MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A, Vol. XXV, No. 1, Article 5, 1947.

Iteration of Elliptic Functions

By

Toshizô Matsumoto

(Received February 5, 1947)

1. Let F(z) be an elliptic function with periods ω , ω' and its fundamental parallelogram be D. In the following we shall consider the iteration of F(z). Let $W=m\omega+n\omega'$ be any period, then we consider the point ζ such as

$$F(\zeta) = \zeta + W. \tag{1}$$

The existence of such a point may easily be known provided |W| is great. For let ν be the order of F(z), then in D there are just ν poles. Hence we may suppose F(z) bounded on the contour of D, (or else a little modification of it is sufficient). We consider the integral along the contour

$$\Im = \frac{1}{2\pi i} \oint \frac{F'(z) - 1}{F(z) - z - W} dz. \qquad (2)$$

|W| being sufficiently great, the denominator shall not be zero at any point of the contour. If we make |W| great, $|\Im|$ becomes however small. Therefore in D there are ν points ζ such as (1).

The set of points ζ for all W is countable and isolated, the poles in D being the points of accumulation.

Now about ζ we have the expansion

$$F(z) = \zeta + W + s(z - \zeta) + \dots, \qquad s = F'(\zeta).$$

For n-th iteration we have

$$F_{u}(z) = \zeta + W + s^{u}(z-\zeta) + \dots,$$

where

$$F_{\mu}(\zeta) = \zeta + W,$$

Toshizô Matsumoto

$$F'_{n}(\zeta) = F'(F_{n-1}(\zeta))F'(F_{n-2}(\zeta))\cdots F'(F(\zeta))F'(\zeta).$$

If |s| < 1, then since in a circle (\mathfrak{S}) sufficiently small, $\left|\frac{F(z)-\zeta-W}{z-\zeta}\right|$ becomes less than a number $\sigma < 1$, we have $|F_{\alpha}(z)-\zeta-W| < \sigma^{\alpha}|z-\zeta|, \quad n=1, 2, ...$

$$\zeta$$
 is (the equivalent point in *D* of) an attractive point and all points of the circle (\mathfrak{S}) by the iteration converge to ζ . All points of a certain domain (\mathcal{A}) containing (\mathfrak{S}) in it shall have the same property. This is the immediate domain of attraction.

2. Next let us consider the attractive cycle. If

$$F(\zeta) = \zeta_1 + W, \quad F(\zeta_1) = \zeta_2 + W, \dots, \quad F(\zeta_{m-1}) = \zeta + W,$$
 (3)

where W mean only certain periods, then $\zeta_1, \zeta_2, ..., \zeta_{m-1}$ are the cycle corresponding to ζ of order m. ζ shall be found from the equation

$$F_{m}(\zeta) = \zeta + W. \tag{4}$$

The existence of such point may be proved quite in the same way as in the case m=1. For that

$$F_{m}(z) = F_{m-1}(F(z)) = \dots = F(F_{m-1}(z))$$

shall be bounded, z must not pass through the poles of F(z). There are ν poles in D. Let α be one of them and β be such that $F(\beta) = \alpha$. There are such ν points in D. Not only this, we must also avoid such points β in $D: F(\beta) = \alpha + W$. There are ν points β in D. Now varying W, we know that for a pole, there are always countably infinite number of β . Thus for ν poles in D, there are countably infinite number of β in D. Again for each β , we must take care of points γ such that $F(\gamma) = \beta + W$. Continuing this, we have a countable set E of avoidable points in D. These points are isolated but converge to the poles in D. This is clear, since if |W| be bounded, the points β, γ, \dots are finite in number, therefore, for that they are infinite in number, it must be such that $W \rightarrow \infty$, so that $F \rightarrow \infty$. Therefore we may suppose that any point of E is not on the contour of D, so that $F_n(z)$ is bounded on the contour.

Now we seclude the poles of F(z) by small circles, then there

28

remain in D a finite number of points of E. We also seclude all the essential singularities of $F_n(z)$ by circles. Let D' be the remaining domain. There remain only a finite number of poles of $F_m(z)$ in D'. Now consider the integral as (2),

$$\Im = \frac{1}{2\pi i} \oint \frac{F'_{u}(z) - 1}{F_{u}(z) - z - W} dz,$$
(5)

we may conclude (4). As it is known, we have

$$F_{m}'(\zeta) = F'(\zeta_{m-1})F'_{m-1}(\zeta) = \dots = F'(\zeta_{m-1})F'(\zeta_{m-2})F'(\zeta),$$

$$F_{m}'(\zeta) = F_{m}'(\zeta_{1}) = \dots = F_{m}'(\zeta_{m-1}).$$

Hence in attractive case, for all z in a circle (\mathfrak{S}) about ζ , $F_{pm}(z)$ tend to ζ for $p \to \infty$; $F_{pm+1}(z)$ to $\zeta_1 + W$; ...; $F_{pm+m-1}(z)$ to $\zeta_{m-1} + W$, which we say $F_n(z)$ converges uniformly to the cycle.

3. Writing $F(\xi) = z + W$, where ζ is an attractive point such as $F(\zeta) = \zeta + W$, we consider the inverse function about $\xi = \zeta$. If ζ be not a branch point, then

$$\xi = F_{-1}(z+W) = \zeta + \overline{s}(z-\zeta) + \dots,$$

where $s\overline{s}=1$, hence $|\overline{s}|>1$. If a circle $|z-\zeta| < r$ be in the domain of attraction, then its transformed domain by $\xi = F_{-1}(z+W)$ contains it. Therefore again we may consider the inverse function

$$\xi = F_{-1}(F_{-1}(z+W)+W), \dots$$

If these functions are holomorphic in the circle then they must be bounded in it. Hence they form a normal family. This contradicts the fact that ζ is a repulsive point of these functions. Thus about the attractive point there must be a branch point of the inverse function of $F(\xi) = z + W$, that is $F'(\zeta) = 0$. Since $F'(\xi)$ is elliptic, such points are finite in number in the fundamental parallelogram; hence the number of the attractive points is finite in the parallelogram.

Same consideration will be possible for the cycle.