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The PPP Approach to Robbins’ Problem
of Minimizing the Expected Rank

E#E*F] (Mitsushi Tamaki)
Department of Business Administration, Aichi University

1 Introduction

According to Bruss(2003), Robbins’ problem can be described as follows: Let X1, X»,..., X, be
iid. U[0,1] random variables, and let Fr=0(X1, X2,...,Xk), that is, the o-algebra generated by
X1,Xa,...,Xg. Further let Ry be the absolute rank of X} among all X3, Xs,...,X,, where ranks
and observations are both defined in increasing order, i.e.,

n

Ry = Ri(n) = ZI(X,- < Xp).

i=1

Further let T, be the set of all stopping rules adapted to X7, X, ..., which means
To={r:{t=k} € Fr, 1<k<n}.

The problem is to find the value

Vin) = Tlenflt“., E[R,],
including its asymptotic behavior as n tends to infinity, and also the stopping rule 7* which achieves

the value, that is,
T = T, = arg,7, {inf E[R;]}.

It is noted that we define the smaller observations to be the better ones(i.e., having smaller ranks),
which is here more convenient. Why the above problem is called Robbins’ problem is that, during
the AMS Joint Summer Research Conference on Strategies for Sequential Search and Selection in
Real Time (Ambherst, June 1990), professor Herbert Robbins tried to get people interested in this
problem.

In the classical secretary problem, solved by Lindley(1961), one is allowed to use rules that
depend on the relative ranks of the observations (called the no-information problem) and the ob-
jective is to maximize the probability of selecting the observation of absolute rank 1(the best-choice
problem). The full-information best-choice problem was solved by Gilbert and Mosteller(1966) and
the no-information expected-rank problem was solved by Chow et al.(1964). Thus the Robbins’
problem, i.e., the full-information expected-rank problem, would complete a two by two factorial
design of secretary problems. To the best of my knowledge, there are three papers specifically on
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Robbins’ problem. These are Bruss and Ferguson(1993), (1996) and Assaf and Samuel-Cahn(1996)
(abbreviated to AS).

This note, motivated by AS, has two objectives: One is to give Eq.(4.14) of AS again (referred
to as Problem 1) and the other is to derive an explicit limiting expression (as n — oo) for the
expected rank under the stopping rule considered in Remark 6.2 of AS (referred to as Problem 2)
via the planar Poisson process approach.

2 PPP approach

Since X;’s i.i.d. uniform on [0,1]= n(l — max{X1,...,Xn}) =P ezp(l), it is clear that the
desired setting is a so-called planar Poisson process, which will be abbreviated as PPP. This model
has been widely used to study the limiting behavior of the full-information problems; see, e.g.,
Gnedin (1996), (2003) or Samuels (2004). Our preference is to have a Poisson process with unit
rate on the space

T x ¥=[0, 1]x[0, 00).

This turns the problem upside down making Best=Smallest. We scan the process from left to right,
and the best, 2nd best, etc., arrivals have values which are sums of i.i.d. exponential(1) random
variables, and arrive at i.i.d. uniform|0, 1jtimes which are independent of the values.

It is easy to see that Problem 1 corresponds to stopping with the first atom (point) which lies
below the curve y = ¢/(1 —t) on 7 x Y. Thus we call this ¢/(1 — ¢) threshold rule. Note that, in
AS, c and t is replaced by b and z respectively. The stopping rule to be considered in Problem 2 is
simply described as the (a, ¢)-stopping rule, 0 < a < 1, because this rule is the same as the ¢/(1—t)
threshold rule except that this rule only chooses a relatively-best atom if it appears before time a.

Problem 1. (Expected rank under c¢/(1 — t) threshold rule)

We shifts an infinite vertical detector in the positive direction of ¢ and choose the first atom
encountered that is located under ¢/(1—t) thresholds. Note that the chosen atom is not necessarily
relatively-best. Let R denote the (absolute) rank of the atom chosen in this way and (7, Y’) denote
the coordinates of this atom (see Fig.1), which we sometimes call the state of the atom. It is easy
to see that the density function of T is given by

fr@)=cl -t o0<t<l, (1)
and conditional on T = ¢, Y is uniformly distributed on (0,¢/(1 —t)). Let R(t,y) denote the rank
of the atom chosen at state (T,Y) = (¢,y). Then we have

L 5 1-t,
B(R = [ § [T BIRG o —=dy | frit)at. ©

The following lemma yields E[R(t,y)].

Lemma 1.1

1+ (1 —1t)y, if0<y<e

E[R(t,y)] =
A 1+(1—t)y+(y-—c)+clog(—;), fec<y<is
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Proof. Let the state of the chosen atom be (¢,y) . Then it can be distinguished into two cases
i.e., Case (i) and Case (ii) depending on 0 < y < c or ¢ < y < 1%; for each ¢ (see. Figures 2 and 3).
Let N(t,y) be the number of atoms included in the shaded reglon in each figure. Then evidently
R(t,y) = 1+ N(t,y). Since the area of the shaded region is given by

(1-t)y | 0<y<c

Meg) = (1—t)y+/01_§( lit)dt=(1-t)y+(y—0)+clog(-;), c<y<ih ©)

and N(t,y) is a Poisson random variable with parameter A(t,y) from PPP assumption. We have

E[R(t,y)] = 1+ E[N(ty)]

1+ A(t,y),

which, combined with (3), completes the proof.
We have from Lemma 1.1,

[ et St = (54 [T -t [To-ooos (S}
- ({555 [ s -0

c+2 (2—t)t
= -—2—+c{m+log(l—t)}.

Hence, applying this and (1) to (2) yields

E[R = [ +e +log(1 t)}] o(1 = £)°Ldt

{ 1t(2—t(1—t)°'2dt+ /(1 )c-llog(l_t)dt}

(c—l) c+ 1) (—61_2)}

2

which coincides with Eq.(4.14) of Assaf and Samuel-Cahn.
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Remark: In a similar way, the expected rank under c/(1 —¢)? threshold rule can be calculated to
yield
2 c?

7 1
E(R) = 6 +c 4 3% + Ecsecl(c),

where

I{c) = ‘/100 Eﬁdu.

u

Problem 2. (Expected rank under (a, c)-stopping rule)

The (a, c)-stopping rule, 0 < a < 1, is the same as the c¢/(1 — t) threshold rule expect that this
rule only chooses a relatively-best atom if it appears before time a (this rule is referred to as in
Remark 6.2 of Assaf and Samuel-Cahn).

Let A be the best atom above the threshold and S be the time as shown in Figures 4 and 5
(Figures 4 and 5 correspond to the Case (1): s > a and the Case (2): S < a respectively).

The density function of S is given by

fs(s) = ﬁie”lc—ss, 0<s<l (4)

As in problem 1, we denote by R the rank of the atom chosen under the (a, c)-stopping rule and
by (T,Y) the state of this atom. Let also R(t,y), N(t,y) and A(t,y) be defined similarly. First we
calculate E[R(t,y)].

Lemma 2.1 (Case (1): s > a)
This case is further distinguished into three cases, i.e., Cases (1a),(1b), and (1c) as shown in
Figures 6, 7 and 8.

R(t,y) = 1+ N(t,y), for Cases (1a) and (1b)
V= 24 N(t,y), for Case (1c).

1+ (1 —1t)y, for Cases (1a) and (1b)
E[R(t,y)] =
[R(t,v)] { 2+ (1-t)y+g(y,s), for Case (1c)
where g(y, s), the area of D in Figure 8, is given by

cs

9(y,8) = [(y —c)+clog (SH - [1 — * clog(1 - s)]
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Lemma 2.2 (Case (2): s < a)

This case is further distinguished into four cases i.e., Case (2a),(2b),(2c), and (2d) as shown in

Figures 9, 10, 11 and 12.

14 N{t,y), for Cases (2a) and (2b)

R(t7 y) = { 2+ N(t, y), for Cases (2(3) and (2d)

14+ (1-1t)y, for Cases (2a) and (2b)

E[R(t,y)] = 2+(1—t)y+a<y—- lis>’ for Case (2c)

c ¢
l1-a 1-s

2+(1-t)y+a ( ) +g(y,a), for Case (2d)

The distribution of T' conditional on S is given in the following lemma

Lemma 2.3
[I] Case (1): S=s2>a.

fris®) = frt) =c(1-t)°"%, O0<t<1
[II] Case (2): S=s<a.
c(1 =), 0<t<s

_c(t—s)
Frisms(t) = { cL—8) e, s<t<a

—_ - c(a—s
c(1—t)? (i Z) e" T, a<t<Ll1

We can compute E[R] by conditioning on S, that is,

1 .
ElR] = /0 E[R| S = s|fs(s)ds.

By the way, we can now compute E[R | S = s] from Lemmas 2.1-2.3 as follows.

Lemma 2.4
[I] Case (1): S=s>a.

BRIS=9 = [ { [~ E[R(t,ynl—;—tdy} Fris=s()dt

c+2 c

s T et YT

(5)
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[IT] Case (2) : S =s < a.

ER|S=3s = /Os {/OI'—? E[R(t, y)]EZ—tdy} Fris—s(t)dt
s {
" -/al {/OIT EIR(, y)]l—-c_—tdy} Fris=s(t)dt

E[R(t, y)}l—dy} fris=s(t)dt

_c+2 (1-y¢)

T2 T2
(l—s)c (c+1)c? c+3+(c~1a  ca(l —a)
20t 1)° )[(2”1”((;—1)(1—(1)“’ I—s | (1-a)

Applying Lemma 2.4 to (5) yields the explicit form of E[R].

Theorem 2.5

_ ¢+l 1 14+ (c—1)a _ca
BRl = S (5 g
o= 1;12(1 —gl{FCH - (@ + @ +e-D-a) ~efe-1)(1 - )}
—{2e+ (¢ +2* — 6o+ 1)(1 - a) — o(? + 3e - 4)(1 ~ a)? "]
¢l . c e+ 1)+ (2¢? —c—1)(1—a) ca
+§ [el(l_a,c)— (c2—1)(1—a) I(l_a,ca)J,
where

B o—u
1(8,0) = /a £ —au

Unfortunately, numerical experiences show that (a,c)-stopping rule gives no significant im-
provement over (0, c)-stopping rule, for example, E[R] = 2.33044 for a = 0.42,¢ = 1.95, while
E[R] = 2.33182 for a = 0,c = 1.95.
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