Iteration of Elliptic Functions

By

Toshizô Matsumoto

(Received February 5, 19:7)

1. Let $F(z)$ be an elliptic function with periods ω, ω^{\prime} and its fundamental parallelogram be D. In the following we shall consider the iteration of $F(z)$. Let $W=n \omega+n \omega \omega^{\prime}$ be any period, then we consider the point ζ such as

$$
\begin{equation*}
F(\zeta)=\zeta+W \tag{1}
\end{equation*}
$$

The existence of such a point may easily be known provided $|W|$ is great. For let ν be the order of $F(z)$, then in D there are just ν poles. Hence we may suppose $F(z)$ bounded on the contour of D, (or else a little modification of it is sufficient). We consider the integral along the contour

$$
\begin{equation*}
i=\frac{1}{2 \pi i} \oint \frac{F^{\prime}(z)-1}{F(z)-z-W} d z \tag{2}
\end{equation*}
$$

$|W|$ being sufficiently great, the denominator shall not be zero at any point of the contour. If we make $|W|$ great, $|\Im|$ becomes however small. Therefore in D there are ν points $\%$ such as (1).

The set of points ζ for all W is countable and isolated, the poles in D being the points of accumulation.

Now about ζ we have the expansion

$$
F(z)=\zeta+W+s(z-\zeta)+\cdots, \quad s=F^{\prime}(\zeta)
$$

For n-th iteration we have

$$
F_{n}(z)=\zeta+W+s^{n}(z-\xi)+\ldots
$$

where

$$
F_{u}(\zeta)=\zeta+W
$$

$$
F_{u}^{\prime}(\zeta)=F^{\prime}\left(F_{a-1}(\zeta)\right) F^{\prime}\left(F_{u-2}(\zeta)\right) \ldots F^{\prime}(F(\zeta)) F^{\prime}(\zeta) .
$$

If $|s|<1$, then since in a circle (S) sufficiently small, $\left|\frac{F(z)-\zeta-W}{z-\zeta}\right|$ becomes less than a number $\sigma<1$, we have

$$
\left|F_{u}(z)-\zeta-W\right|<\sigma^{n}|z-\zeta|, \quad n=1,2, \ldots
$$

$\dot{\zeta}$ is (the equivalent point in D of) an attractive point and all points of the circle (() by the iteration converge to ζ. All points of a certain domain (d) containing (S) in it shall have the same property. This is the immediate domain of attraction.
2. Next let us consider the attractive cycle. If

$$
\begin{equation*}
F(\zeta)=\zeta_{1}+W, \quad F\left(\zeta_{1}\right)=\zeta_{2}+W, \ldots \ldots, F\left(\zeta_{m-1}\right)=\zeta+W \tag{3}
\end{equation*}
$$

where W mean only certain periods, then $\zeta_{,} \xi_{1}, \zeta_{2}, \ldots, \zeta_{m-1}$ are the cycle corresponding to ξ of order m. ζ shall be found from the equation

$$
\begin{equation*}
F_{m}(\zeta)=\zeta+W . \tag{4}
\end{equation*}
$$

The existence of such point may be proved quite in the same way as in the case $m=1$. For that

$$
F_{m}(z)=F_{m,-1}(F(z))=\ldots=F\left(F_{m,-1}(z)\right)
$$

shall be bounded, z must not pass through the poles of $F(z)$. There are ν poles in D. Let $火$ be one of them and β be such that $F(\beta)=\omega$. There are such ν points in D. Not only this, we must also avoid such points β in $D: F(\beta)=\mu+W$. There are ν points β in D. Now varying W, we know that for a pole, there are always countably infirite number of β. Thus for ν poles in D, there are countably infinite number of β in D. Again for each β, we must take care of points γ such that $F(\gamma)=\beta+W$. Continuing this, we have a countable set E of avoidable points in D. These points are isolated but converge to the poles in D. This is clear, since if $|W|$ be bounded, the points β, γ, \ldots are finite in number, therefore, for that they are infinite in number, it must be such that $W \rightarrow \infty$, so that $F \rightarrow \infty$. Therefore we may suppose that any point of E is not on the contour of D, so that $F_{u}(z)$ is bounded on the contour.

Now we seclude the poles of $F(z)$ by small circles, then there
remain in D a finite number of points of E. We also seclude all the essential singularities of $F_{n}(z)$ by circles. Let D^{\prime} be the remaining domain. There remain only a finite number of poles of $F_{m}(z)$ in D^{\prime}. Now consider the integral as (2),

$$
\begin{equation*}
\Im=\frac{1}{2 \pi i} \oint \frac{F_{m}^{\prime}(z)-1}{F_{m}(z)-z-W} d z \tag{5}
\end{equation*}
$$

we may conclude (4). As it is known, we have

$$
\begin{gathered}
F_{m}^{\prime}(\zeta)=F^{\prime}\left(\zeta_{m-1}\right) F_{m-1}^{\prime}(\zeta)=\ldots=F^{\prime}\left(\zeta_{m-1}\right) F^{\prime}\left(\zeta_{m-2}\right) F^{\prime}(\zeta), \\
F_{m}^{\prime}(\zeta)=F_{m}^{\prime}\left(\zeta_{1}\right)=\ldots=F_{m}^{\prime}\left(\zeta_{m-1}\right)
\end{gathered}
$$

Hence in attractive case, for all z in a circle (๔) about ζ, $F_{p m,}(z)$ tend to ζ for $p \rightarrow \infty ; F_{p m+1}(z)$ to $\zeta_{1}+W ; \ldots ; F_{p m+m-1}(z)$ to $\zeta_{n-1}+W$, which we say $F_{n}(z)$ converges uniformly to the cycle.
3. Writing $F(\xi)=z+W$, where ζ is an attractive point such as $F(\zeta)=\zeta+W$, we consider the inverse function about $\xi=\zeta$. If ζ be not a branch point, then

$$
\xi=F_{-1}(z+W)=\zeta+\bar{s}(z-\zeta)+\ldots,
$$

where $s \bar{s}=1$, hence $|\bar{s}|>1$. If a circle $|z-\zeta|<\gamma$ be in the domain of attraction, then its transformed domain by $\xi=F_{-1}(z+W)$ contains it. Therefore again we may consider the inverse function

$$
\xi=F_{-1}\left(F_{-1}(z+W)+W\right), \ldots
$$

If these functions are holomorphic in the circle then they must be bounded in it. Hence they form a normal family. This contradicts the fact that ζ is a repulsive point of these functions. Thus about the attractive point there must be a branch point of the inverse function of $F(\xi)=z+W$, that is $F^{\prime}(\zeta)=0$. Since $F^{\prime}(\xi)$ is elliptic, such points are finite in number in the fundamental parallelogram; hence the number of the attractive points is finite in the parallelogram.

Same consideration will be possible for the cycle.

