Two Theorems on the Connected Sets.

By

Ken-iti Koseki

(Received, May 17, 1943)

Two point sets are said to be mutually separated if neither contains a point or limit point of the other. A set is said to be connected if it cannot be decomposed into two sets which are mutually separated.
${ }^{1}$ This note consists of two theorems on the connected sets:
I. ${ }^{2}$ If M is a closed connected set, and if in M there is a largest division-set ${ }^{3} A$, then M is a simple arc.
II. ${ }^{4}$ Let M be a closed connected set such that, if g is any connected subset of M, then $M-g$ consists of two components at most. Let the product of all division-sets of M not vanish, and let it be closed, then M consists of two simple closed curves which have a simple arc or a point in common.

Theorem I. If M is a closed connected set, and if in M there is a largest ${ }^{5}$ division-set \mathcal{A}, then M is a simple arc.

Proof.
Let $M-A=B+C$, where B is separated from C, then, $B+A$, as well as $C+A$, is connected. If $B=B_{1}+B_{2}$, where B_{1} is separated from B_{2}, then $A+B_{1}$, as well as $A+B_{2}$, is connected. Then, $M-(A+$ $\left.B_{1}\right)=B_{2}+C$, where B_{2} is separated from C, this contradicts to the fact that A is a largest division set. Hence B is connected. In the same way, C is also connected.

Now suppose B contains two points b_{1} and b_{2}, then $B-b_{1} \neq 0$. Let $B-b_{1}$ be connected, then, if $B-b_{1}$ is not separated from $A, M-$

[^0]
Ken-iti Koseki

$\left\{A+\left(B-b_{1}\right)\right\}=C+b_{1}$, which is a contradiction; if $B-b_{1}$ is separated from A, then b_{1} is not separated from A and $M-\left(A+b_{1}\right)=C+\left(B-b_{1}\right)$, which is a contradiction. Hence $B-b_{1}=B_{1}+B_{2}$, where B_{1} is separated from B_{2}. As B is connected, $b_{1}+B_{1}$, as well as $b_{1}+B_{2}$, is connected. As $A+B$ is connected, A is not separated from one of $b_{1}+$ B_{1} and $b_{1}+B_{2}$, say from $b_{1}+B_{1}$, then $A+b_{1}+B_{1}$ is connected, and $M-\left(A+b_{1}+B_{1}\right)=C+B_{2}$, which is a contradiction. Hence B consists of only one point b. in the same way C cosists of only one point c.

We say that M is a irreducible ${ }^{1}$ connected set between b and c. Suppose any point p contained in $M-(b+c)$, then $M-c-p$ is not connected clearly. Let $M-c-p=D+E$, where D is separated from E, then since $M-c$ is connected, $p+D$ and $p+E$ are also connected. Let b be contained in D, then $D-b$ and E are mutually separated, and since $M-(b+c)$ is connected, $(D-b)+p$, as well as $p+E$, is connected. If c is not separated from $D, c+(D-b)+p$ is connected, and $M-\{c+p+(D-b)\}=b+E$, this is a contradiction. Hence c is separated from D. If c is separated from $E, M-(p+D)=c+E$, which is a contradiction.

Therefore, $M-p=D+(E+c)$, where D is separated from $E+c$, and $b \in D, c \in E+c$.

Now, let P be any connected set contained in M, containing neither b nor c, and let p be any point contained in $P . M-p=H+K$, where H is separated from K, and where $b \in H, c \in K . M-P=$ $(I I-P)+(K-P)$, where $b \in H-P$ and $c \in K-P$, and where $H-P$ is separated from $K-P$.

Now, suppose N to be any connected set contained in M, containing b and c. If $M-N$ is not equal to zero, then, ${ }^{2}$ let P be any . component of $M-N, M-P$ is connected. On the other hand, as P contains neither b nor $c, M-P$ is not connected. Hence $M=N$, that is, M is a closed irreducible connected set between b and c. Therefore M is a simple arc.

$$
Q . \quad E . \quad D .
$$

Theorem II. Let M be a closed connected set such that, if g is any connected subset of M, then $M-g$ consists of two components at most. Let the product of all division sets of M not vanish, and

[^1]let it be closed, then M consists of two simple closed curves which have a simple arc or a point in common.

Proof. Let A be the product of all division sets, and let B be its complement with respect to M.

In the first place we say that B should not consist of more than three components. If B has more than three components, then A should not be connected clearly. Suppose now a connected subset C containing A such that $M-C$ has two components.
$M-C$ contains points of two components of B at most, which may be written B_{1} and B_{2}, where it is possible that $B_{1}=B_{2}$. Let us denote $(M-C) B_{1}=B_{1}^{\prime}$ and $(M-C) B_{2}=B_{2}^{\prime}$. Let B_{3} be a component of B, where $B_{3} \neq B_{1}$ and $B_{3} \neq B_{3}$, then $C-B_{3}$ is not connected.

Consequently $C-B_{3}$ can be decomposed in the following form. $C-B_{3}=T+S$, where T is separated from S. Now, $\mathcal{B}_{1}{ }^{\prime}$, as well as B_{2}^{\prime}, must be separated from neither T nor S. If B_{1}^{\prime} were separted from T or S, say from T, and B_{2}^{\prime} were separated from T or S, say from T, then $M-B_{3}=B_{1}^{\prime}+B_{2}^{\prime}+T+S=\left(B_{1}^{\prime}+B_{2}{ }^{\prime}+S\right)+T$, which is a contradiction. Hence one of $B_{1}{ }^{\prime}$ and B_{2}^{\prime}, say B_{1}^{\prime}, is separated from neither T nor S. If B_{2}^{\prime} is separated from T, then $M T-\left(B_{1}^{\prime}+B_{3}+S\right)$ $=B_{2}{ }^{\prime}+T$. If $T \cdot A=0$, then, as $M-\left(B_{1}{ }^{\prime}+S+B_{3}+B_{2}{ }^{\prime}\right)=T, T$ contains the points of two components of B at most, from this T is separated from B_{3}, which is a contradicton. Hence $T \cdot A \neq 0$ and so $M-\left(B_{1}{ }^{\prime}+\right.$ $B_{3}+S$) is connected, this is contradiction. Therefore, $B_{1}{ }^{\prime}$, as well as $B_{2}{ }^{\prime}$, is separated from neither T nor S. From this, after a short consideration, $A \cdot T \neq 0 A \cdot S \neq 0$, and so T and S are both connected. Next, we remove B_{1} from C, where $B_{4} \neq B_{1}, \quad B_{4} \neq B_{2}, B_{4} \neq B_{3}$, and where B_{4} is a component of B, then $C-B_{4}$ is not connected, Let us denote $C-B_{4}=T^{\prime}+S^{\prime}$, where T^{\prime} is separated from $S^{\prime} . B_{4}$ is contained in T or S entirely, say in T, then $B_{3}+S$ is contained in C $B_{4} . \quad B_{3}+S$ is connected, $B_{3}+S$ is contained in one of T^{\prime} and S^{\prime}, say in S^{\prime}, entirely. Let us denote $S^{\prime}-\left(B_{3}+S\right)=T_{1}, \quad T^{\prime}=T_{2} . \quad S^{\prime}+B_{4}$ is connected, and B_{4} is separated from $S+B_{3}$, so $T_{1} \neq 0$. We could say that $A \cdot T \neq 0 A \cdot S \neq 0$, and T and S are both connected. In the same way, $A \cdot T^{\prime} \neq 0 \cdot A \cdot S^{\prime} \neq 0$, and T^{\prime} and S^{\prime} are both connected. $A \cdot$ $T_{1} \neq 0$. Because, if $T_{1} \cdot A=0$, then $M-\left(\mathcal{B}_{1}+T_{2}+B_{1}^{\prime}+S+B_{3}+\mathcal{B}_{2}^{\prime}\right)=T_{1}$ contains the points of two components of B at most, so T_{1} is separated from $B_{3}+S$, which is a contradiction to the fact that $T_{1}+B_{3}+S$ is connected. Now suppose that T_{1} is separated from B_{i}^{\prime}, then M $\left(T_{2}+B_{1}+B_{1}^{\prime}+S+B_{3}\right)=T_{1}+B_{2}^{\prime}$, whereas T_{1} contains points of A, this
is impossible. $T_{1}+B_{1}+T_{2}=T$, which is a connected set. T_{1} and T_{2} are mutually separated, so $T_{1}+B_{4}$ is connected. T_{1} is not separated from \mathcal{B}_{2}^{\prime}, and $B_{1}+T_{1}+B_{2}^{\prime}+S+B_{1}^{\prime}$ is connected, so $M-\left(B_{1}+T_{1}+\right.$ $\left.B_{2}{ }^{\prime}+S+B_{1}^{\prime}\right)=T_{2}+B_{3}$, whereas T_{2} contains points of A, which is a contradiction. After all, B should consist of three components at most. Suppose now $B=B_{1}+B_{2}+B_{3}$, where B_{1}, B_{2}, B_{3} are three components of B, then A is not connected, so $A=A_{1}+A_{2}$, where A_{1} is separated from A_{2}. At least two components among B_{1}, B_{2}, B_{3} are separated from neither A_{1} nor A_{2}, say, B_{1} and B_{2} are separatod from neither A_{1} nor A_{2}. Suppose that B_{3} is separated from A_{2} and not separated from A_{1}, then $A_{2}=M-\left(B_{1}+A_{1}+B_{2}+B_{3}\right)$ is connected. For $M-B_{1}=B_{2}+$ $A_{1}+B_{3}+A_{2}$ is connected, and $M-\left(B_{1}+B_{2}\right)=\left(A_{1}+B_{3}\right)+A_{2}$, where $A_{1}+$ B_{3} is separated from A_{2}, and so $A_{1}+B_{3}+B_{2}$ is connected. A_{1} cannot be connected, so $A_{1}=A_{1}{ }^{\prime}+A_{2}{ }^{\prime}$, where $A_{1}{ }^{\prime}$ is separared from $A_{2}{ }^{\prime}$. As $A_{1}+B_{3}$ is connected, $A_{1}{ }^{\prime}+B_{3}$, as well as $A_{2}{ }^{\prime}+B_{3}$, is connected. A_{1}^{\prime} and A_{2}^{\prime} cannot be separated from one of B_{1} and B_{2}. Let A_{1}^{\prime} be not separated from B_{1}, then $A_{2}^{\prime}=M-\left(A_{1}^{\prime}+B_{1}+B_{2}+B_{3}+A_{2}\right)$ is connected, and in the same way $A_{1}{ }^{\prime}$ is connected. Clearly A_{1}^{\prime} is separated from \mathcal{B}_{2}, and $A_{2}{ }^{\prime}$ is separated from B_{1}. In the next place, suppose that B_{1}, B_{2} and B_{3} are separated from neither A_{1} nor A_{2}. Let $M-\left(B_{1}+\right.$ B_{2}) be connected, then A_{1} and A_{2} are both connected. Let $M-\left(B_{1}+\right.$ B_{2}) be not connected, then we can write $A_{1}+A_{2}+B_{3}=\left(B_{3}+A_{1}{ }^{\prime}\right)+A_{2}{ }^{\prime}$, where $A_{1}+A_{2}=A_{1}{ }^{\prime}+A_{2}^{\prime}$, and where $B_{3}+A_{1}{ }^{\prime}$ and A_{2}^{\prime} are mutually separated. In this case, B_{1} and B_{2} are separated from neither A_{1}^{\prime} nor $A_{2}{ }^{\prime}$, and B_{3} is separated from $A_{2}{ }^{\prime}$, so $A_{1}{ }^{\prime}+A_{2}{ }^{\prime}=A_{1}+A_{2}=A$ consists of three components.

If B consists of two components, then, after a short consideration A consists of two components at most.

Consequently the following five cases can arise:

1) A is a connected set, and B is also a connected set.
2) A is a connected set, and B consists of two components.
3) A consists of two components, and B consists of two components.
4) A consists of two components, and B consists of three components.
5) A consists of three components, and B consists of three components.
In the first place let us consider the case 2).
Let $M-A=C+D$, where C and D are components of B, then
$A+C$ and $A+D$ are connected. If E be any connected set contained in $A+C$, the following five cases may arise:
i. E is contained in C.
ii. E is contained in A.
iii. E contains C, and yet $E \cdot A$ is not zero.
iv. E contains A, and yet $E \cdot C$ is not zero.
v. $E \cdot C, E \cdot A, A-E$, and $C-E$ are not zero.

Let us first consider the case i), Suppose $(A+C)-E=F+G$, where F is separated from G, then, as A is connected, A is contained in one of F and G entirely, say in F, and so G is contained in C. Hence G is separated from D. From this, $F+D$ is separated from G. $M-E=(A+C+D)-E=(D+F)+G$, whereas E contains no point of A, which is a contradiction. Hence $(A+C)-E$ is connected.
ii) If $E=A$, then $(A+C)-E=C$, which is connected. Suppose $A-E$ is not zero. If E were separated from D, then, as $M-\{(A+$ $C)-E\}=D+E,(A+C)-E$ is not connected. Hence $(A+C)-E=$ $F+G$, where F is separated from G. As C is connected, C is contained in one of F and G, say in F, so G is contained in $A-E$. $E+$ F and $E+G$ are both connected. As $M-E=D+F+G, D+F$ and $D+G$ are both connected. If $C=F$, then $G=A-E$ and $M-E=$ $(A-E)+D+C$, where C is separated from $(A-E)+D$; this is a contradiction. Therefore $F-C$ is not zero. $A-E=(F-C)+G$, where $F-C$ is separated from $G . M-\{E+(F-C)\}=C+(G+D)$, where C is separated from $G+D$. On the other hand, G is contained in A, which is a contradiction. Therefore E should not be separated from D, and $(A+C)-E=M-(D+E)$, which is connected.
iii) As $E \cdot A$ is not zero, E is not separated from D, and $(A+$ $C)-E=M-(E+D)$, which is connected.
iv) E contains $A,(A+C)-E$ is connected clearly.
v) As $E \cdot A$ is not zero, E is not separated from $D .(A+C)-$ $E=M-(E+D)$. As $A-E$ is not zero, $(A+C)-E$ is connected.

Therefore $A+C$ is a closed connected set such that, if E is any connected subset of $A+C$, then $(A+C)-E$ is also connected. As $A+C$ contains more than one point, by Kline's theorem, $A+C$ is a simple closed curve. In the same way $A+D$ is a simple closed curve. A is a simple arc or one point. In the case 2), A should not be a simple arc. Therefore M consists of two simple closed curves which have one point in common. Conversely such M satisfies the condition of theorem II clearly.

Now let us consider the case 3) and let $M=A+B, A=A_{1}+$ $B_{1}, B=C_{1}+D_{1}$, where A_{1} and B_{1} are components of A, and C_{1} and D_{1} are components of B. Clearly A_{1} is separated from neither C_{1} nor $D_{1} ; B_{1}$ is also unseparated in the same way. Let D_{a} be a set of limit points of D_{1}, contained in A_{1}. If D_{2} contains two points a and b, then $A_{1}-(a+b)=M-\left\{D_{1}+a+b+B_{1}+C_{1}\right\}$ is connected, and $A_{1}-(a+b)$ is not separated from C_{1}. So $M-\left\{A-(a+b)+C_{1}+B_{1}+\right.$ $\left.D_{1}\right\}=a+b$, which is impossible. Hence D_{2} consists of only one point d_{2}, and by the same reason, a set of limit points of C_{1} contained in A consists of one point c_{2}. When c_{2} is coincident with d_{2}, A_{1} is coincident with d_{2} clearly. When c_{2} is not coincident with d_{2}, A_{1} is a irreducible cennected set between d_{2} and c_{2}, that is, a simple arc. Let c_{3} be a limit point of C_{1} contained in B_{1}, and let d_{3} be a limit point of D_{1} contained in B_{1}. $\quad B_{1}$ is a point c_{3} or a simple arc of which extremties are c_{3} and $d_{3} . \quad C_{1}+c_{2}+c_{3}$ is clearly closed connected set, and let E be anyं connected subset of $C_{1}+c_{2}+c_{3}$, which contains only one point of c_{2} and c_{3}, say c_{2}, then $C_{1}+c_{2}+c_{3}-E$ is a connected set, because $M-\left\{E+A_{1}+D_{1}+\left(B_{1}-c_{3}\right)\right\}=C_{1}+c_{2}+c_{3}-E$. Tf ${ }^{1} E$ contains both c_{3} and c_{3}, then $C_{1}+c_{2}+c_{3}-E$ is connected, because $M-E=\left(C_{1}+c_{2}+\right.$ $\left.c_{3}-E\right)+\left\{D_{1}+\left(A_{1}-c_{2}\right)+\left(B_{1}-c_{3}\right)\right\}$, and yet $C_{1}+c_{2}+c_{3}-E$ is separated from $D_{1}+\left(A_{1}-c_{2}\right)+\left(B_{1}-c_{3}\right)$. Therefore $C_{1}+c_{2}+c_{3}$ is a closed connected set containing a largest division set C_{1}, so by theorem $\mathrm{I}, C_{1}+c_{2}+c_{3}$ is a simple arc, of which extremities are c_{2} and c_{3}. In the same way, $D_{1}+d_{2}+d_{3}$ is also a simple arc. Hence M should be a simple closed curve, whereas the simple closed curve does not satisfy the condition of theorem II. Therefore the case 3) can not arise.

Let us now consider the case 4), and let $M=A+B, A=A_{1}+$ $B_{1}, B=C_{1}+D_{1}+E_{1}$, where A_{1} and B_{1} are components of A, and C_{1}, D_{1} and E_{1} are components of $B . \quad B_{1}$, as well as A_{1}, is not separated from C_{1}, D_{1} and E_{1} clearly. Suppose any connected set G contained in B_{1}. If G is not separated from one of C_{1}, D_{1} and E_{1}, say from C_{1}, then $B_{1}-G=M-\left(G+C_{1}+D_{1}+E_{1}+A_{1}\right)$ is connected. Next, let G be separated from C_{1}, D_{1} and E_{1}. In this case, if $B_{1}-G$ is not connected, then $B_{1}-G=T+S$, where T is separated from S. Suppose that T is separated from C_{1} and yet S is not separated from one of D_{1} and E_{1}, then $M-\left(S+G+D_{1}+A_{1}+E_{1}\right)=C_{1}+T$; on the other

[^2]hand, $S+G+D_{1}+A_{1}+E_{1}$ does not entirely contain A, which is a contradiction. Hence, if T is separated from C_{1}, then S is separated from D_{1} and E_{1}. As S is separated from D_{1} and E_{1}, T is separated from C_{1}, D_{1}, and E_{1}. Hence $B_{1}=G+S+T$ is separated from D_{1}; this is impossible. T, as well as S, is not separated from C_{1}, D_{1} and E_{1}. $M-\left(T+G+C_{1}+D_{1}+E_{1}\right)=S+A_{1}$, which is impossible. Hence B_{1} is a closed connected set such that, if E is any connected subset of B_{1}, $B_{1}-E$ is also connected. Hence B_{1} is one point or a simple closed curve. Suppose that B_{1} is a simple closed curve. In this case, let c_{1}, d_{1}, e_{1} be a point of a set of limit points of C_{1}, D_{1}, E_{1} respectively, contained in \mathcal{B}_{1}, then $M-\left(C_{1}+D_{1}+E_{1}+\overparen{c_{1} d_{1} e_{1}}\right)=A_{1}+\left(\mathcal{B}_{1}-\overparen{c_{1} d_{1} c_{1}}\right)$, where $c_{1} d_{1} e_{1}$ is a simple arc contained in B_{1}, which contains c_{1}, d_{1}, e_{1} and of which extremities are c_{1} and c_{1}. $\overparen{c_{1} d_{1} c_{1}}+C_{1}+D_{1}+E_{1}$ does not entirely contain A, and yet its complement with respect to M consists of two components; which is impossible. Therefore B_{1} consists of only one point b_{1}, and, in the same way, A_{1} consists of only one point $a_{1} . b_{1}+$ $a_{1}+C_{1}$ is a closed and irreducible connected set between b_{1} and a_{1}, that is, $b_{1}+a_{1}+C_{1}$ is a simple arc. $b_{1}+a_{1}+D_{1}$ and $b_{1}+a_{1}+E_{1}$ are also simple arcs. Hence M consists of two simple closed curves which have a simple arc in common. Conversely such M suffices the condition of theorem II.

Let us now consider the case 5) and let $A=A_{1}+B_{1}+C_{1}, B=$ $D_{1}+E_{1}+F_{1}$, where A_{1}, B_{1} and C_{1} are components of A, and D_{1}, E_{1} and F_{1} are components of B. After a short consideration, D_{1} is not separated from two of A_{1}, B_{1} and C_{1}, and is separated from the other one. It is the same for E_{1} and F_{1}. We may suppose that D_{1} is not separated from both A_{1} and \mathcal{B}_{1}, and is separated from C_{1}, and that E_{1} is not separated from both A_{1} and C_{1}, and is separated from B_{1}, and that F_{1} is not separated from both B_{1} and C_{1}, and is separated. from A_{1}. A set of limit points of D_{1}, contained in A_{1}, consists of only one point d_{1}, and a set of limit points of E_{1}, contained in A_{1}, consists of only one point ϵ_{1}. If d_{1} is coincident with c_{1}, then A_{1} consists of only one point d_{1}. If d_{1} is not coincident with ε_{1}, then A_{1} is an irreducible connected set between d_{1} and e_{1}. Hence A_{1} is one point or a simple arc, as B_{1} and C_{1} also are. By the same reason as with the case 3), M is a simple closed curve, whereas a simple closed curve does not suffice the condition of theorem II. Therefore case 5) cannot arise.

Now, let us consider the case 1). A set of limit points of B,
contained in A, consists of only one point. If it consists of two points c and d, then A is clearly irreducible between c and d, and so is $\dot{B}+$ $c+d$ also. Hence M is a simple closed curve, which is impossible. If a set of limit points of B, contained in A, contains three points c, d and e, then $M-(B+c+d)=A-(c+d)$, which is connected. $M-$ $[B+\{A-(c+d)\}]=c+d$: this is a contradiction. Hence a set of limit points of B, contained in A, consists of only one point $a . M-a=B+$ $(A-a)$: hence A is coincident with the point a. Suppose a set C, where $C+a$ is connected, such that $M-(C+a)$ consists of two components. If we choose an adequate C, then C may be supposed connected. Suppose it were impossible. Let $M-(a+C)=E+F$, where E is separated from F, then $C=C_{1}+C_{2}$, where C_{1} is separated from C_{2}. $E+F+C_{1}+C_{2}=B$ is connected, so at least one of E and F, say F, is separated from neither C_{1} nor C_{2}. Suppose that E is separated from C_{2}, and that it is not separated from C_{1}. If $C_{2}=C_{2}{ }^{\prime}+C_{2}^{\prime \prime}$, where $C_{2}{ }^{\prime}$ is separated from $C_{2}{ }^{\prime \prime}$, then $C_{2}{ }^{\prime}$ and $C_{2}{ }^{\prime \prime}$ are connected. F is not separated from one of $C_{2}{ }^{\prime}$ and $C_{2}{ }^{\prime \prime}$, say C_{2}^{\prime}, then $M-\left(C_{2}{ }^{\prime}+F+a\right)=$ $C_{2}{ }^{\prime \prime}+\left(C_{1}+E\right)$. On the other hand, $C_{2}{ }^{\prime}+F$ is connected, and $C_{2}^{\prime \prime}$ is separated from $C_{1}+E$. This is a contradiction. Hence C_{2} is connected. In the same way, C_{1} is connected. Now as $C_{1}+F$ is connected, $M-\left(C_{1}+F+a\right)=E+C_{2}$, which is a contradiction. Hence E, as well as F, is not separated from both C_{1} and C_{2}. In this case, if one of C_{1} and C_{2} is not connected, then the other is also not connected. Suppose that $C_{1}=C_{1}{ }^{\prime}+C_{1}{ }^{\prime \prime}$, where $C_{1}{ }^{\prime}$ and $C_{1}{ }^{\prime \prime}$ are two components of C_{1}, and that $C_{2}=C_{2}^{\prime}+C_{2}^{\prime \prime}$, where C_{2}^{\prime} and $C_{2}^{\prime \prime}$ are two components of C_{2}. One of $C_{1}{ }^{\prime}$ and $C_{1}{ }^{\prime \prime}$ is separated from E and not from F, and the other is separated from F and not from E. Let $C_{1}{ }^{\prime}$ be separated from F, and let $C_{1}^{\prime \prime}$ be separated from E. In the same way, let $C_{2}{ }^{\prime}$ be separated from F and let $C_{2}^{\prime \prime}$ be separated from $E . C_{1}{ }^{\prime}+C_{2}{ }^{\prime}$ is separated from $C_{1}^{\prime \prime}+C_{2}^{\prime \prime}$ and yet $C_{1}^{\prime}+C_{2}^{\prime}$ is separated from F, which is impossible. Hence C_{1} and C_{2} are both connected sets. E, as well as F, is clearly not separated from the point a. Let ϵ_{1} be a limit point of E, contained in C_{1}, then $C_{1}-e_{1}$ is a connected set. If e_{1} is a limit point of F, then $E+F+e_{1}$ is connected, and $M-\left(E+F+e_{1}+a\right)=\left(C_{1}-\right.$ $\left.\epsilon_{1}\right)+C_{2}$, which is impossible. If ϵ_{1} is not a limit point of F, then $\left(C_{1}-\right.$ $\left.e_{1}\right)+F+C_{2}+E$ is connected, and $M-\left\{\left(C_{1}-e\right)+F+C_{2}+E\right\}=a+e_{1}$, which is impossible. Hence there is no limit points of E contained in C_{1}. In the same way, there is no limit points of C_{1} contained in E. This contradicts to the fact that C_{1} is not separated from E.

Therefore we may choose an adequate connected set C such that $M-(C+a)=E+F$, where E is separated from F. As $M-C=E+$ $a+F$, which is connected, it is clear that $E+a$ and $F+a$ are both connected. A set of limit points of C contained in F consists of only one point at most. If it contains two points f_{1} and f_{2}, then $F-f_{1}$, as well as $F-f_{2}$, is connected. $\left(F-f_{1}\right)+C+E$ is connected, and $M-$ $\left\{\left(F-f_{1}\right)+C+E\right\}=f_{1}+a$, which is a contradiction. In the same way, a set of limit points of C contained in E consists of only one point at most. We put these points in C, then we may consider $M-\left(C_{1}+\right.$ $a)=E_{1}+F_{1}$, where C_{1} is connected, and where E_{1} is separated from F_{1} and $\bar{C}_{1}\left(E_{1}+F_{1}\right)=0$. A set of limit points of E_{1}, contained in C_{1}, consists of one point. If it contains two points ε_{1} and e_{2}, then $\left(E_{1}+\right.$ $\left.e_{1}+\epsilon_{2}\right)+a+F_{1}$ is connected. $M-\left\{\left(E_{1}+c_{1}+e_{2}\right)+a+F_{1}\right\}=C_{1}-\epsilon_{1}-e_{2}$, and this consists of two components at most. Suppose that $C_{1}-\epsilon_{1}-c_{2}=$ $C_{2}+C_{3}$, where C_{2} is separated from C_{3}, then at least one of $C_{2}+e_{1}+$ C_{3} and $C_{2}+e_{2}+C_{3}$, say $C_{2}+e_{2}+C_{3}$, is connected. $M-\left(E_{1}+e_{1}+e_{2}+a\right)=$ $C_{2}+C_{3}+F_{1}$, and so F_{1} is not separated from one of C_{2} and C_{3}, say from C_{2}, then $M-\left(E_{1}+e_{2}+C_{2}+C_{3}+\mathrm{F}_{1}\right)=e_{1}+a$, which is a contradiction. Hence $C_{1}-e_{1}-e_{2}$ must be connected. If F_{1} is separated from $C_{1}-e_{1}-e_{2}$, then F_{1} is not separated from one of ϵ_{1} and ϵ_{2}, say ϵ_{1}, so $M-\left\{F_{1}+E_{1}+e_{1}+\left(C_{1}-e_{1}-e_{2}\right)\right\}=e_{2}+a$, which is a contradiction. F_{1} is not separated from $C_{1}-\epsilon_{1}-e_{2}$, so $M-\left\{F_{1}+\left(C_{1}-e_{1}-e_{2}\right)+e_{1}+E_{1}\right\}=e_{2}+a$, which is impossible. Therefore a set of limit points of E_{1}, contained in C_{1}, consists of one point ϵ_{1}. In the same way a set of limit points of F_{1}, contained in C_{1}, consists of one point f_{1}.
$a+E_{1}+e_{1}$ is clearly a closed connected set, and let G be any connected subset of $a+E_{1}+e_{1}$, where G contains at least one of a and e_{1}, then $\left(a+E_{1}+e_{1}\right)-G$ is connected. Hence $a+F_{1}+e_{1}$ is a simple arc, of which extremities are a and ε_{1}. In the same way, $a+F_{1}+f_{1}$ is a simple arc, of which extremities are a and f_{1}. If e_{1} is coincident with f_{1}, then $C_{1}+a$ is a simple arc, of which extremities are a and f_{1}. Hence M consists of two simple closed curves which have a simple arc in common. This is impossible in case 1). Therefore e_{1} is not coincident with f_{1}. A proper connected subset of $C_{1}+a$ clearly does not simultaneously contain a, e_{1} and f_{1}. Let H be a connected subset ef $C_{1}+a$, which contains two of a, f_{1} and e_{1} simultaneously and does not contain the other one, then a complement of $H I$ with respect to $C_{1}+$
r. \bar{C}_{1} denotes a closure of C_{1}.
a is connected. Let H be a connected subset of $C_{1}+a$, which contains ε_{1} and does not contain f_{1} and a, then $\left(C_{1}+a\right)-H$ consists of two components at most. Let $\left(C_{1}+a\right)-H F=G+K$, where G is separated from K, and where $a \in G$ and $f_{1} \in K . G=M-\left(K+F_{1}+H+E_{1}\right)$, so G is connected. As any proper connected subset of $C_{\mathrm{i}}+a$ cannot simultaneously contain f_{1}, a, c_{1}, K is connected. Let H be a connected subset of $C_{1}+a$, which contains f_{1} and does not contain c_{1} and a, then $\left(C_{\mathrm{L}}+a\right)-H$ consists of two components at most. Let H be a connected subset of $C_{1}+a$, which contains a and does not contain c_{1} and f_{1}, then $\left(C_{1}+a\right)-H$ consists of two components at most. Let H be a connected subset of $C_{1}+a$, which does not contain a, c_{1} and f_{1}, then $\left(C_{1}+a\right)-H$ consists of three components at most.

Therefore $C_{1}+a$ does not contain a^{2} continuum of condensation, so $^{2} C_{1}+a$ is a Jordan continuum. Hence a can be joined with e_{1} by a simple arc $\overparen{a \varepsilon_{1}}$ contained in $C_{1}+a$, where the extremities of $\overparen{a c_{1}}$ are a and c_{1}. In the same way a can be joined with f_{1} by a simple arc $\widehat{a f}_{1}$ contained in $C_{1}+a$, where the extremities of $\widehat{a f_{1}}$ are a and f_{1}. It is clear that $C_{1}+a=\overparen{a e_{1}}+\widehat{a f}_{1} . \quad M=\widehat{a c}_{1}+\widehat{a f}_{1}+\left(a+E_{1}+c_{1}\right)+\left(a+F_{1}+f_{1}\right)$, which is impossible in case r). Therefore 1) cannot arise. Q. E. D.

In conclusion the author wishes to express his hearty thanks to Professor T. Matsumoto for his kind advice.

[^3]
[^0]: 1. In this paper we consider exclusively the euclidean space of any dimensions.
 2. Concerning this theorem, confer C. Zarankiewicz "Sur les points de division dans les ensembles connexes", Fund. Math. TX. p. 143. Nevertherless, the author cannot agree to this Zarankiewicz's theorem.
 3. If A is a connected subset of M such that $M-A$ is not connected, then A is called a division-set of M.
 4. When $M-g^{g}$ is always connected, M is a simple closed curve. J. R. Kline "Closed comected sets etc.", Fund. Math. V. p. 3-io.
 5. Any division set is contained in A.
[^1]: I. There is no connected subset of M which is different from M and contains b and c. cf. B. Knaster and C. Kuratowsli "Sur les ensembles connexes" Fund. Math. II. p. 214.
 2. cf."Sur les ensembles comexes" Fund, Math. ri. p. 2I4.

[^2]: I. When $A_{1}=c_{2}$ and $B_{1}=c_{3}$, we camot directly say that $C_{1}+c_{2}+c_{3}-E$ is zero. When A_{1} is not equal to c_{2} or B_{1} is not equal to c_{3}, it goes without saying that $C_{1}+c_{2}+c_{3}-E$ is zero.

[^3]: I. A set g is said to be a continuum of condensation of a set M, if g is a closed connected subset of $M F$ containing more than one point such that every point of g is a limit point of $M-g$: Suppose a connected set $M /$ such that, if N is any division set of $M, M-N$ consists of three components at most, then M does not contain a continnum of condensation. We can prove this easily.
 2. Cf. S. Mazurkiewicz "Sur les lignes de Jordan" Fund. Math. i. p. if6.
 3. Cf. Moore "A theorem concerning continuous curves" Bull. Amer. Soc., Vol. 23 (1917). S. Mazurkiewicz "Sur les lignes de Jordan".

