On the Pseudo-set

By Tameharu Shirai

(Received June 15, 1937)

Let X be a certain set and we shall call its element x, a *point* of set X. Taking X and an object M into consideration, we shall call M a *pseudo-set* with respect to X. Fr all points x in X and M one of the following three fundamental relations holds:

$$(1) \begin{cases} x \in M, \\ x \in M, \\ x \parallel M. \end{cases}$$

In the following pages, let us consider that these three fundamental relations and set X are fixed, and we shall call M, shortly, a pseudo-set. When we talk about a point, we mean a point of the set X.

Definition of equality and inequality of pseudo-sets: Two pseudo-sets L and M are called equal, when they satisfy the following conditions. We indicate them by L=M:

$$\left(\begin{array}{l} \text{if } x \in \mathcal{L}\text{, then } x \in \mathcal{M}\text{,} \\ \text{if } x \in \mathcal{L}\text{, then } x \in \mathcal{M}\text{,} \\ \text{if } x \parallel \mathcal{L}\text{, then } x \parallel \mathcal{M}\text{, and vice versa.} \end{array} \right.$$

By this definition, it is clear that the equality is reflexive, symmetric and transitive. Let for example L=M, M=P and $x \bar{\epsilon} L$, then $x \bar{\epsilon} M$ for L=M, and hence $x \bar{\epsilon} P$ for M=P.

Definition of the sum of two pseudo-sets: If there be an object S satisfying the following properties (3), then it is clear that S is a pseudo-set, and we shall calls S a sum of two pseudo-sets L and M, and denote it by S = L + M;

$$\begin{cases} x \in S \text{ when } x \in L, x \in M, \\ x \parallel S \text{ when } x \in L, x \in M, \\ x \in S \text{ when } x \in L, x \in M, \\ x \in S \text{ when } x \in L, x \in M, \\ x \in S \text{ when } x \in L, x \in M, \\ x \in S \text{ when } x \in L, x \in M, \\ x \in S \text{ when } x \in L, x \in M, \\ x \in S \text{ when } x \parallel L, x \in M, \\ x \in S \text{ when } x \parallel L, x \in M, \\ x \in S \text{ when } x \parallel L, x \in M, \\ x \parallel S \text{ when } x \parallel L, x \parallel M. \end{cases}$$

M

Ē

Ē

Ē

These relations are shown in the accompanying table.

From this definition we obtain the following theorem:

Among three pseudo-sets M_1 , M_2 and M_3 , we have

$$M_1 + M_2 = M_2 + M_1,$$

 $(M_1 + M_2) + M_3 = M_1 + (M_2 + M_3).$

i. e. the summation of pseudo-sets is commutative and associative.

For let $x \in M_1$, $x \in M_2$, $x \in M_3$ for example, then $x \in (M_1 + M_2) + M_3$ for $x \parallel (M_1 + M_2)$, $x \in M_3$, and on the other hand $x \in M_1 + (M_2 + M_3)$ for $x \in M_1$, $x \in (M_2 + M_3)$.

Now let M be a pseudo-set and M be an object such as

$$x \in \underline{M}$$
 when $x \in M$, $x \in \underline{M}$ when $x \in M$,

$$x \parallel \underline{M}$$
 when $x \parallel \underline{M}$,

then, it is clear that \underline{M} is a pseudo-set. We can call \underline{M} a pseudo-anti-set of M. If all points x have the relation " $x \parallel M$ " with respect to M, then we can call M a pseudo-zero-set, and we will in general denote it by N. By these definitions, we have

$$M+N=M$$
, $M+\underline{M}=N$.

Moreover, it is clear that M is a pseudo-anti-set of \underline{M} .

Definition of product of pseudo-sets: if there is an object P which has the following properties (4), then it is a pseudo-set and we shall call P a product of two pseudo-sets L and M, and denote it by P=LM:

$$\begin{pmatrix} x \ \bar{\epsilon} \ P \ \text{when} \ x \ \bar{\epsilon} \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \bar{\epsilon} \ P \ \text{when} \ x \ \bar{\epsilon} \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \bar{\epsilon} \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \bar{\epsilon} \ P \ \text{when} \ x \ \bar{\epsilon} \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \bar{\epsilon} \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \bar{\epsilon} \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \| \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \| \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \| \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \| \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \| \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \| \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \| \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \| \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \| \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \| \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \| \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \| \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \| \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \| \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \| \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \| \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \| \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \| \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \| \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \| \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \| \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \| \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \| \ L, \ x \ \bar{\epsilon} \ M, \\ x \ \| \ P \ \text{when} \ x \ \| \ R \ M, \\ x \ \| \ P \ \text{when} \ x \ \| \ R \ M, \\ x \ \| \ P \ \text{when} \ x \ \| \ R \ M, \\ x \ \| \ R$$

These relations are shown by the accompanying table.

From this definition, we obtain the following theorem: Between three pseudo-sets M_1 , M_2 and M_3 , we have

		M		
		Ē	Ē	=
L	Ē,	Ē	Ē	
	Ē	Ē	Ē	II
	==	1	II.	

$$M_1M_2 = M_2M_1,$$

 $(M_1M_2)M_3 = M_1(M_2M_3),$

i. e. the multiplication of the pseudo-sets is commutative and associative.

For let $x \in M_1$, $x \in M_2$, $x \in M_3$ for example, then $x \in (M_1M_2)M_3$ for $x \in (M_1M_2)$, $x \in M_3$, and on the other hand $x \in M_1(M_2M_3)$ for $x \in M_1$,

 $x \bar{\varepsilon} (M_2M_3).$

These two processes, the summation and the multiplication, are also distributive:

$$M_1(M_2+M_3)=M_1M_2+M_1M_3.$$

For, let $x \in M_1$, $x \in M_2$, $x \in M_3$ for example, then $x \parallel M_1(M_2 + M_3)$ for $x \in M_1$, $x \parallel (M_2 + M_3)$; on the other hand $x \parallel M_1M_2 + M_1M_3$ for $x \in M_1M_2$, $x \in M_1M_3$.

If all points x have the relation " $x \in M$ " with respect to M, we call M a pseudo-unit-set, and denote it by E. From this definition we have

$$\underline{E}\underline{E} = E$$
,
 $\underline{M}\underline{E} = \underline{M}$.

Because, all x have the relation " $x \in \underline{E}$ " with respect to \underline{E} ; therefore $x \in M\underline{E}, x \in M\underline{E}, x \parallel M\underline{E}$ provided $x \in M$, $x \in M$, x

From the results which we have obtained, we may conclude the following proposition with respect to a system of pseudo-sets \mathfrak{M} :

If there exists a pseudo-zero-set in \mathfrak{M} , and if the sum and the product of any two pseudo-sets of \mathfrak{M} and the pseudo-anti-set of any pseudo-sets of \mathfrak{M} exist, then the system \mathfrak{M} forms a ring, and if this \mathfrak{M} contains also pseudo-unit-set, then \mathfrak{M} forms a proper ring.

Example of pseudo-set: Let \mathfrak{F} be a system of all one-valued functions f(x) which are defined in the interval 0 < x < 1, such as

 $f(x_i)=a_i$ (integer), for $i=1, 2, 3, \ldots, n$, where $0 < x_1, x_2, \ldots, x_n < 1$, and let X be the set of these points x_1, x_2, \ldots, x_n . When we define $x_i \bar{\epsilon} f(x), x_i \epsilon f(x)$ and $x_i \parallel f(x)$, so that $a_i \equiv 1 \pmod{3}$, $a_i \equiv 2 \pmod{3}$ and $a_i \equiv 0 \pmod{3}$ respectively, then it is clear, by the definition of f(x), that these f(x) form pseudosets with respect to these three fundamental relations and to the set X. Therefore when we consider \mathcal{F} as a system of these pseudo-sets, two functions $f_1(x)$ and $f_2(x)$ of \mathcal{F} such as

$$f_1(x_i) = a_i^{(1)}, f_2(x_i) = a_i^{(2)} \ (i = 1, 2, 3, ..., n),$$

 $a_i^{(1)} \equiv a_i^{(2)} \ (\text{mod. 3}) \text{ for all } i = 1, 2, 3, ..., n,$
are considered equal: $f_1(x) = f_2(x)$.

Let f_1 and f_2 be any two functions of \mathfrak{F} . Then it is clear that \mathfrak{F} contains functions $f_3(x)$, $f_4(x)$ as follows:

$$f_3(x_i) \equiv a_i^{(1)} + a_i^{(2)} \pmod{3}$$
, for all $i = 1, 2, 3, \dots, n$, $f_4(x_i) \equiv a_i^{(1)} \times a_i^{(2)} \pmod{3}$, for all $i = 1, 2, 3, \dots, n$,

and these functions $f_3(x)$, $f_4(x)$ are respectively the sum and the product of two pseudo-sets $f_1(x)$ and $f_2(x)$. By this and the definition of \mathfrak{F} , it forms a ring and a proper ring, for it contains a pseudo-zero-set, a pseudo-anti-set and the pseudo-unit-set.

At the conclusion we notice that we may give another definition to the sum and the product of pseudo-sets, although they are not fertile.

The author wishes to express his hearty thanks to Professor T. Matsumoto for his valuable advice made during this study.