On the Possibility of BarkhausenKurz Oscillation. I

By
Isao Takahashi

(Received November 19, 1946)

Introduction

The frequency of Barkhausen-Kurz oscillation is nearly equal to the inverse of the period of the pendulum motion of an electron or to its integral multiples. This is an experimental fact and it can easily be imagined that the frequencies are such ones, when oscillation occurs. But this relation of frequency can never afford any explanation to the occurrence of oscillation, because if the electrons which can contribute to the oscillation are respectively in different phases of motion, their effects are nothing in all. On the other hand, the occurrence of oscillation as an experimental fact must be attributed to the existence of the negative resistance, in an electron tube.

The author has calculated the currents between electrodes in an electron tube for two cases. The first case is one when no electrons are caught by the anode by means of sufficient negative anode voltage and the second is one when the electrons of larger amplitude are caught by the anode. By use of these expressions, the author demonstrates that the negative resistance can occur between electrodes at the expected frequencies. In this paper, only the first case is treated and the second case is to appear in part II.

Currents between Electrodes, when no Electrons are caught by the Anode

We assume the parallel plane electrodes as (a), (b) and (c) in Fig. 1, and neglect the effect of the space charges. In the following, where v_{1} and v_{2} are assumed to be small against V_{g}, we cal-
culate, neglecting the terms of the order of $\left(v / V_{g}\right)^{2}$ and the higher terms.

The notations to be used are summarized:
T_{1} : transit time from K to G when $v=0$,
T_{0} : transit time from G to turning point when $v=0$.

$$
\begin{aligned}
& T_{0}=2\left(T_{1}+T_{2}\right), \\
& u_{1}=\frac{e V_{2}}{m d_{1}}, \quad u_{2}=\frac{e\left(V_{n}+V_{a}\right)}{m d_{2}}, \\
& \beta_{1}=-\frac{e v_{1}}{m d_{1}}, \\
& \beta_{2}=\left\{\begin{array}{lll}
\frac{e v_{1}}{m d_{2}} & \text { for (a), } \\
\frac{e\left(v_{1}+v_{2}\right)}{m d_{2}} & \text { for } & \text { (b), } \\
\frac{-e v_{2}}{m d_{2}} & \text { for } & \text { (c), }
\end{array}\right.
\end{aligned}
$$

m, -e being the mass and the charge of an electron.
n : the number of electrons emitted per unit time by K to contribute to the oscillation.

The relation

$$
\begin{equation*}
\mu_{1} T_{1}=\mu_{2} T_{2} \tag{1}
\end{equation*}
$$

exists.
From the equation of motion, we obtain the following velocity expressions for an electron leaving K at the instant $t=t_{0}$:

Voltage distribution according to the circuit

Fig. 1
(a)

(b)
(c)

from K to G,

$$
\begin{align*}
u_{1} & =u_{1}^{\prime}+u_{1}^{\prime \prime} \\
u_{1}^{\prime} & =u_{1}\left(t-t_{1}\right) \tag{2}\\
u_{1}^{\prime \prime} & =\frac{\beta_{1}}{j \omega}\left(e^{j \omega t}-e^{j \omega t_{0}}\right)
\end{align*}
$$

from G to turning point and thence to G again :

$$
\begin{align*}
& u_{2}=u_{2}^{\prime}+u_{2}^{\prime \prime} \\
& u_{2}^{\prime}=\mu_{2}\left(t_{1}-t\right)+\left(\mu_{1}+u_{i}\right) T_{1}, \tag{3}\\
& u_{2}^{\prime \prime}=\left(\mu_{1}+u_{2}\right) \delta T_{1}+\frac{\beta_{1}}{j \omega} e^{j \omega t_{0}}\left(e^{j \omega T_{1}}-1\right), \\
& \delta T_{1}\left(t_{1}\right)=\frac{\beta_{1}}{u_{1} T_{1} \omega^{2}} e^{j \omega t_{0}}\left(e^{j \omega T_{1}}-1-j \omega T_{1}\right) ;
\end{align*}
$$

and from G to K,

$$
\begin{align*}
& u_{3}= u_{3}^{\prime}+u_{3}^{\prime \prime}, \quad u_{3}^{\prime}=\mu_{1}\left(t-t_{0}\right)-u_{1} T_{0}, \\
& u_{3}^{\prime \prime}=-\left(u_{1}+u_{2}\right) \delta T_{2}+\frac{\beta_{1}}{j \omega}\left(e^{j \omega t}-e^{j \omega\left(t_{0}+T+2 T_{2}\right)}\right) \tag{4}\\
&+\frac{\beta_{1}}{j \omega} e^{j \omega t_{0}}\left(e^{j \omega T_{1}}-1\right)-\frac{\beta_{2}}{j \omega} e^{j \omega\left(t_{0}+T_{1}\right)}\left(e^{j \omega \omega T_{2}}-1\right), \\
& \delta T_{u}\left(t_{0}\right)=\frac{2 u_{1}}{u_{2}} \delta T_{1}\left(t_{0}\right)+\frac{2 \beta_{1}}{u_{2} j \omega} e^{j \omega t_{0}}\left(e^{j \omega T_{1}}-1\right) \\
&+\frac{\beta_{2}}{u_{2} T_{2} \omega^{2}} e^{j \omega\left(l_{0}+T_{1}\right)}\left(e^{j \omega T_{2}}-1-j 2 \omega T_{2}\right) .
\end{align*}
$$

$\delta T_{1}\left(t_{0}\right)$ and $\delta T_{2}\left(t_{0}\right)$ are such that the electron passes through G at $t=t_{0}+T_{1}+\delta T_{1}\left(t_{0}\right)$ on the way to A and at $t=t_{0}+T_{1}+2 T_{2}+\delta T_{1}\left(t_{0}\right)$ $+\delta T_{2}\left(t_{0}\right)$ on the way back, when δT_{1} and δT_{2} mean their real parts here.

If the instant at which the electron comes back to K is $t_{0}+T_{11}+\delta T_{v 1}\left(t_{0}\right), \delta T_{v}\left(t_{0}\right)$ is not needed to the calculation of currents, as can be indicated later and so we do not seek its functional form. Now, the current J_{A} flowing into G from outside on account of electron motions between G and A is

$$
J_{A}=\frac{-n e}{d_{2}^{-}} \int_{t_{0}^{\prime \prime}}^{t_{0^{\prime}}} u_{\mathrm{o}} d t_{0}
$$

where t_{10}^{\prime} is the t_{0} of the electron which passes through G at t on the way to A and $t_{0}^{\prime \prime}$ the t_{1} of the electron which passes through G at t on the way back. Therefore,

$$
\begin{aligned}
t_{0}^{\prime} & =t-T_{1}^{\prime}-\delta T_{1}\left(t_{0}^{\prime}\right) \fallingdotseq t-T_{1}-\delta T_{1}^{\prime}, \\
t_{0}^{\prime \prime} & =t-T_{1}-2 T_{2}-\delta T_{1}\left(t_{0}^{\prime \prime}\right)-\delta T_{v}\left(t_{1}^{\prime \prime}\right) \\
& \fallingdotseq t-T_{1}-2 T_{2}-\delta T_{1}^{\prime \prime}-\delta T_{2}^{\prime \prime},
\end{aligned}
$$

with

$$
\begin{gather*}
\delta T_{1}^{\prime} \equiv \delta T_{1}\left(t-T_{1}\right), \quad \grave{ } T_{1}^{\prime \prime} \equiv \grave{o} T_{1}\left(t-T_{1}-2 T_{2}\right), \\
\delta T_{2}^{\prime \prime} \equiv \delta T_{2}\left(t-T_{1}-2 T_{2}\right) . \tag{5}
\end{gather*}
$$

Then

$$
J_{A}=\frac{-n e}{d_{2}}\left\{\int_{i-T_{1}-2 r_{2}-\left(\delta r_{1}^{\prime \prime}+\delta r_{2}^{\prime \prime}\right)}^{t-r_{1}-9 R_{1}} u_{2} d t_{0}+\int_{i-r_{1}-2 T_{2}}^{t-r_{1}} u_{2} d t_{0}-\int_{i-T_{1}-\delta r_{L^{\prime}}}^{t-r_{1}} u_{2} d t_{0}\right\}
$$

Let the d.c. part of J_{A} be J_{1}, and the oscillating part of fre: quency ω be i_{1}, then

$$
\begin{aligned}
& J_{1}=\frac{-n e}{d_{2}} \int_{t-T_{1}-2 T_{2}}^{t-r_{1}} u_{2}^{\prime} d t_{0}=0,
\end{aligned}
$$

$$
\begin{align*}
& \therefore i_{1}=\frac{n e}{d_{2} \omega^{2}} \beta_{1} e^{j \omega t}\left\{\frac{\beta_{2}}{\beta_{1}}\left(2-2 e^{-j 21 \omega T_{2}}-j 2 \omega T_{2}-j 2 \omega T T_{2} e^{-j 2 \omega T_{2}}\right)\right. \\
& +\left(1-e^{-j \omega T_{1}}-j \omega T_{1} e^{-j \omega T_{1}}\right)\left[1+\left(\frac{2 \alpha_{1}+\mu_{2}}{\mu_{2}}\right) e^{-j \omega T_{2}}-\left(\frac{\alpha_{1}+\alpha_{2}}{\alpha_{2}}\right)\right. \\
& \left.\left.\times \frac{1-e^{-j \omega_{2} \omega T_{2}}}{j \omega T_{1}}\right]+\left(1-e^{-j \omega T_{1}}\right)\left(1-e^{-j 2 \omega T_{1}}-j 2 \omega T_{2} e^{-j \omega^{2} \omega T_{2}}\right)\right\} . \tag{6}
\end{align*}
$$

In the next place, the current J_{K} flowing into G from outside on account of electron motions between G and K is

$$
J_{K}=\frac{n e}{d_{1}}\left\{\int_{i-T_{1}-\delta R_{1}^{\prime}}^{i} u_{1} d t_{0}+\int_{t_{0}^{\prime \prime}}^{t-\pi_{1}-2 \tau_{2}-\left(6 T_{2} r_{1}^{\prime \prime}+\delta t_{0}\right.}\right\}
$$

where $t_{0}^{\prime \prime \prime}$ is the t_{0} of the electron which come back to K at t, i.e.

$$
\begin{aligned}
& t_{0}^{\prime \prime \prime}=t-T_{0}-\delta T_{0}\left(t_{0}^{\prime \prime \prime}\right) \doteqdot t-T_{0}-\delta T_{0}^{\prime \prime \prime}, \quad\left[\delta T_{0}^{\prime \prime \prime} \equiv \delta T_{0}\left(t-T_{0}\right)\right] . \\
& J_{K}=\frac{n e}{d_{1}}\left\{\int_{t-r_{1}-\delta r_{2}^{\prime}}^{t-T_{1}} u_{1} d t_{0}+\int_{i-T_{1}}^{t} u_{1} d t_{0}+\int_{t-T_{0}-\delta r_{0}^{\prime \prime \prime}}^{t-T_{0}} u_{3} d t_{0}+\int_{t-T_{0}}^{t-T_{1}-2 T_{2}} u_{3} d t_{0}-\int_{t-R_{1}-2 T_{2}-\left(\delta T_{1}^{\prime \prime+}+\delta r_{2}^{\prime \prime}\right)}^{t-T_{1}-2 r_{2}} u_{3} d t_{0},\right.
\end{aligned}
$$

and the d.c: part J_{2} of J_{K} is

$$
J_{2}=\frac{n e}{d_{1}}\left\{\int_{t-r_{1}}^{t} u_{1}^{\prime} d t_{1}+\int_{t-r_{0}}^{t-r_{1}-\cdots r_{2}} u_{0}^{\prime} d t_{0}\right\}=0
$$

and the oscillating part i_{2} of frequency ω of J_{k} is

$$
\begin{align*}
& \therefore \quad i_{2}=\frac{n e}{d_{1} \omega^{2}} \beta_{1} e^{j \omega t}\left\{\frac { \beta _ { 2 } } { \beta _ { 1 } } \left[\left(1-e^{-j 2 \omega T_{2}}-j 2 \omega T_{2} e^{-j 2 \omega T_{2}}\right)-\left(\frac{\alpha_{1}+\alpha_{2}}{\alpha_{2}}\right) \frac{T_{1}}{T_{2}}\right.\right. \\
& \times \frac{1}{j \omega T_{1}}\left(1-e^{-j \omega T_{1}}\right)\left(1-e^{-j \omega \omega T_{2}}-j 2 \omega T_{2} e^{-j 2 \omega T_{2}}\right)+\left(1-e^{-j \omega T_{1}}\right) \\
& \left.\times\left(1-e^{-j 2 \omega T_{2}}\right)\right]+\left(1-e^{-j \omega T_{1}}-j \omega T_{1} e^{-j \omega T_{1}}\right)\left[1+\left(\frac{2 \alpha_{1}+\alpha_{0}}{\alpha_{2}}\right) e^{-j \omega \omega T_{2}}\right] \\
& +\left(1-e^{-j \omega T_{1}}\right)\left[-j 2 \omega T_{2} e^{-j 2 \omega T_{2}}-\left(\frac{\alpha_{1}+\alpha_{2}}{\alpha_{2}}\right) \frac{1}{j \omega T_{1}} 2\left(1-j \omega T_{1}\right.\right. \\
& \left.-e^{-j \omega T_{1}}\right) e^{-j 2 \omega T_{2}}+\left(1-e^{-j \omega \omega \not Z_{2}}+e^{-j \omega^{2} \omega T_{2}} \cdot e^{\left.-j \omega r_{1}\right)}\right] \\
& \left.+\left(1-e^{-j \omega T_{1}}-2 j \omega T_{t}\right)\right\} . \tag{7}
\end{align*}
$$

Here it is noticed that in the calculation of i_{2},

$$
\int_{t-\mathcal{T}_{0}-\delta x_{0}^{\prime \prime \prime}}^{t-T_{0}} u_{0}^{\prime} d t_{0}=0
$$

holds in the first order, independent of the form of $\delta T_{0}\left(t_{10}\right)$.
Interelectrode impedances and some numerical examples.
In order that oscillation may occur in the system of an electron tube and an external circuit, it is needed that the negative resistance between electrodes in an electron tube occurs.

For the case when no electrons are caught by the anode, we define interelectrode impedance z_{1} between G and A and z_{2} between G and K by the following expressions, the suffix a, b, c specifying the circuit related respectively:

$$
\begin{aligned}
& \frac{1}{z_{1 u}}=\frac{i_{1 \pi}}{v_{1} e^{j \omega t}}=\frac{n e^{2}}{m d_{1} d_{2} \omega^{2}} F_{1}\left(X, Y, \varepsilon_{u}\right), \\
& \frac{1}{z_{\mathrm{g} /}}=\frac{i_{2 a}}{\hat{v}_{1} e^{j w t}}=\frac{n e^{2}}{m d_{1}^{2} \omega^{2}} F_{2}\left(X, Y, \varepsilon_{u}\right), \\
& \underset{z_{11}}{\dot{1}}=\frac{i_{1 b}}{\left(v_{1}+v_{2}\right) e^{j \omega t}}=\frac{n e^{\mathrm{q}}}{m d_{1}} \overline{d_{2}\left(\omega^{2}\right.}\left(\frac{1}{1+x}\right) F_{1}\left(X, Y, \varepsilon_{b}\right), \\
& 1_{z_{2 i}}=\frac{i_{i b}}{v_{1} e^{j \omega i}}=\frac{n e^{2}}{m d_{1}^{2} \omega^{2}} F_{2}\left(X, Y, \varepsilon_{i j}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{z_{1:}}=\frac{-i_{t r}}{v_{2} e^{j \omega t}}=\frac{n e^{2}}{m d_{1} d_{2}\left(\omega^{i}\right.}\left(\frac{1}{-x}\right) F_{1}\left(X, Y, \varepsilon_{c}\right), \\
& -\frac{1}{z_{2!}}=\frac{i_{2 r}}{v_{1} e^{j \omega t}}=\frac{n e^{2}}{m d_{1}^{v}\left(\omega^{2}\right.} F_{i}\left(X, Y, \varepsilon_{r}\right),
\end{aligned}
$$

where

$$
X=\omega T_{1}, \quad Y=\omega T_{2}, \quad \chi=v_{2} / v_{1}
$$

$$
\begin{align*}
& \varepsilon_{u}=\frac{\beta_{2}}{\beta_{1}}=\frac{d_{1}}{d_{2}}, \quad \varepsilon_{n}=\frac{\beta_{2}}{\beta_{1}}=\frac{d_{1}}{d_{2}} \frac{v_{1}+v_{2}}{v_{1}}=(1+x) \frac{d_{1}}{d_{2}}, \\
& s_{r}=\frac{\beta_{2}}{\beta_{1}}=-\frac{d_{1}}{d_{2}} \frac{v_{2}}{v_{1}}=-\alpha \frac{d_{1}}{d_{2}}, \\
& F_{1}(X, Y, \varepsilon) \equiv \varepsilon\left(2-2 e^{-j 2 Y}-j 2 Y-j 2 Y e^{-j 2 Y}\right)+\left(1-e^{-j x}-j X e^{-j x}\right) \\
& \times\left[1+\frac{X+2 Y}{X} e^{-j 2 \varphi}+j \frac{X+Y}{X Y}\left(1-e^{-j 2 \varphi}\right)\right] \\
& +\left(1-e^{-j X}\right)\left(1-e^{-j 2 Y}-j 2 Y e^{-j 2 Y}\right), \tag{8}\\
& F(X, Y, \varepsilon) \equiv \varepsilon\left[\left(1-e^{-j 2 Y}-j 2 Y e^{-j 2 Y}\right)+j \frac{X+Y}{X Y}\left(1-e^{-j-Y}\right)\right. \\
& \left.\times\left(1-e^{-j 2 Y}-j 2 Y e^{-j 2 Y}\right)+\left(1-e^{-j x}\right)\left(1-e^{-j 2 Y}\right)\right]+\left(1-e^{-j . Y}\right. \\
& \left.-j X e^{-j x}\right)\left(1+\frac{X+2 Y}{X} e^{-j 2 Y}\right)+\left(1-e^{-j x y}\right)\left[-j 2 Y e^{-j 2 Y}+j \frac{X+Y}{X^{2}}\right. \\
& \left.\times 2\left(1-j X-e^{-j-X}\right) e^{-j 2 Y}+\left(1-e^{-j 2 Y}+e^{-j X} e^{-j 2 Y}\right)\right]+\left(1-e^{-j X}-j 2 X\right) . \text { (9) }
\end{align*}
$$

Now the oscillations can be most expected, when the negative resistances occur in both gaps G, A and G, K. On the other hand, from $\mu_{1} T_{1}=\mu_{2} T_{2}$, it follows that

$$
\frac{T_{1}}{T_{2}} \frac{V_{g}}{V_{g}+V_{u}}=\frac{d_{1}}{d_{2}}=\left\{\begin{array}{l}
\varepsilon_{u} \tag{10}\\
\varepsilon_{b} /(1+x) \\
-\varepsilon_{c} / x
\end{array}\right.
$$

must be fulfilled. We present these possibilities in some numerical examples following.

$$
\text { i) } \quad X=\pi / 2, \quad Y=\pi / 2, \quad T_{1} / T_{2}=1 .
$$

The condition that the negative resistances occur both between G and A, and between G and K is

$$
0.3<\frac{V_{l}}{V_{g}+V_{u}}=\frac{d_{1}}{d_{2}}<1 \text { for (a), } \frac{0.3}{1+x}<\frac{V_{n}}{V_{g}+V_{u}}=\frac{d_{1}}{d_{2}}<\frac{1}{1+x} \text { for (b). }
$$

These are possible for a tube with $d_{2}>d_{1}$, making $T_{1}=T_{2}$.

$$
\text { ii) } \quad X=\frac{3}{4} \pi, \quad Y=\frac{3}{4} \pi, \quad T_{1} / T_{2}=1 / 3 .
$$

The condition is

$$
-\frac{0.2}{\chi}<-\frac{1}{3} \frac{V_{\eta}}{V_{g}+V_{a}}=\frac{d_{1}}{d_{2}}<\frac{0.37}{\chi} \quad \text { for (c). }
$$

This is possible for a tube with $d_{2}>3 d_{1}$, making $\chi<1.11$, and T_{1} / T_{2} $=1 / 3$.

$$
\text { iii) } \quad X=\frac{1}{2} \pi, \quad Y=\frac{3}{2} \pi, \quad T_{1} / T_{2}=1 / 3 \text {. }
$$

The condition is

$$
\begin{aligned}
& -0.05<\frac{1}{3} \frac{V_{g}}{V_{g}+V_{n}}=\frac{d_{1}}{d_{2}}<1.67 \text { for (a), } \\
& -\frac{0.05}{1+\chi}<\frac{1}{3} \frac{V_{g}}{V_{y}+V_{r}}=\frac{d_{1}}{d_{2}}<\frac{1.67}{1+x} \text { for (b). }
\end{aligned}
$$

These are possible for a tube with $d_{2}>3 d_{1}$, making $T_{1} / T_{2}=1 / 3$.

$$
\text { iv) } X=\frac{1}{2} \pi, \quad Y=\frac{5}{2} \pi, \quad T_{1} / T_{2}=1 / 5
$$

The condition is

$$
\begin{aligned}
& -0.17<\frac{1}{5} \frac{V_{g}}{V_{g}+V_{a}}=\frac{d_{1}}{d_{2}}<2.6 \quad \text { for (a) }, \\
& \frac{-0.17}{1+\varkappa}<\frac{1}{5} \frac{V_{I}}{V_{g}+V_{a}}=\frac{d_{1}}{d_{2}}<\frac{2.6}{1+\varkappa} \text { for (b). }
\end{aligned}
$$

These are possible for a tube with $d_{2}>5 d_{1}$, making $T_{1} / T_{2}=1 / 5$.
$X+Y=\pi$ means that the oscillating frequency is BarkhausenKurz frequency and $X+Y=n \pi$ with n (integers) means the oscillation at its dwarf waves. It has been shown that the oscillation can be expected at B.K. frequency and its dwarf wave frequencies. But the author never means to present the limit of the oscillation.

