8-10) —33¢-2n —I8—s2) — 7(-m
5. o¢ 0 4¢ o I2¢ @ I0¢ @) —200-12)  20(—20) 205
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REerLExION Errecr
Table XVIL 1004%,(5,=0.45) and its Increment for dz=o.1
N —r
r\ — —0.8 —o0.6 —0.4 —0.2 1 0.0 0.2 0.4 0.6 0.8
0.4 9¢ o) 9c o  9c o S o S-n To-m  I2-m|  T4-D
5 IC o) Ic o I¢ 0 -1, K= 7= T0¢=mf I2(-9
6 | — & o — 8¢ o) — 8¢ o — Scepy — 4~ I-w  S¢-mf 9w =D
7 =18 o ~18¢ 0 ~17C-n —13¢-n| = TC=n T 2R =0 Tl 9D
8 | —28¢ oy —28¢ oy —27¢ 0| —22(-nf — 16 —I0-n — 4-» =0l 3-n) -0
0 | =37 o —36¢ 0 —32¢-n| —26(-1) —T0c2y —13¢=m| = T(=m = I=p| 3w e
1.0 —42¢ 0 —39¢ 0| —33¢~1)| =27~ —20(~2) T4 = N~ =~ 3= I(~5 4(=D
1.0 O¢ o — 2¢ o = A~1 ~ I-D Tewy  2-m =0 S=m| 5w 6D
9 o @ = 2 0] ~ -1 OG-z 1-mn| 31 5= O =
8 oc oy O ol — 2 o — 2| Oc-m  2-m  H-n O S
7 o o O o — 2¢-m = -1  O-d| = 6w 9D
6 o oo oo — -1 — %= 2-m On| 105
5 Q¢ o) o o O o — 3~ — =2  4e-n] 10D
4 oC o 9w O¢ 0y O-1) — -1 I¢=® PICED}
Table XVIIT. 1004%,(5,=0.45) and its Increment fordp=o.1
S v
r\ —7 —0.8 —0.6 —0.4 —0.2 0.0 0.2 0.4 0.6 0.8
04 | 5I¢ 5T¢ o 5T o) S5Tc-1 SK-m| 5= S4- b 5K
5 43¢ o 43¢ o 43¢ ® 43¢-n 40¢- 2 49¢- ®| 5I- 5 S-D
6 34 o 34¢ o 34¢ o 35- | 39| 43— 40— o] 48w 49-
7 24¢ o 250 oy 26— 1l 39~ 1 35¢- » 40— »f 43¢~ » 46~ 46~
8 | r4c o ¢ o) I6—pf 20— mf 26¢ | 32(-m 7= 4= 43¢ 43~
9 6 o OC o Ii-p| -1 23~ 29| 3K~ 38— 40(~ 9 4012
Lo o ® 4¢ 0 9¢-n IS- 2N~ 27¢=H| 32-8 35- 9 I 36010
1.0 o 0 4 o 91 IS-| L= 2= 3%~ 35-9 3P 36¢-19)
9 o o 3¢ o 91| 6 23-m| 29— 34~ 381 391
8 o¢ o o o 3¢ o D Ife-m 25 3%-0] 38 4w
7 ' o of O »f 3= 0= I9¢-m 2= 3= D 430-10)
6 o o O o O o 3-n I3-] 2H-n 35-8] M-
5 o o o ® O o 4-1n| B-m 3= e
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Toss or Ligar 5Y THE ECLIPSE FOR SPHERICAL STARS
Table XIX. .a,=—a
71‘ -

Ny—7 ‘

\ —7 —o0.8 —0.6 — 0.4 —~0.2 0.0 0.2 0.4 0.6 0.8
>

0.4 0.160 o160 | 0160 | o.160 | 0.160 0.124 | 0.073 | o.0z7
5 250 250 250 250 206 144 81 30
6 360 360 360 360 307 232 157 88 32
7 490 490 490 427 339 251 167 93 33
8 640 640 040 562 462 362 265 175 97 35
9 810 8§10 716 600 487 378 275 183 101 36

1.0 1.000 872 745 620 504 392 283 188 103 37
9 1.000 883 741 6or 467 340 226 125 44
8 1.000 879 722 565 414 274 152 35
7 1.000 871 692 512 341 190 068
6 } 1.000 851 . 644 436 244 89
5 | 1.000 822 573 325 120
4 | 1.000 772 458 171

i
Table XX. g,=-3- -1 g
2

Ny—»

— —0.8 —0.6 —~0.4 —0.2 0.0 0.2 0.4 0.6 0.8
”

0.4 0.230 0.230 | ©0.224 | ©0.208 | o174 | 0113 | 0056 | 0014
5 351 347 330 288 210 129 63 16
6 488 488 473 427 333 230 140 67 17
7 636 627 584 481 361 247 149 7t 18
8 784 784 749 043 513 382 201 154 74 19
9 917 902 8ob 678 536 398 270 160 76 19

2.0 1.000 932 819 683 541 402 27 163 78 19
9 1.000 032 803 650 489 337 202 97 25
8 1.000 927 782 603 422 258 125 33
7 ! ' 1000 917 743 537 332 163 45
6 ; 1.000 900 687 442 220 62
5 : ' 1.000 870 602 k333 90
4 1.000 822 464 140

Puast axp REFLEXION Errect QUTSIDE OF THE ECLIPSE
Table XXIL

“Z:.’ —sin—1Z, A]-'[lu A}[.’u Afflzl A}[.’rl Agr Agr

1.00 90.°0 o ¢} — 0 o o) o
98 78. 5 —0.24 | —0.I4 —0.38 0.52 0.01 0.13
95 | 7L 8 — 59| — 33 - 94 73 2 21
90 64. 2 — 114 | — 355 —I1.82 84 4 29
35 58, 2 —1.67 | —~ 7jo0 —2.67 8o 6 35
8o §3. I 216 | — 78 —3.46 68 8 40
75 48, 6 —2.62| — 8o —4.20 5T 9 44
70 44. 4 —306 | — 77 —4.90 | + 30 it 48
60 | 36,9 —384 | — 61 —6.14 | — 1% 14 53

o o —6.00| + 63 —9.60 | —1.88 0.6 0.67
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III. Application to 3 Lyrae

§$19. A Lyrae is, as is well known, one of the miost interesting
stars because of its peculiar behaviour with reference to both light-
variation and spectral appearance. It is generally accepted that this star
is a close binary, although the system will not be composed of such
simple models as considered above. The shape and height of successive
two maxima are not the same, and during different cycles of variation,
the star does not exhibit exactly the same changes. It may be enclosed
in a non-static gaseous envelope, and the shape and surface brightness
of either component may not be symmetrical about the line joining their
centres.

In our model star, asymmetry about this line is not considered.
Such peculiarities, however, might be atmospheric, and we may assume
that within the photosphere each component more or less resembles
our model-star even in this extreme pair whose adjacent vertices are
practically in contact. We will accordingly apply the results obtained
in the preceding sections to the light curve of 3 Lyrae, by taking its
appropriate mean.

§ 20. The light curve of @ Lyrae shows two unequal minima and
it is generally accepted that the A8-component is smaller and is hidden
totally at principal minimum. The spectral class of the other component
is usually assigned to As.

(vuthnick' has calculated the following elements of 3 Lyrae as
derived from the photometric light curve ;

Ratio of the axes of an equatorial section, é:a 0.8

Inclination of the orbit, 2 9o’
Semi-ases major of B3 and B3, respectively 0.3 and 0.3
Maximum brightuess . 0.55 and 0.43
Densities in unit of the sun " 0.0022 and 0.0060

Since the ratio of maximum and minimum brightness predicted for
our uniform models which are similarly distorted is approximately

b 1— 27
a 1+
we get at once z,=1/15 by using the above data.

On the other hand relation (3) follows for similar deformation

. A
% =(p7')" and ( 1,][‘ ) =7’ (97),

1. Handbuch der Astrophysik, VI z, p. 431
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7 being the ratio of the radii of the two stars, so that by inserting the
above values, we find 7;==0.06 and A/,/4/;=o0.5 which are quite in
agreement with the observed values. '

This result justifies the assumption of similar distortion and at the
same time implies that our mode of attack is promising. Moreover
we may say that the predicted value of 7, is a little smaller than that
observed, suggesting that the deformations of the two components are
not -quite similar, and this in turn requires a somewhat different value
in mass-ratio.

In fact, the observed value of the mass-ratio is very flexible : for
example, it is 0.407 by Curtiss' and 0.07 by Miss Maury.> This dis-
crepancy comes from the indistinctness of the spectral lines of the larger
component. Its spectral class is usually labelled as Z3 but according
to Miss Maury it seems to be Bze, and Struve® considers it as helonging
rather to a later class, /39 or Ao from the study of the nature of its
radiation, reminding us of the spectrum of P Cygni.' Curtiss deduced
his result from the displacement of the bright lines and Miss Maury’s
mass ratio is based upon a comparison of her own determination of
K+ K= 196 km/sec with Rossitor’s determination of K,=o0.184km/scc.
It is very doubtful whether the bright lines of  Lyrae really originate
in the atmospherc of S5-component, although it can not be believed
that the mass ratio is so remarkable (cf. Struve, loc. cit. p. 267).

On the other hand (Guthnick elements are the results of a uniform
solution. The circumstances will differ when we consider the darkened
solution. For example, according to Shapley (IQc. cit. p. 86), the eclipse
is partial throughout and Z35-component was found to be less luminous :
namely

b/a=0.76, i=02"
Semi-axes major=0.68 and 0.27 :
and Maximum brightness==0.4 and 0.6 respectively.

§21. Now we will try to solve the problem quite anew from the
present point of view by using Stebbins’ adopted light curve® determined
with his photo-electric photometer. Secondary minimum is not placed
at the middle but comes o%17 later, the period heing 12%g2.. Hence

o < T 1,
¢ cos w(1 + cosec?) :7</(,— L— w/’) =0,041,
2

1. Publ. Allegheny Obs., 2 (1911} 113. 2. H. A. 84 (1933) 210,
3. Obs. 57 (1934) 208." 4. Araki and Kurihara, Jap. Journ. Astron, and Geopbys.,
14 (1937) 305. 5. 1. O. B, 16 (1916) 191.
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which agrees with Miss Maury’s clements of relative orbit, £=o0.02 and
w=0 provided the inclination is nearly go’. In Table XXII anomaly,
# is calculated by using these constants and dw is the difference in
magnitude, 8 Lyrae—y Lyrae.

Table XXII. Light-Curve of 3 Lyrae (Stebbins)

Phase| 0 I Asyz  |Phase| 0 l Ane | Phase ] 0 Aze | Phase| 0 t A
Ia ol [ .o . B RSN B :

—1.0}—28.1] 0.550 3.0 81.71 O.I74 6.5 ' 176.5! 6o7 9.97 | 275.9 140

—-0.51—14.0! 1015 | 3.45 937 160 | 6.63 1800/ 610 | 100 {27681 140
0.0 0.0 I.I20 3.5 95.1 161 7.0 11905 560 | 103 291.2! 157
r.5| 13.8| 1.028 | 4.0 | 108.8 178 | 75 2046 438 | 1ro | 305.6] 207
1.0| 27.6 675 4.5 | 121,91 230 | 8o 219.01 336 | 1n.3 | 3200 31z
1.5 4131 445 5.0 | 135.4 300 | 8.5 | 2334 255 | 120 | 3341 010
2.0f 54.8 308 5.5 | I49.0 386 9.0 | 247.71 190 | 12.5 348.2? 1.005
2.5 68.3 222 6.0 | 162.8 500 9.5 E 262.2 155 | 12.92 360.o§ I.120

There is still a conspicuous dissimilarity about midway from primary
minimum to maximum, although there is little divergence among the
descending branches of the curve to secondary minimum. DBut since
the asymmetry of the light curve coming from the orbital eccentri-
city is always very small compared with the displacement of sccondary
minimum,* such an irregularity observed in 8 Lyrac should be attributed
to the real unevenness of the atmospheric structure, and it is outside
of the scope of the present paper to trace its origin.  As a preliminary
attempt we shall take the simple mean of the two halves of the curve
before and after minimum and compare it with the theoretical one.
The adopted mean curve is given in the following table, the brightness
of maximum being taken to be unity.

Table XXIII. Mean Light Curve
[5)

0 0.0 12,0 | 15.0 | 200 | 300 | 400 | 500 60.0 | 70.0 8o.0 90.0

32| 686 | 8o4 | 88r| 933 9721 994 | 1.000

Sor| 852 | 898} 939 | 974 | 993 | r.ooo

(953

X 0.410 | 431 | 460t

1t

Ao 0.656 | 686 | 710 4

~1

§ 22. First we shall treat the uniform solution, the reflexion effect
being put aside. At the beginning it may be noticed that the flatness
of principal minimum suggests the deep totality of the eclipse while
the shape of secondary minimum seems to deny the uniformity of the

surface brightness. Iurther, the slope near maximum requires that the
total distortion be greater than that found by Guthnick.

1. Russell, Ap. J. 36 (1912) 39.
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In fact, our preliminary determination referring to (g1). follows
7=0.036, although we can not hope at this time to estimate z with
any accuracy. We are accordingly compelled to search for its value
s0 as to give theoretically the observed luminosities at maximum and
primary minimum by using relations (81) and (g3) and by taking 7,=
0.5, #=0.6 and #=90° as a first approximation. Since Au..=1.0 and
J=o.410, (81) follows

&,=0.410+(2—71,)(Q2,);

85: i ““21" 27 — - 3 I/i{ 82’1)l+ 7 27/1)3} (()8),

8

whence we find two solutions, z==F0.024. Other constants will be
given as follows:

z N Sy Y A v Lo, Qv Q' Adf

0.5 0.012 0.431 0.028 0.I53 0.052 0.067 0.064 Y

(lu) —o0024 | o3 6o| 494 | 121 148 14 73 76 | &%
, 0.5 6o 515 116 241 15 124 29 \
() 0024 0.3 12 407 29 56 48 23 98 692

A in the 1oth column means mass-ratio, A,/

Tt may be a regular course to use these constants to rectify the
observed curve, by (83) or (87), and to seek a second approximation
for 7, 7 and 7 by the usual method. Here, however, we shall compute
2 directly by means of these elements and compare it with the obser-
vation. It is convenient here to take V,—# as argument and not 8,
leaving free », and 7, which can then be redetermined by the relation

(cosec 27, Vi =cot™s —sin*t (99)
~ s0 as to reconcile the curve to the observation as well as possible. Once
they are known, we can find 8 for each N,—7 by the same equation
and write down A(O— (). The following example is shown for =
—0.024, where each pair of lines gives corresponding entries for the
larger and the smaller primary and (A)=1-2x and 1 —(1—2)a respec-
tively.

(I.) Computation of Theorectical Light Curve

Ny—r | BAT | 2AT |90/87"| QAR | SoAR | (O Ao ' 0| o—c
0.2 | —OI7I| —0019] 0.0I7 0.016 | —0.007 0.852 0.685| 7.5 -—o.oxf,
’ 0.00I | —0.0071 410 410 o
— I66| — 19 9 41— 3 874 699 _. i
Rl I 4 2 8 — 28 498 g7t B% 1o
— 158 — 17 5 Il — 4 905 732 20
2 30 14 I — 30 620 579 S e 19
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Table Continued

Ny—r | AT | A7 |Q0/AT'| SoAR | eoAR| () A 8 | o—-c
e e
e e I et e = P
o D e | D { ot e R
oo | TRl T BT HT g ®] B eeT i

—Zy= 08| — 88 3 1000 915} 52.71 I?
09| — 48 2 1000 054 | 63.8] ;

6 in the ninth column is computed for cot®/=0.023 and (3, cosecz)’
=o0.251, whence 7=81."3 and 7,=0.495. A little change in 7 will follow
smaller residuals on the whole but it would he superHuous further to
revise the elements in this example. '

The case is somewhat different for positive z: it apparently makes
secondary minimum too luminous. We shall accordingly take as an
alternative approximation »=0.63, 7,=0.43 and 7=go’ for which we find

z ’ i Loy ; g @) f @ p | Ly L' Aar
() 028§ 0.45 0.064 0.525 o.122 0.213 0.0I1 0.II3 0.024 .2
) | 0.457 8 398 20 49 18 85 0
Ny—7 —0.4 t—0.2 5 00| oz 0.4 E 0.6 0.8 0.9 ;~Z.3::o.8 0.9
0 6.%g | 7 f X 22,5 | 28.2 2 .2 7 .2 ! I 64.2
(1L 5 1 IL.7 ! 17.0 5 8.2 f 4.2 ‘%0/ 44.2 ] 53 4
i i
_ —0.029 |~ 7 — ¢ o 4 5 5 2 o - 4
0—C 2| 3?-5 — 8 o; 0] — 3| —IL| —I2 o]

Iere 0 is given for /=9o” and 7,=0.45.

Thus the observed light curve can be predicted by the two sets
of elements but for secondary minimum. It seems difficult, however,
to explain at a time the flatness of principal minimum and the constant
. decreasc in luminosity at secondary minimum so long as the stars are
taken to be uniformly illuminated. The asymmetry of the light curve
around maximum may also be left unexplained. Such asymmetry seems
to continue to the eclipsed part of the curve: in fact, except close to
secondary minimum, the corresponding residuals are algebraically greater
in the upper lines where the primary is larger.
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which are consistent with our theory if one of the components can be
taken to be much more strongly distorted. Though either will do, it
is required that the As-component is about five times more massive if

it is the /8-component that is more deformed, while they are com-

T.eaving this aside for a while, there are thus two solutions

parable in the other case.

The ohserved light curve is equally explainable by these two solu-
tions and it could not be decided from this point of view alone which
one should be taken. The spectroscopic mass ratio differs so much
among authors that we can not attach much importance to it, Never-
theless, there are, T think, good reasons to believe that solution (II) is
more probable. .

Tfirst, the A8-spectrum is that of a normal supergiant and its lines
are almost constant in intensity, while the Bs-spectrum is completely
abnormal. This fact leads us to the conclusion that it is the Bs-com-
ponent that is violently distorted ; otherwise we should expect to sce
an abnormal /A8-spectrum.

Secondly, the total emissions of the two stars are comparable so
that the mass-luminosity relation would not admit of such a great
difference in masses found in solution (I), for it requires that & vary
nearly proportionally to A7%

On the other hand it has been found' that at primary minimum
the color of # Lyrac is redder than at maximum and at secondary
minimum it is slightly bluer than at maximum. According to solution
(I1), at principal minimum we see only the Zs-component edgewise
and at secondary minimum the light comes mainly from the undistorted
£8-component.  This may be taken as a further illustration of the argu-
ment, for the surface of the BSs-component is generally less luminous
than that of the A8-component and darkest at the end of the tidal tip.

Tt seems to be some difficulty to the above argument that oscillating
lines belonging to A5-component have not been observed. This might,
however, be attributed to the impurity of the spectrum due to the strong
distortion of the surface structure of this component. The same proh-
lem has been fully discussed by Struve (loc. cit., p. 271) from a some-
what different point of view.

§24. Now we shall turn to the darkened solution. Take as a
first approximation ‘

1. Elvey, Ap. J. 81 (1935) 171.
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7=0.027, 7=0.5, 7;=0.5 and 7=290".
Then by the relations

L=
,=o.410+ (3.2 — ; 77U>(27’1)z

)

l (100)
=18 —13.27 I
we find in consistence with (g3)

o LN Bony < ™ 7 Q! L Qo' A
1) —oorg| &5 0.009 0.430 | ©0.021 0.146 0.040 o.of) 3| 0042 | (o
0.57 45 483 93 o9 1o 53 7T
. gl ©3 45 512 88 214 I1 109 19 .
(11y) o018 0.2 5 102 P 38 35 5 | 83 o.70

In the case of the darkened star, the contribution from 47 is not
so great during the eclipse that different sets of first approximations
are required for two solutions. . In fact, after calculations similar to
those made for the uniform star, we find as follows:

XO—C) for the Darkened Star

Ny ' 0.1 } 0.2 o4 | o6 | o8 0.9 —7,=0.8 0.9
0 A ] 13.3 222 | 302 | 385 42.6 513 63.1

t i !

I 3 i !
(Ia) | —0.013 — 4 8 9 | 2 4 3 [§
] 3 o | 5 2 -2 —15 —21 —13
) [ — 13 | — 1 o 15 | 2 i 6 —15 —16

11 ! 5 2 5

(M) 4 3 24 2 8 | —y4 -3 9

Here @ is given for revised constants, (7, cosec/)*=0.275 and cot’r=
0.080 or /=743 and mzo.soaf. TFor solution (IT,), a closer agreement
will result if a little smaller inclination is taken. .

§ 2z5. Thus two sets of the elements can be determined also in
this case and the gencral discussion made in § 23 remains unchanged,
so that solution (I1,), T think, should be adopted.

There are naturally minor differences among the elements for the
uniform and the darkened stars. The shape of secondary minimum
seems to favour the darkened solution. We are, therefore, likely to
admit that the star is darkened in some degree towards the limb, in
spite of the indication of Pannckoek' who has shown that for A-type
stars the limb darkening is small. It would be too much to say that
in solution (II,) the less massive 28-component is less luminous totally
than the other component as the mass-luminosity relation leads one to

1. M. N, 95 (1935} 734.
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expect. It seems, however, to be difficult for the present to determine
the degree of darkening with any accuracy by an analysis of the ob-
served light curve.

Tt may be of some interest to note that according to the darkened
solution, the stars are just outside of the totality at principal minimum.
In this casc, the flatness of the light curve at this portion is due partly
to the darkening of the limb of the eclipsed star and partly to the
rotational term resulting from the eclipsing star, while in the uniform
solution it is ascribed to the deep totality.

The asymmetry before and after maximum remains unexplained.

In solution (I;) predicted asymmetry is opposite in sense and in solu-
tion (II,) its maximum effect occurs near —/4=o0.9 and results in over-
correction. .

§ 26.  TFinally we shall therefore consider the reflexion effect briefly.

The coefficient of reflexion defined by (93) will be as follows :

On the other hand, if the whole asym-
metry observed is taken to be due to the
% | 0081 0.075| 0.063] 0.066  reflexion effect, it will be found, referring

. - o .
© 42| 43| 18] 34 to Table XXIII that the nearer to maxi-

Ta) | T2} | (T | (TTa)

mum, the smaller @ is ; for example, it is,
approximately, o.04 at #=350" and o.02 at 0=060".

Thus the coefficient is of the value expected theoretically, although
it fails in details. However, there is so remarkable a difference in
luminosity before and after principal minimum that our adopted mean
curve depends sensibly on the mode of taking the mean and we can
not insist too much on whether it is plausible or not.

Nevertheless it will be worth while to see theoretically what degree
the reflexion effect amount to and whether our results obtained in the
preceding articles would he affected or not if it-should be taken into
account.

" In the casc of solution (IT,) we find :

Reflexion Effect (IL,)

C Ny—r | 04 —o0.2 0.0 0.2 0.4 0.6 o8 |~4,=08 09 | 1.0
g | —0.008 |—0.006 | —0.003 o | 0.003 0.005 |0.006
AR 3 D . ¢
HAL, ol i1 ol — 1 5 2 g | 0005 |0.003 o
5 6 7 8 9 G
AQ 2 / 7 9 TR
iy ) ol— —3| — | —6|—8 F T E4 ©
“ o 4 7 II 14 15 12 7
Sum 3
; o~ I|— 3i—4]| — 3 -2 | —2 —2 | = I °
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On the whole the reflexion effect is too small to affect the de-
termined elements. It rather cancels the systematic deviations noted
at the end of § 22, except in solution I, which it may he necessary
to reconsider if the reflexion is taken into account, though the general
results would remain unchanged.

Summary

1) Theoretical light curves are computed for the model stars de-
scribed in § 1, which are equivalent to the first order to the tidally
distorted polytrope, 7z=3.

2) The shape of the model star is a distorted ellipsoid which is
more elongated towards the other component, its swollen portion being
less luminous.

3) In the first section, the boundary of the eclipsed portion is
first determined (eq. 24) and then loss of light by the eclipse is formu-
lated.

1) For convenience’ sake, it is divided into two parts: * circular
integrals ” (eqs. 37 and 38), which are independent of the distortion of
the secondary-—the eclipsing star—and “ boundary corrections ” (eq. 42).

5) In the second scction, the integrals are reduced to an ele-
mentary form (eq. 6¢) convenient for evaluation.

6) Numerical results are given in tables. Their meaning and
direction for use are explained in articles 15-18.

7} The predicted light curve is given in the form of equations
(81), (85) and (87). Corrections due to the distortion are divided into
the tidal and the rotational terms.

8) The reflexion effect is also considered and its result is given
in §17.

9) In the third section the complete results are applied to Stebbins’
light curve of 8 Lyrac. ,

10) Both for the uniform (§ 22) and the darkened star (§ 2.), there
are two alternative solutions which are consistent with our theory if
one of compounents can be taken to be much more strongly distorted.
If it is the smaller component, A8 that is more deformed, then the
other component will be five or six times more massive, while they
are comparable in the other case.

11) The observed light cnrve is equally explainable by these two
sets of elements but other reasons discussed in § 23 seem to favor the
latter solution.
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12) The star seems to be darkened towards the limb in some
degree (§ 25), though we can not say it quantitatively.

13) The reflexion effect is found to be insignificant (§ 26), so that
the determined elements would remain unchanged if it is taken into
account. '

In conclusion 1 take this opportunity of expressing my deep in-
debtedness to Dr. R. Kamiya for his valuable assistance during the pre-
paration of this paper and the patience he has shown in the laborious
construction of the tables. It is also my pleasant duty to offer my
warmest thanks to Nippon Gakujutu Sinkokai; without its help the
present work could not have been undertaken.



