MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A, Vol. XXV, No. 1, Article 4, 1947.

On a Generalization of the Projective Deformation

By

Joyo Kanitani

(Received December 26, 1946)

1. Let \mathbf{R}_2 be a two-dimensional space with a projective connexion $\Gamma_{\mu}^{\alpha} dx^i$ ($\alpha, \beta = 0, 1, 2; \Gamma_{\nu}^{\alpha} = \delta_i^{\alpha}$). The triangle of reference $[C, C_1, C_2]$ in a projective plane S_2 which moves along the development of a curve L drawn on \mathbf{R}_2 is defined by

(1.1) $\begin{cases} dC = dx^i C_i, \\ dC_i = \Gamma_{ij}^{\alpha} dx^j C_{\alpha} \end{cases} \quad (i=1,2; C_0 \equiv C). \end{cases}$

Consider another space \mathbf{R}'_2 with a projective connexion. The spaces \mathbf{R}_2 and \mathbf{R}'_2 will be said to be projectively deformable to each orther, if we can realize a one to one correspondence between the points of these spaces in the following manner.

Let M and M' be any two corresponding points on R_2 and R'_2 respectively. Develop any homologous curves L and L' passing through M and M' respectively, taking a point C on S_2 as the common image of M and M', and giving at this point a common initial position to the moving frames of reference which move along the developments of L and L' respectively. Take, in the vicinity of C, two homologous points P and Q on these developments. Then the *écart* [PQ] is an infinitesimal of the third order at least with regard to the *écart* [CP].

Choose the coordinates of the generating points of \mathbf{R}_2 and \mathbf{R}'_2 in such way that the corresponding points are determined by the same values of the coordinates x^i . Let $\Gamma'_{\beta i} dx^i$ be the connexion for \mathbf{R}'_2 . Then, the condition of the projective deformability of \mathbf{R}'_2 to \mathbf{R}'_2 is written

 $\Gamma_{ii}^{\prime \prime} + \Gamma_{ji}^{\prime \prime} = \Gamma_{ii}^{\prime} + \Gamma_{ji}^{\prime}$ (l, i, j=1, 2).

We see therefore that if two spaces R_2 and R'_2 are projectively

Joyo Kanitani

deformable to each other, *the geodesic lines are in correspondence*, and that if two spaces with normal projective connexion are projectively deformable to each other, they are equivalent.

We can make the given connexion $\Gamma_{ai}^{\rho} dx^{i}$ symmetry without changing the geodesic lines. We shall suppose hereafter that this transformation is previously made, namely, we have

$$\Gamma_{ij}^{\alpha} = \Gamma_{ji}^{\alpha}$$
 ($\alpha = 0, 1, 2; i, j = 1, 2$).

2. The space \mathbf{R}_2 can be plunged into a four-dimensional projective space S_4 in such way that the space \mathbf{R}_2 becomes a ruled surface V_2 in S_4 , and that the osculating planes at a point P of this surface to various curves on the surface passing through P are not all contained in a three-dimensional projective space. We can take any ∞^1 geodesic lines of \mathbf{R}_2 as the lines becoming the generating lines of V_2 . If we designate these geodesic lines, the surface V_2 depends on eight arbitrary functions of an argument¹.

Choose the coordinates x^1 , x^2 so that the ∞^1 geodesic lines in question are given by $x^2 = \text{const.}$ Then we have $\Gamma_{11}^2 = 0$. Consider, in S_4 , a moving frame of reference $[A, A_1, A_2, A_3, A_4]$ which depends on the parameters x^1 , x^2 .

Let

$$dA_{\sigma} = H_{\sigma l}^{\tau} A_{\tau}$$
 ($\sigma = 0, 1, 2, 3, 4$)

be the system of equations defining the movement of this frame². If the vertex A describes the surface V_2 as the frame moves, we can make

 $H_{ai}^{\beta} = \Gamma_{ai}^{\beta} \quad (\alpha, \beta = 0, 1, 2), \qquad H_{0i}^{p} = H_{11}^{p} = 0 \quad (p = 3, 4),$ $H_{3i}^{\beta} = R_{112}^{\beta} \quad (\beta = 0, 1, 2), \qquad H_{3i}^{\beta} = \Gamma_{11}^{\beta} - \Gamma_{12}^{\beta}, \quad H_{2i}^{4} = 0,$ $H_{4i}^{\beta} = R_{2i2}^{\beta} + H_{32}^{\beta}, \qquad H_{4i}^{\beta} = \Gamma_{12}^{\beta} - \Gamma_{22}^{\beta} + H_{32}^{\beta}, \qquad H_{4i}^{4} = \Gamma_{12}^{\beta} + H_{32}^{4},$

while H_{pi}^{τ} are determined by the normal system of partial differential equations:

^{1.} J. Kanitani: 'Sur l'espace à connexion projective majorante, II.', Jap. Jour. of Math.

^{2.} We denote by α , β , γ the surffixes which take the values 0, 1, 2; by h, i, j, k, l, m those which take the values 1, 2; by σ , τ , ρ those which take the values 0, 1, 2, 3, 4; by p, q, r those which take the values 3, 4.

On a Generalization of the Projective Deformation

(2.1)
$$\frac{\partial H_{\nu^2}}{\partial x^1} = \frac{\partial H_{\nu^1}}{\partial x^2} + H_{\nu^1} H_{\nu^2} - H_{\nu^2} H_{\nu^1}^z$$

The tangent planes of the ruled surface V_2 along the generating line AA_1 determine the hyper-plane $II = AA_1A_2A_3$. We shall call it tangent hyper-plane along AA_1 of V_2 . The position of this tangent hyper-plane depends only on the parameter x^2 . When this parameter varies, the hyper-plane II is enveloped by a developable hyper-surface of which the characteristic is the plane determined by the points

$A, A_1, A_3 - H_{32}^4 A_2$.

The surface V_2 is therfore contained in this developable hypersurface, and the characteristic is the tangent plane of V_2 at the point

$$E = A_1 - H_{41}^4 A_1$$

We shall name it stationary point, for it remains unchanged when the parameter x^i varies. The three hyper-planes II, dII, d^2II intersect at a line l passing through E, while the four hyper-planes II, dII, d^2II , d^2II , d^2II intersect at a point E_1 on l, which will be called *cuspidal point*. When the point A describes the ruled surface V_2 , the cuspidal point E_1 describes a curve which will be called edge of regression, and consequently the tangent l to this curve at E_1 describes a ruled surface U_2 . The osculating plane to the edge of regression at E_1 is the characteristic of the envelope of the tangent hyper-plane II of V_2 along the generating line AA_1 . This plane touches U_2 along l and touches V_2 at the stationary point E.

3. Consider a particular point A on V_2 . We may suppose that $x^1=0$, $x^2=0$ for this point. The vertices A_1 , A_2 of the frame $[A, A_1, A_2, A_3, A_4]$ lie on the tangent plane of V_2 at the point A. If we develop any curve drawn from a point C on V_2 into the tangent plane S_2 at C, defining the moving frame $[C, C_1, C_2]$ by means of the equations $(1 \cdot 1)$, and giving initial values so that $C_{\alpha} =$ $A_{\alpha}(\alpha=0, 1, 2)$ for $x^2 = x^2 = 0$, the points $C_{\alpha} + \alpha C_{\alpha}$ are obtained by projecting the points $A_{\alpha} + dA_{\alpha}$ from the line A_3A_4 . We shall name this line axis of projection.

Remarking that we can determine the integrals $H_{p_2}^{\tau}$ of the system of partial differential equations (2.1) by giving arbitrarily the functions $\Psi_{p_2}^{\tau}(x^2)$ to which $H_{p_2}^{\tau}$ are reduced for $x^1=0$, we can prove the following proposition.

25

Joyo Kanitani

The space \mathbf{R}_2 can be so plunged in S_4 that it becomes a ruled surface V_2 passing through a point A arbitrarily given in S_4 and, at this point, the characteristic of the envelope of the tangent hyper-plane along the generating line intersects the axis of projection in S_4 , the point of intersection becoming the cuspidal point.

Let \mathbf{R}'_2 be a space which is projectively deformable to \mathbf{R}_2 . Take the coordinates so that the corresponding points are determined by the same values of the parameters. Plunge also \mathbf{R}'_2 into S_4 in the above said way, giving to the moving frames a common initial position for $x^1 = x^2 = 0$.

Then the homologous stationary points E and E' are in coincidence for $x^1 = x^2 = 0$, but the tangents at these points to the loci of the stationary points are different. We may choose the space R'_2 so that the tangent to the locus on V'_2 becomes an arbitrarily given line through E on the plane AA_1A_3 .

26