Memoirs of the College of Science, University of Kyoto, Series A, Vol. XXV, No. 1, Article 4, 1947.

On a Generalization of the Projective Deformation

By
Joyo Kanitani
(Received December 26, 1946)

1. Let \boldsymbol{R}_{2} be a two-dimensional space with a projective connexion $\Gamma_{k i}^{\alpha} d x^{i}\left(a, \beta=0,1,2 ; \Gamma_{j i}^{\alpha}=\partial_{i}^{\alpha}\right)$. The triangle of reference $\left[C, C_{1}, C_{2}\right]$ in a projective plane S_{2} which moves along the development of a curve L drawn on \boldsymbol{R}_{2} is defined by

$$
\left\{\begin{array}{l}
d C=d x^{i} C_{i}, \\
d C_{i}=\Gamma_{i j}^{a} d x^{j} C_{a} \quad\left(i=1,2 ; C_{v} \equiv C\right) .
\end{array}\right.
$$

Consider another space $\boldsymbol{R}_{2}^{\prime}$ with a projective connexion. The spaces \boldsymbol{R}_{0} and $\boldsymbol{R}_{2}^{\prime}$ will be said to be projectively deformable to each orther, if we can realize a one to one correspondence between the points of these spaces in the following manner.

Let M and M^{\prime} be any two corresponding points on \boldsymbol{R}_{2} and $\boldsymbol{N}_{2}^{\prime}$ respectively. Develop any homologous curves L and L^{\prime} passing through M and M^{\prime} respectively, taking a point C on S_{2} as the common image of M and M^{\prime}, and giving at this point a common initial position to the moving frames of reference which move along the developments of L and L^{\prime} respectively. .Take, in the vicinity of C, two homologous points P and Q on these developments. Then the ecart $[P Q]$ is an infinitesimal of the third order at least with regard to the écart [CP].

Choose the coordinates of the generating points of $\boldsymbol{\pi}_{\boldsymbol{e}}$ and $\boldsymbol{\pi}_{\boldsymbol{r}}^{\prime}$ in such way that the corresponding points are determined by the same values of the coordinates x^{i}. Let $\Gamma_{\{=2}^{\prime \prime} d x^{i}$ be the connexion for $\boldsymbol{R}_{2}^{\prime}$. Then, the condition of the projective deformability of $\boldsymbol{R}_{2}^{\prime}$ to $\boldsymbol{R}_{\mathbf{\Sigma}}$ is written

$$
\Gamma_{i j}^{\prime 2}+\Gamma_{j i}^{\prime 2}=\Gamma_{i j}^{\prime}+\Gamma_{j i}^{l} \quad(l, i, j=1,2) .
$$

We see therefore that if two spaces \boldsymbol{R}_{2} and $\boldsymbol{R}_{2}^{\prime}$ are projectively
deformable to each other, the geodesic lines are in correspondence, and that if two spaces with normal projective connexion are projectively deformable to each other, they are equivalent.

We can make the given connexion $\Gamma_{\alpha i}^{\beta} d x^{i}$ symmetry without changing the geodesic lines. We shall suppose hereafter that this transformation is previously made, namely, we have

$$
\Gamma_{i j}^{\alpha}=\Gamma_{j i}^{\alpha} \quad(\mu=0,1,2 ; i, j=1,2) .
$$

2. The space \boldsymbol{R}_{2} can be plunged into a four-dimensional projective space \boldsymbol{S}_{4} in such way that the space \boldsymbol{R}_{2} becomes a ruled surface V_{2} in \boldsymbol{S}_{4}, and that the osculating planes at a point P of this surface to various curves on the surface passing through P are not all contained in a three-dimensional projective space. We can take any ∞^{1} geodesic lines of \boldsymbol{R}_{2} as the lines becoming the generating lines of V_{2}. If we designate these geodesic lines, the surface V_{2} depends on eight arbitrary functions of an argument ${ }^{1}$.

Choose the coordinates x^{1}, x^{2} so that the ∞^{1} geodesic lines 'a question are given by $x^{2}=$ const. Then we have $\Gamma_{11}^{2}=0$. Consider, in \mathscr{F}_{4}, a moving frame of reference $\left[A, A_{1}, A_{2}, A_{3}, A_{4}\right]$ which depends on the parameters x^{1}, x^{2}.

Let

$$
d A_{\sigma}=H_{\sigma}^{\Sigma} A_{\tau} \quad(\sigma=0,1,2,3,4)
$$

be the system of equations defining the movement of this frame ${ }^{2}$. If the vertex A describes the surface V_{2} as the frame moves, we can make

$$
\begin{aligned}
& H_{\alpha i}^{\beta}=\Gamma_{\alpha i}^{3} \quad(\alpha, \beta=0,1,2), \quad H_{j i}^{\prime \prime}=H_{11}^{\prime \prime}=0 \quad(p=3,4), \\
& H_{31}^{\beta}=\stackrel{\circ}{R} R_{i 12}^{n} \quad(\beta=0,1,2), \quad H_{31}^{3}=\Gamma_{11}^{1}-\Gamma_{12}^{2}, \quad H_{31}^{4}=0, \\
& H_{41}^{3}=R_{i 2}^{2}+H_{32}^{2}, \quad H_{41}^{3}=\Gamma_{12}^{1}-\Gamma_{29}^{2}+H_{i 2}^{3} ; \quad H_{41}^{4}=\Gamma_{12}^{2}+H_{32}^{4},
\end{aligned}
$$

while $H_{\mu, i}^{\tau}$ are determined by the normal system of partial differential equations:

[^0]The tangent planes of the ruled surface V_{z} along the generating line $A A_{1}$ determine the hyper-plane $I I=A A_{1} A_{i} A_{3}$. We shall call it tangent hyper-plane along $A A_{1}$ of V. The position of this tangent hyper-plane depends only on the parameter x^{2}. When this parameter varies, the hyper-plane $l l$ is enveloped by a developable hyper-surface of which the characteristic is the plane determined by the points

$$
A, A_{1}, A_{3}-H_{3}^{4} A_{2}
$$

The surface V_{z} is therfore contained in this developable hypersurface, and the characteristic is the tangent plane of V_{2} at the point

$$
E=A_{1}-H_{i 1} A
$$

We shall name it stationary point, for it remains unchanged when the parameter x^{1} varies. The three hyper-planes $I I, d I I, d^{2} I I$ intersect at a line l passing through E, while the four hyper-planes $I I, d I I, d^{2} I I, d^{3} I I$ intersect at a point E_{1} on l, which will be called cuspidal point. When the point A describes the ruled surface V_{2}, the cuspidal point E_{1} describes a curve which will be called edge of regression, and consequently the tangent l to this curve at E_{1} describes a ruled surface U_{z}. The osculating plane to the edge of regression at E_{1} is the characteristic of the envelope of the tangent hyper-plane $I I$ of V_{2} along the generating line $A A_{1}$. This plane touches U_{2} along l and touches V_{2} at the stationary point E.
3. Consider a particular point A on V. We may suppose that $x^{1}=0, x^{3}=0$ for this point. The vertices A_{1}, A_{2} of the frame $\left[A, A_{1}, A_{\text {. }}, A_{i}, A_{4}\right]$ lie on the tangent plane of V_{2} at the point A. If we develop any curve drawn from a point C on V_{2} into the tangent plane S_{0} at C, defining the moving frame $\left[C, C_{1}, C_{2}\right]$ by means of the equations (1.1), and giving initial values so that $C_{\alpha}=$ $A_{\alpha}(\mu=0,1,2)$ for $x^{2}=x^{2}=0$, the points $C_{\alpha}+\alpha C_{\alpha}$ are obtained by projecting the points $A_{\alpha}+d A_{\alpha}$ from the line $A_{i} A_{1}$. We shall name this line axis of projection.

Remarking that we can determine the integrals $H_{p i}^{\sigma}$ of the system of partial differential equations (2•1) by giving arbitrarily the functions $\Phi_{y^{2}}^{2}\left(x^{2}\right)$ to which $H_{y^{2}}^{\overline{2}}$ are reduced for $x^{1}=0$, we can prove the following proposition.

The space \boldsymbol{R}_{2} can be so plunged in \boldsymbol{S}_{4} that it becomes a ruled surface V_{2} passing through a point A arbitrarily given in S_{4} and, at this point, the characteristic of the envelope of the tangent hyper-plane along the generating line intersects the axis of projection in \boldsymbol{S}_{4}, the point of intersection becoming the cuspidal point.

Let $\boldsymbol{R}_{2}^{\prime}$ be a space which is projectively deformable to \boldsymbol{R}_{2}. Take the coordinates so that the corresponding points are determined by the same values of the parameters. Plunge also $\boldsymbol{R}_{2}^{\prime}$ into $\boldsymbol{S}_{\mathbf{4}}$ in the above said way, giving to the moving frames a common initial position for $x^{1}=x^{2}=0$.

Then the homologous stationary points E and E^{\prime} are in coincidence for $x^{1}=x^{2}=0$, but the tangents at these points to the loci of the stationary points are different. We may choose the space $\boldsymbol{R}_{2}^{\prime}$ so that the tangent to the locus on V_{o}^{\prime} becomes an arbitravily given line through E on the plane $A A_{1} A_{3}$.

[^0]: 1. J. Kanitani: 'Sur l'espace à connexion projective majorante, II.', Jap. Jour. of Math.
 2. We denote by a, β, γ the surffixes which take the values $0,1,2$; by h, i, j, k, l, m those which take the values 1,2 ; by σ, τ, ρ those which take the values $0,1,2$, 3,4 ; by p, q, r those which take the values 3,4 .
