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1 Definitions from binary linear codes

1.1 Binary codes

Let F; = GF(2) be the field of 2 elements. Let V = F, be the vector space of dimension n over
F, . A linear [n, k] code C is a vector subspace of V of dimension k. An element x in C is called a

- codeword of C. The inner product on V, which is denoted by x -y for x,y in V, is defined as usual.
Two codes C; and C: are said to be equivalent if and only if after a suitable change of coordinate
positions of C; all the codewords in both codes coincide.

Let C be a binary code of length n. An automorphism o of the code C is an element of the
permutation group of n letters S,, which leaves C invariant. All automorphisms of the code C form
a group and it is denoted by Aut(C).

The dual code C* of C is defined by

l={ueV|u-v=0 VveC}

The code C is called self-orthogonal if it satisfies C C C+, and the code C is called self-dual if it
satisfies C = C*. Self-dual codes exist only if n =0 (mod 2). For even n we let S, denote the set
of all self-dual binary codes of length n. Let

X = (1:1,2}2,...,:1:,;)

be a vector in V, then the Hamming weight wt(x) of the vector x is defined to be the number of i’s
such that z; # 0. The Hamming distance d on V is also defined by d(x,y) = wt(x —y). Let C be a
code, then d of the code C is defined by

d = Minx,yec,x;&yd(x'y)
= Minxec,x;eo"Ut(x)-

Let C be a self-dual binary code, then the weight wt(x) of each codeword x in C is even. Further, if
the weight of each codeword x in C is divisible by 4, then the code is called doubly even. It is known
that a doubly even self-dual binary codes C exist only when the length n of C is a multiple of 8. In
short a doubly even self-dual binary code is type II binary code.

Let C be a self-dual doubly even code of length n, which are embedded in F7. Let u =
(u1,ug, -, un),v = (v1,v2,--,vs) be any pair of vectors in F,, then the number of common 1’s
of the corresponding coordinates for u and v is denoted by u * v. This is called the intersection
number of u and v, and u * u is nothing else wt(u).

Let C be a type II binary [n, g] code. The homogeneous weight enumerator We(z,y) of the code
C is defined by

Wc(z, y) = Z mn—-wt(v)ywt(v)
veC



Following identity is known as the MacWilliams identity:

1
We(z,y) = ch(Hy,w—y)

it et 2 )

Wel=75~~7

Since C is doubly even, each codeword u of C has weight divisible by 4, and we know that
We(z,iy) = Welz, y)- (2)
Let G; be the group generated by

I A U S SN A O |
n=rx\1 -1 2=\ 0 i /)

The above two equations (1) and (2) show that the homogeneous weight enumerator of a type II binary
code is invariant under linear action of the elements of the group G;. Let Clz,%] be the polynomial
ring over the field of complex numbers C. We let C[z, ]! to denote the subring of C|z, y] consisting
of all elements in C[z,y] invariant under linear action of Gi1. The following theorem is due to A.
Gleason [9]

Theorem 1.1 It holds that
C[xv y]GI = C[Wea (z,9), Waolz (2, )]s

where We,(z,y) is the weight enumerator of the eztended Hamming code of length 8, and Wyor,, (z,y)
is the weight enumerator of the binary Golay code of length 24.

Let H; be a subgroup of G; generated by 010201 and o;. This subgroup is of index 2 in G;. Let
Clz,y)¥* be the ring of invariants for H;. Then it is known that (see for instance [19])

Theorem 1.2 It holds that
C[.’E, y]H! = C[WG! (.’L‘, y), El?(mi y)]a

where By3(z,y) = z'2 — 33z8y* — 33z4y® + y12.

1.2 Jacobi weight enumerator

Definition: Jacobi polynomials for binary codes
Jacobi polynomial Jac(C, v | X, Z) for C with respect to v € F7 is defined by

Jac(C,v | X,2) =Y X1z,
’ ueC

The homogeneous form of Jac(C, v | X, Z) is given by

Jac(C, viZ,y, U, 'u) = Z zn—wt(v)—t‘ut(t)+tavywt(t)—t*vuwt(v)-—t:avvttv'
teC

Theorem 1.3 Let the notations be as above, then we have

JGC(C,V;E',ZI',U'W') = JGC(C, ViZ, Y, U, ‘U), (3)
where
z’ 1 1 0 O z
y | _ 1 1 -1 0 0 ]
T -ﬁ 0 0 1 1 u
v 0 0 1 -1 v



It may be remarked here that it holds
Jac(C,v; z, iy, u, ) = Jac(C, v; T, y,u, V) ' 4)

Let G1G; be the group generated by diag(cy, 01) and diag(a2, 02), and C[z, y, u, v] be the polynomial
ring in 4 independent variables over C. We let Clz, y, u,v]®®C! to denote the subring of Clz,y, u,v]
invariant under the linear action of each element of G; ® G;. The above equations (3) and (4)
implies that Jac(C, v;z,y,u,v) belongs to C[z,y,u,v)%®51. We have a Gleason type result for
Clz,y, u,v]%19% (14)).

Let H,®H, be the group generated by diag(c1,01) and diag(010201,010201), and R = Clz,y, u,v
be the ring of invariants for the group H; @ H;. We also have a Gleason type result for R. Here we
briefly describe the result. When a polynomial f(z,y,u,v) of total degree n belongs to R we call the
partial degree of f with respect to the varaibles u and v the index of f. The Molien series for H1&® H;
is given by

]H1®Hl

‘I)H, o R:E ()
= Z dimq (FJacy)t"
n>0
1+ 88 + 18¢12 + 2116 4 19¢20 4+ 21824 4 7428 4+ ¢32
(1 —18)2(1 —t12)?
= 1+ 10% + 2012 + 40t1® + 75¢2° + 130t + 17928 4- 283t32 +
383t%8 + 513¢40 + 678¢* + 883t%® + 1078¢52 + 1372t5%6 +
+1658t%° + 19941%4 + 2385t58 4+ 283617 + - - -.

We decompose this ring R into a direct sum :
R =D R,
n>0
where R,, is the n-th homogeneous part of R. Further we decompose Ry, as
’ R, = @ Rn.,ma

o0<m<n

where R, is the set of polynomials f(z,y,u,v) € R, with partial degree with respect to u and v
equal to m. This set R, n forms a vector subspace of R.

2 Jacobi forms

2.1 Definition of Jacobi forms

Let H be the complex upper half plane and 7 be a variable on IH. Let C be the complex plane and
2 be a variable on C. A complex valued holomorphic function ¢(7, z) defined on H x C is called a
Jacobi form of weight k and index h with respect to the pair (SLz(Z),Z) if it satisfies the conditions
(5), (6) and (7) below:

¢(1‘,z)=(cr+d)"°e2ﬁh(§ﬁ)¢(af+b z ) holds for V (‘: Z)GSLz(Z) 5)

cr+d cr+d
(7, 2) = ez"""("2'+2'\‘)¢(r, 2+ r+p)for\peZ (6)
&(7, 2) has a Fourier expansion of the form
#(r,2) = Z c(n,r)g"¢" _ (7

n>r3/4h



2.2 Eisenstein Jacobi forms

One major construction method of Jacobi forms is Eisenstein Jacobi forms (c.f. [8],pages 17-18).

Ekam (T7 z) =

1 . pat +b z cz?
= - Y 2 —
) EZ ?:Z(c”’d) © ('\ otd  Pard w+d
o €
(c,rdS:l
Z . ekum(ni r)qncf
"i"ez

4nm>r?

where a,b are chosen so that ( :’ 3 ) € SLy(Z).

3 Massformula for Jacobi weight enumerators

3.1 Mass formula for ordinary weight enumerators

For 1 < h < % let C be a binary self-orthogonal code of length n and dimension h containing all one
vector 1 in F3. We denote by

v(n,h) = #{C € D | C > Co}.

This is independent of the choice of Cy.
We recall that &,, is the set of all binary self-dual codes of length n for each even integer n. We denote
by

p(n,h) = #{C € 8, | C D Co}.

We quote a well-known result
Proposition 3.1 ([20]) It holds that

3-h-1

v(n,h) = H (27 +1).

=0
Proposition 3.2 (/20]) For h with 1 < h < % it holds that

3-h

pin,h) = [T (@ +1).

=1

J.G. Thompson [20] proved that

Y Wiz, 4;0) = v(n, 1)(@" +y") + ¥(n,2) > ( 7; )mn_a'yf.

CED,, o<4’i_7<'"
If we define
wiley) = (] )
4}j
1 . n : n
= (@+y"+(@-y)"++i)" + (z —iy)"),
then

Y Wi(@,4:0) = v(n, 2227 2(z" + ") + WV (3, 3))-
ceD..



Recall that the root system D, consists of the 24 roots listed below:
+V2; (5 =1,2,3,4),
1
—(+1,+1,£1,£1).
ﬁ( )

We imbed these vectors into C2 as follows.

*v2e; (j=1,2k=0,1,2,3),
(Fer+¢Fer (5, k=1,3,5,7),

where ¢ = e™/4. Now, let D, denote the set of 24 vectors above. If n =0 (mod 4), then

> (@zta)t = @4+ Y (et
a€Dy 5,k=1,3,5,7

M)+ ()M D (Pt
7,k=0,2,4,6

= 162" %" + ") + (-1)"*W (=, 9)). (8)

3.2 A Theorem

Using the notation introduced in the previous section, the mass formula for the Jacobi weight enu-
merator polynomial can easily be established. The Jacobi weight enumerator polynomial for a code
C with respect to a reference vector u is defined by

Jac(C, u; Zoo, Zo1, T10, 211) = Y, X(u, V).
veC

Denote by Jacn x the sum of the Jacobi weight enumerator polynomial with respect to a fixed reference
vector of weight k for all C € D,,. Note that Jacy, x is independent of the choice of u. We prove

Theorem 3.3 (Munemasa-Ozeki {13])

—_— 1
Jacn ik = l—éy(na 2) Z (@1Z00 + a2201)" *(arz10 + 02z11)". 9
a=(a;,a2)€Dy

4 An application of the mass formula to the construction of
Jacobi forms

4.1 Some instances

If we apply the so called Bannai-Ozeki map (c.f. [2]) to the right hand side of (9), we obtain many
important Jacobi forms of weight n/2 and index k. As the mass formula the both hands are meaningful
only when n is divisible by 8. However the polynomials in the right hand side are useful even if
n = 4 mod 8 in constructing Jacobi forms. Here we give few instances of the construction.

To do this we recall Jacobi’s theta functions:

Bo(, Z) = 2 (_1)ne1rn’f+2n‘liz,
nGZ

92(1.’ Z) - Z e1r(n+1/2)zr+(2n+1)1riz,
neZ

03(7-’ Z) — Z evrnz'r+2nm'z.
nEZ



We put ¢;(7, 2) = 8(27,22), and ¢;(T) = ¢i(7,0) (i = 2,3).
When n = 8 and k = 1 the right hand side of (9) becomes 30 times of
ytz3u + TotyPo + y"v + 27w

Substituting z = (1), ¥ = p3(7),u = p2(7, 2), v = p3(7, 2) in this polynomial we get a Jacobi form
of weight 4 and index 1:

Y41 =
14 (¢%+56¢ +56¢1 +¢ 2 +126)g
+(126¢2 4 576¢ + 576¢ " + 126¢ 2 + 756)¢>
+(56¢3 + 756¢? + 1512¢ + 1512¢~* + 756¢ 2 + 56¢ 3 + 2072)¢°
+(¢* + 576¢3 + 2072¢2 + 4032¢ + 4032¢ ™! + 2072¢~2 + 576¢ 3 + ¢™* + 4158)¢*
(126¢* + 1512¢% + 4158¢2 + 5544¢ + 5544¢ ™1 + 4158¢™2 + 1512¢ 3 + 126¢ ~* + 7560)¢° + - - -

When n = 8 and k = 2 the right hand side of (9) becomes 30 times of

3z4y2v2 + 8z3y3uv + 3:::2;1,14’142 + 2842 + y6v2.

The last polynomial leads to a Jacobi form of weight 4 and index 2:

Ya2 =
1414+ ¢ +64(¢+¢7) + 84)g +
FCH ¢+ 64(¢3 4+ ¢73) +280(¢% + ¢72) +448(C + (1) + 574]¢?
+(84¢* + 448¢3 + 840¢2 + 1344¢ + 1344¢ ™! + 840¢™2 + 448¢™2 + 84¢~* + 1288)¢°
+[64(¢% + ¢7%) + 574(C* + ¢74) + 1344(¢% + ¢7) +2368(¢* + (7) + 2688(¢ + (1) + 3444]¢*
+[14(¢8 + ¢76) + 448(¢% + ¢75) + 1288(¢* + ¢ %) +2688(¢3 + ¢7?)
+3542(¢% + ¢72) +4928(C + ¢1) +4424)¢° + - --

When n = 12 and k = 1 the right hand side of (9) is a polynomial that is 4050 times of
—22z%y7v — 1128%v — 11982%u — 22y*z7u + 21w + y1lo.
This leads to a Jacobi form of weight 6 and index 1

V6,1 =
1+ (¢2—88¢ —88¢"1+ (2 -330)q
+(—330¢2 — 4224¢ — 4224¢ ™! — 330¢2 - 7524)¢
+(—88¢3 — 7524¢% — 30600¢ — 30600¢ ! — 7524¢ ™2 — 88¢~3 — 46552)¢>
+(¢* — 4224(¢3 - 46552¢2 — 130944¢
—130944¢ 1 — 46552¢ 2 ~ 4224¢ 3 + ¢™* — 169290)¢*
(—330¢* — 30600¢® — 169290¢? — 355080¢
~355080¢ ! — 169290¢ ~2 — 30600¢ ~3 — 330 ~* ~ 464904)g® + - - -

When n = 12 and k = 2 the right hand side of (9) is 4050 times of the polynomial
—14y%z%u? — 14y87%? - 3?2802 — 3y8z%u? + 21%2 + %2 — 16y3z uv — 16y z3uv.

This leads to a Jacobi form of weight 6 and index 2:



1/)6,2 =
1+ (—10¢% - 128¢ —128¢~! — 10¢™2 — 228)q
+(¢* - 128¢% — 1496¢ — 3968¢
—3968¢ ! — 1496¢ 2 — 128¢ % 4 ¢~* — 5450)¢°
+(—228¢* — 3968¢3 — 14088¢? — 27264¢
—27264¢ " — 14088¢ 2 — 3968¢ ™% — 228¢~* — 31880)¢"
+(—128¢® — 5450¢* — 27264¢3 — 67712¢% — 103680
—~103680¢ ™! — 67712¢ 2 — 27264¢ % — 5450¢ ~* — 128¢° — 124260)¢*
(—10¢® — 3968¢° — 31880¢* — 103680¢® — 197650¢* — 292480
—~292480¢ " — 197650¢ 2 — 103680¢ 3 — 31880¢~* — 3968¢ 5 — 10¢{ ~€ — 316168)g° + - - -

In this way we obtain an infinite family of Jacobi forms of various weights and various indeces.

4.2 A comparison of two constructions

In (8] only the values ex,m(n.r) (k < 8,m = 1) of the Fourier coefficients of Ei,m(7,2) are given
explicitly.

Here we explain a method to compute ek (n.r) for any even k and m > 1. For this we start from
the formula given in [8] page 22:

Ek,m(n-"') = gzk—(:é]-'(—ﬂz)k_Tl Z dk-lH(k _ 1’ 4nmd; 'r‘2 )’

d|(n,r,m)

and
H(k—1,4n —r?)

ewlnr) = =y
where ((3 — 2k) is the special value of Riemann’s zeta function. The quantity H(k—1, N) is described
at page 30 in [8):

L_ny(2-k) if N>0and N=0or3 (mod 4),
H(k-1,N)y=4¢ ((3-2k) if N =0,
0 if N> 0and N =1o0r2 (mod 4).

When ~N =0or1 (mod 4) we put —N = (—Np)u? u € N so that —Np is the discriminant of the
quadratic number field Q(v/—N). The number L_x(2 — k) comes from the L-function L_x,(s) by
way of

Low(9) = Loy (6) S (@) (T2 ) b onan(p)

dju

and

—_ ki =N,
Lon(s) = Lis, (22) = 3~ 5L,

n=1
To make the value e 1(n.r) explicit it is neccesary to know the values (3 — 2k) and L_p,(1 — m).
As to the values ¢(3 — 2k) there are many literature available and they tell us that

_1\k—1 2%
cam) = EF—Colp k2

(a-m) = U =120,

where B,, is the n-th Bernouilli number. The beginning few numbers are

1 1 1 1

1
Bl = 5:32 = 6)34 = —'3—6736 = E)BB'— —ﬁ:"')BoddZ:i =0.



By these one gets

10

9450 93555

((-1) =~ 35, €(-2) =0, ¢(=3) = 135 c<—5>=~%5, (-7 = 555, ¢(-9) =

It is much complicated to get the values L_n, (1 — m). On reading the book [1} we find a suitable
formula to do this task. Note that a similar formula has been given in [11] Chapter XIII in a not
straight way.

(@)=, ) =T €6) = &, () = 55 C10) =

Theorem 4.1 (Arakawa-Ibukiyama-Kaneko) Let x be a primitive character mod f and m be a positive
integer, then
Bm,x

L(l_m:X) =- m

where B, 5 is the generalized Bernouilli number associated with x:
m,x = fm—l ZX G)Bm( )a
a=1
and By, (z) is the Bernouilli polynomial of degree m.
The Bernouilli polynomials are given by
“Sw (7) s
j=0

With the above Theorem we compute ek m(n.r), and we give small tables of them, that are not
contained in [8].

We remark that the functions ty,1,%6,1,%s,1 Tespectively coincide with Eisenstein-Jacobi forms

E41,Es,1, Es,1 respectively of index 1 described in [8] pages 17-23. Explicit Fourier expansions of -

Eisenstein-Jacobi forms of index > 2 are not given in [8]. We have verified that 14 2, 16,2 also coincide
with Jacobi-Eisenstein series of index 2. This is done by using the relation (7) in [8] ,page 22. Besides
these exceptional cases Eisenstein-Jacobi form Ej,,, differ from ¥x,m». One may be interested with a
problem to explore the further relations between these two constructions of Jacobi forms.

an—-r10 3 4 7 8 11 12 15
ewoa(n,r) | 1 | —8607m8 | _seszoro | _ 1150767568 | _ 3601586368 | _ 53854227000 | _ 113044851304 | _ 754799931648
10,247, T 43867 43867 T4ERET T T aa@e7 ~—43s6T — A
e12a(n,r) | 1 339848 6971898 2485779648 10096500348 285849348696 713061257096 7428376170816
12,1\1, T 7683 77683 %7683 — 77683 77683 77683 77683
n—r* 16 19 20
ewon(n,r) | — 1303792306110 | _ 5607166776120 | _ 8689286943288
10,11, T T 43s6T T2
e ( ) 14621136806394 88801830903192 152244273101400
12,1{nN, 7 77683 77683
8n—7r-]0 4 7 8 12 i5 16 20 23 24 28 31 32
esa(nr) | 1 14 64 84 280 448 574 840 1344 1288 2368 2688 3444
esa(nr) | 1| -10 | -128 | -228 | -1496 | -3968 -5450 | -14088 -27264 ~-31880 -67712 | -103680 | -124260
(n,r) [ 1] 22 AB7T | II05Z | 3640 | B6ZAEL | IUIEIGZ | 4256360 | IUEBSTYZ | 38576708 | 7AIE09EL |
€s,2\n, T 43 43 yr 43 a3 rey 43 ey 43 43 43 43




5 Eisenstein type polynomials in more variables

Ex, k,(Z00, To1, T10, 11, Y10, ¥11) =

1
167 2) Y. (0a%oo + a2T01)* " T*2 (01210 + 02211)* (@110 + 2y11) ", (10)

a=(ay,az)€D4

Ekl,kg,ks (zo0, To1, T10, T11, ¥10, Y11, 210, 211) =

1 S
—=v(n,2) (0100 + aaTo1)™ 1 *2 753 (01 210 + ap211)* (1310 + @2¥11)*? (01210 + Cv2211)%
16

a=(ay,a3)€D4

(11)

where all exponents are non negative integers.

The right-hand side of (10) belongs to C[zao, Zo1, Z10, Z11, Y10, ¥11)*®H1®H1 | and the right-hand side
of (11) belongs Clzoo, Zo1, Z10, Z11, Y10, Y11, 210, 211 T OH18H18H: | A discussed in [2] these polyno-
mials contribute to the construction of Jacobi forms.
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